1
|
Vásquez A, Ferreiro MD, Martínez-Rodríguez L, Gallegos MT. Expression, regulation and physiological roles of the five Rsm proteins in Pseudomonas syringae pv. tomato DC3000. Microbiol Res 2024; 289:127926. [PMID: 39437643 DOI: 10.1016/j.micres.2024.127926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Proteins belonging to the RsmA (regulator of secondary metabolism)/CsrA (carbon storage regulator) family are small RNA-binding proteins that play crucial roles post-transcriptionally regulating gene expression in many Gram-negative and some Gram-positive bacteria. Although most of the bacteria studied have a single RsmA/CsrA gene, Pseudomonas syringae pv. tomato (Pto) DC3000 encodes five Rsm proteins: RsmA/CsrA2, RsmC/CsrA1, RsmD/CsrA4, RsmE/CsrA3, and RsmH/CsrA5. This work aims to provide a comprehensive analysis of the expression of these five rsm protein-encoding genes, elucidate the regulatory mechanisms governing their expression, as well as the physiological relevance of each variant. To achieve this, we examined the expression of rsmA, rsmE, rsmC, rsmD, and rsmH within their genetic contexts, identified their promoter regions, and assessed the impact of both their deletion and overexpression on various Pto DC3000 phenotypes. A novel finding is that rsmA and rsmC are part of an operon with the upstream genes, whereas rsmH seems to be co-transcribed with two downstream genes. We also observed significant variability in expression levels and RpoS dependence among the five rsm paralogs. Thus, despite the extensive repertoire of rsm genes in Pto DC3000, only rsmA, rsmE and rsmH were significantly expressed under all tested conditions (swarming, minimal and T3SS-inducing liquid media). Among these, RsmE and RsmA were corroborated as the most important paralogs at the functional level, whereas RsmH played a minor role in regulating free life and plant-associated phenotypes. Conversely, RsmC and RsmD did not seem to be functional under the conditions tested.
Collapse
Affiliation(s)
- Adriana Vásquez
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Dolores Ferreiro
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Laura Martínez-Rodríguez
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Trinidad Gallegos
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain.
| |
Collapse
|
2
|
Lavado-Benito C, Murillo J, Martínez-Gil M, Ramos C, Rodríguez-Moreno L. GacA reduces virulence and increases competitiveness in planta in the tumorigenic olive pathogen Pseudomonas savastanoi pv. savastanoi. FRONTIERS IN PLANT SCIENCE 2024; 15:1347982. [PMID: 38375080 PMCID: PMC10875052 DOI: 10.3389/fpls.2024.1347982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 02/21/2024]
Abstract
GacS/GacA is a widely distributed two-component system playing an essential role as a key global regulator, although its characterization in phytopathogenic bacteria has been deeply biased, being intensively studied in pathogens of herbaceous plants but barely investigated in pathogens of woody hosts. P. savastanoi pv. savastanoi (Psv) is characterized by inducing tumours in the stem and branches of olive trees. In this work, the model strain Psv NCPPB 3335 and a mutant derivative with a complete deletion of gene gacA were subjected to RNA-Seq analyses in a minimum medium and a medium mimicking in planta conditions, accompanied by RT-qPCR analyses of selected genes and phenotypic assays. These experiments indicated that GacA participates in the regulation of at least 2152 genes in strain NCPPB 3335, representing 37.9 % of the annotated CDSs. GacA also controls the expression of diverse rsm genes, and modulates diverse phenotypes, including motility and resistance to oxidative stresses. As occurs with other P. syringae pathovars of herbaceous plants, GacA regulates the expression of the type III secretion system and cognate effectors. In addition, GacA also regulates the expression of WHOP genes, specifically encoded in P. syringe strains isolated from woody hosts, and genes for the biosynthesis of phytohormones. A gacA mutant of NCPPB 3335 showed increased virulence, producing large immature tumours with high bacterial populations, but showed a significantly reduced competitiveness in planta. Our results further extend the role of the global regulator GacA in the virulence and fitness of a P. syringae pathogen of woody hosts.
Collapse
Affiliation(s)
- Carla Lavado-Benito
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Jesús Murillo
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra (UPNA), Edificio de Agrobiotecnología, Mutilva Baja, Spain
| | - Marta Martínez-Gil
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Luis Rodríguez-Moreno
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
3
|
Song H, Li Y, Wang Y. Two-component system GacS/GacA, a global response regulator of bacterial physiological behaviors. ENGINEERING MICROBIOLOGY 2023; 3:100051. [PMID: 39628522 PMCID: PMC11611043 DOI: 10.1016/j.engmic.2022.100051] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 12/06/2024]
Abstract
The signal transduction system of microorganisms helps them adapt to changes in their complex living environment. Two-component system (TCS) is a representative signal transduction system that plays a crucial role in regulating cellular communication and secondary metabolism. In Gram-negative bacteria, an unorthodox TCS consisting of histidine kinase protein GacS (initially called LemA) and response regulatory protein GacA is widespread. It mainly regulates various physiological activities and behaviors of bacteria, such as quorum sensing, secondary metabolism, biofilm formation and motility, through the Gac/Rsm (Regulator of secondary metabolism) signaling cascade pathway. The global regulatory ability of GacS/GacA in cell physiological activities makes it a potential research entry point for developing natural products and addressing antibiotic resistance. In this review, we summarize the progress of research on GacS/GacA from various perspectives, including the reaction mechanism, related regulatory pathways, main functions and GacS/GacA-mediated applications. Hopefully, this review will facilitate further research on GacS/GacA and promote its application in regulating secondary metabolism and as a therapeutic target.
Collapse
Affiliation(s)
- Huihui Song
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuying Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
4
|
Yu X, Meng C, Tan X, Su Y, Cao Z, Hwang TS, Li L. RsmA3 modulates RpoS through the RetS-Gac-Rsm signaling pathway in response to H 2 O 2 stress in the phytopathogen Pseudomonas syringae. Environ Microbiol 2022; 24:4755-4770. [PMID: 35837862 DOI: 10.1111/1462-2920.16132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 05/27/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022]
Abstract
Reactive oxygen species are a fatal challenge to the plant pathogenic bacterium Pseudomonas syringae. In this study, we reveal that the global regulatory protein RsmA3 from the RetS-Gac/Rsm signaling pathway modulates RpoS in the early-log growth phase in the P. syringae wild-type strain MB03, thereby regulating oxidative tolerance to H2 O2 and ultimately affecting pathogenicity to the host plant. Following increased H2 O2 by external addition or endogenous induction by menadione, the resistance of the mutant strain ΔretS to H2 O2 is significantly enhanced due to rapid increases in the transcription of Rsm-related non-coding small RNAs (nc sRNAs), a sigma factor RpoS, and H2 O2 -detoxifying enzymes. Moreover, the ΔretS mutant is significantly less pathogenic in cucumber leaves. Seven Rsm-related nc sRNAs (namely, rsmZ, rsmY, and rsmX1-5 ) show functional redundancy in the RetS-Gac-Rsm signaling pathway. External addition of H2 O2 stimulates increases in the transcription of both rsmY and rsmZ. Thus, we propose a regulatory model of the RetS-Gac-Rsm signaling pathway in P. syringae MB03 for the regulation of H2 O2 tolerance and phytopathogenicity in the host plant.
Collapse
Affiliation(s)
- Xun Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agriculture University, Wuhan, PR China
| | - Cui Meng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agriculture University, Wuhan, PR China
| | - Xiaocheng Tan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agriculture University, Wuhan, PR China
| | - Yuwei Su
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agriculture University, Wuhan, PR China
| | - Zhiping Cao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agriculture University, Wuhan, PR China
| | - Tzann-Shun Hwang
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agriculture University, Wuhan, PR China
| |
Collapse
|
5
|
Liu J, Zhang X, Deng S, Wang H, Zhao Y. Thiamine Is Required for Virulence and Survival of Pseudomonas syringae pv. tomato DC3000 on Tomatoes. Front Microbiol 2022; 13:903258. [PMID: 35783427 PMCID: PMC9247456 DOI: 10.3389/fmicb.2022.903258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas syringae pv. tomato DC3000 (PstDC3000) is an important plant pathogen that infects tomatoes and Arabidopsis. Thiamine and its derivative thiamine pyrophosphate (TPP) are cofactors that play an important role in the growth and survival of many bacterial microorganisms. However, the role of thiamine-related genes has not been determined in PstDC3000. Hence, to investigate the role of TPP in growth, resistance to stresses, and virulence of PstDC3000, double and quadruple mutants of thiamine biosynthesis-related genes (thiD/E, thiS/G, and thiD/E/S/G deletion mutants) as well as a single mutant of a lipoprotein-related gene (apbE) were constructed. Our results showed that growth of the thiD/E, thiS/G, and thiD/E/S/G mutants in the mannitol-glutamate (MG) medium was significantly lower than that of the wild type (WT) and their growth could be restored to the WT level with the addition of exogenous thiamine, whereas mutation of the apbE gene did not affect its growth in vitro. While tolerance to acid, osmotic, and oxidative stresses for the double mutants was similar to the WT, tolerance to stresses for the apbE mutant was reduced as compared to the WT. In addition, all four mutants exhibited reduced virulence and growth in tomatoes. However, when the double and quadruple mutants were inoculated with exogenous thiamine, the virulence and growth rate of these mutants were restored to the WT level. These results indicated that the thiD/E, thiS/G, and thiD/E/S/G mutants exhibiting growth deficiency in planta are probably due to a lack of thiamine biosynthesis, thus reducing colonization in tomatoes. On the other hand, it is possible that the apbE mutant exhibited reduced stress tolerances, thus resulting in reduced colonization. Overall, our findings suggest that the thiamine biosynthetic (TBS) pathway plays an important role in the colonization and infection of PstDC3000. Therefore, the thiamine biosynthetic pathway could be used as the target to develop new control measures for a bacterial spot in tomatoes.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan, China
| | - Xuejiang Zhang
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan, China
| | - Siyi Deng
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan, China
| | - Hua Wang
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan, China
| | - Youfu Zhao
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, United States
| |
Collapse
|
6
|
Ferreiro MD, Behrmann LV, Corral A, Nogales J, Gallegos MT. Exploring the expression and functionality of the rsm sRNAs in Pseudomonas syringae pv. tomato DC3000. RNA Biol 2021; 18:1818-1833. [PMID: 33406981 PMCID: PMC8583166 DOI: 10.1080/15476286.2020.1871217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/08/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
The Gac-rsm pathway is a global regulatory network that governs mayor lifestyle and metabolic changes in gamma-proteobacteria. In a previous study, we uncovered the role of CsrA proteins promoting growth and repressing motility, alginate production and virulence in the model phytopathogen Pseudomonas syringae pv. tomato (Pto) DC3000. Here, we focus on the expression and regulation of the rsm regulatory sRNAs, since Pto DC3000 exceptionally has seven variants (rsmX1-5, rsmY and rsmZ). The presented results offer further insights into the functioning of the complex Gac-rsm pathway and the interplay among its components. Overall, rsm expressions reach maximum levels at high cell densities, are unaffected by surface detection, and require GacA for full expression. The rsm levels of expression and GacA-dependence are determined by the sequences found in their -35/-10 promoter regions and GacA binding boxes, respectively. rsmX5 stands out for being the only rsm in Pto DC3000 whose high expression does not require GacA, constituting the main component of the total rsm pool in a gacA mutant. The deletion of rsmY and rsmZ had minor effects on Pto DC3000 motility and virulence phenotypes, indicating that rsmX1-5 can functionally replace them. On the other hand, rsmY or rsmZ overexpression in a gacA mutant did not revert its phenotype. Additionally, a negative feedback regulatory loop in which the CsrA3 protein promotes its own titration by increasing the levels of several rsm RNAs in a GacA-dependent manner has been disclosed as part of this work.
Collapse
Affiliation(s)
- María-Dolores Ferreiro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| | - Lara Vanessa Behrmann
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| | - Ana Corral
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| | - Joaquina Nogales
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Trinidad Gallegos
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| |
Collapse
|
7
|
O’Malley MR, Anderson JC. Regulation of the Pseudomonas syringae Type III Secretion System by Host Environment Signals. Microorganisms 2021; 9:microorganisms9061227. [PMID: 34198761 PMCID: PMC8228185 DOI: 10.3390/microorganisms9061227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas syringae are Gram-negative, plant pathogenic bacteria that use a type III secretion system (T3SS) to disarm host immune responses and promote bacterial growth within plant tissues. Despite the critical role for type III secretion in promoting virulence, T3SS-encoding genes are not constitutively expressed by P. syringae and must instead be induced during infection. While it has been known for many years that culturing P. syringae in synthetic minimal media can induce the T3SS, relatively little is known about host signals that regulate the deployment of the T3SS during infection. The recent identification of specific plant-derived amino acids and organic acids that induce T3SS-inducing genes in P. syringae has provided new insights into host sensing mechanisms. This review summarizes current knowledge of the regulatory machinery governing T3SS deployment in P. syringae, including master regulators HrpRS and HrpL encoded within the T3SS pathogenicity island, and the environmental factors that modulate the abundance and/or activity of these key regulators. We highlight putative receptors and regulatory networks involved in linking the perception of host signals to the regulation of the core HrpRS–HrpL pathway. Positive and negative regulation of T3SS deployment is also discussed within the context of P. syringae infection, where contributions from distinct host signals and regulatory networks likely enable the fine-tuning of T3SS deployment within host tissues. Last, we propose future research directions necessary to construct a comprehensive model that (a) links the perception of host metabolite signals to T3SS deployment and (b) places these host–pathogen signaling events in the overall context of P. syringae infection.
Collapse
|
8
|
Ferreiro MD, Gallegos MT. Distinctive features of the Gac-Rsm pathway in plant-associated Pseudomonas. Environ Microbiol 2021; 23:5670-5689. [PMID: 33939255 DOI: 10.1111/1462-2920.15558] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 02/04/2023]
Abstract
Productive plant-bacteria interactions, either beneficial or pathogenic, require that bacteria successfully sense, integrate and respond to continuously changing environmental and plant stimuli. They use complex signal transduction systems that control a vast array of genes and functions. The Gac-Rsm global regulatory pathway plays a key role in controlling fundamental aspects of the apparently different lifestyles of plant beneficial and phytopathogenic Pseudomonas as it coordinates adaptation and survival while either promoting plant health (biocontrol strains) or causing disease (pathogenic strains). Plant-interacting Pseudomonas stand out for possessing multiple Rsm proteins and Rsm RNAs, but the physiological significance of this redundancy is not yet clear. Strikingly, the components of the Gac-Rsm pathway and the controlled genes/pathways are similar, but the outcome of its regulation may be opposite. Therefore, identifying the target mRNAs bound by the Rsm proteins and their mode of action (repression or activation) is essential to explain the resulting phenotype. Some technical considerations to approach the study of this system are also given. Overall, several important features of the Gac-Rsm cascade are now understood in molecular detail, particularly in Pseudomonas protegens CHA0, but further questions remain to be solved in other plant-interacting Pseudomonas.
Collapse
Affiliation(s)
- María-Dolores Ferreiro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Trinidad Gallegos
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| |
Collapse
|
9
|
Liu J, Yu M, Ge Y, Tian Y, Hu B, Zhao Y. The RsmA RNA-Binding Proteins in Pseudomonas syringae Exhibit Distinct and Overlapping Roles in Modulating Virulence and Survival Under Different Nutritional Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:637595. [PMID: 33719314 PMCID: PMC7952654 DOI: 10.3389/fpls.2021.637595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
The post-transcriptional regulator RsmA globally controls gene expression in bacteria. Previous studies showed that RsmA2 and RsmA3 played critical roles in regulating type III secretion system (T3SS), motility, syringafactin, and alginate productions in Pseudomonas syringae pv. tomato strain DC3000 (PstDC3000). In this study, we investigated global gene expression profiles of the wild-type PstDC3000, the rsmA3 mutant, and the rsmA2/A3 double mutant in the hrp-inducing minimum medium (HMM) and King's B (KB) medium. By comparing the rsmA2/A3 and rsmA3 mutants to PstDC3000, a total of 1358 and 1074 differentially expressed genes (DEGs) in HMM, and 870 and 1463 DEGs in KB were uncovered, respectively. When comparing the rsmA2/A3 mutant with the rsmA3 mutant, 277 and 741 DEGs in HMM and KB, respectively, were revealed. Transcriptomic analysis revealed that the rsmY, rsmZ, and rsmX1-5 non-coding small RNAs (ncsRNAs) were positively affected by RsmA2 and RsmA3, while RsmA3 positively regulates the expression of the rsmA2 gene and negatively regulates both rsmA1 and rsmA5 gene expression. Comparative transcriptomic analysis showed that RsmA2 and RsmA3 synergistically influenced the expression of genes involved in T3SS and alginate biosynthesis in HMM and chemotaxis in KB. RsmA2 and RsmA3 inversely affected genes involved in syringafactin production in HMM and ribosomal protein biosynthesis in KB. In addition, RsmA2 played a major role in influencing genes involved in sarcosine and thiamine biosynthesis in HMM and in mannitol and phosphate metabolism in KB. On the other hand, genes involved in fatty acid metabolism, cellulose biosynthesis, signal transduction, and stress responses were mainly impacted by RsmA3 in both HMM and KB; whereas RsmA3 played a major role in controlling genes involved in c-di-GMP, phosphate metabolism, chemotaxis, and capsular polysaccharide in HMM. Furthermore, regulation of syringafactin production and oxidative stress by RsmA2 and RsmA3 was experimentally verified. Our results suggested the potential interplay among the RsmA proteins, which exhibit distinct and overlapping roles in modulating virulence and survival in P. syringae under different nutritional conditions.
Collapse
Affiliation(s)
- Jun Liu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yixin Ge
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yanli Tian
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Baishi Hu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
10
|
Two Homologues of the Global Regulator Csr/Rsm Redundantly Control Phaseolotoxin Biosynthesis and Virulence in the Plant Pathogen Pseudomonas amygdali pv. phaseolicola 1448A. Microorganisms 2020; 8:microorganisms8101536. [PMID: 33036191 PMCID: PMC7600136 DOI: 10.3390/microorganisms8101536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
The widely conserved Csr/Rsm (carbon storage regulator/repressor of stationary-phase metabolites) post-transcriptional regulatory system controls diverse phenotypes involved in bacterial pathogenicity and virulence. Here we show that Pseudomonas amygdali pv. phaseolicola 1448A contains seven rsm genes, four of which are chromosomal. In RNAseq analyses, only rsmE was thermoregulated, with increased expression at 18 °C, whereas the antagonistic sRNAs rsmX1, rsmX4, rsmX5 and rsmZ showed increased levels at 28 °C. Only double rsmA-rsmE mutants showed significantly altered phenotypes in functional analyses, being impaired for symptom elicitation in bean, including in planta growth, and for induction of the hypersensitive response in tobacco. Double mutants were also non-motile and were compromised for the utilization of different carbon sources. These phenotypes were accompanied by reduced mRNA levels of the type III secretion system regulatory genes hrpL and hrpA, and the flagellin gene, fliC. Biosynthesis of the phytotoxin phaseolotoxin by mutants in rsmA and rsmE was delayed, occurring only in older cultures, indicating that these rsm homologues act as inductors of toxin synthesis. Therefore, genes rsmA and rsmE act redundantly, although with a degree of specialization, to positively regulate diverse phenotypes involved in niche colonization. Additionally, our results suggest the existence of a regulatory molecule different from the Rsm proteins and dependent on the GacS/GacA (global activator of antibiotic and cyanide production) system, which causes the repression of phaseolotoxin biosynthesis at high temperatures.
Collapse
|
11
|
Zhang Y, Zhang B, Wu H, Wu X, Yan Q, Zhang LQ. Pleiotropic effects of RsmA and RsmE proteins in Pseudomonas fluorescens 2P24. BMC Microbiol 2020; 20:191. [PMID: 32615927 PMCID: PMC7331252 DOI: 10.1186/s12866-020-01880-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/26/2020] [Indexed: 11/11/2022] Open
Abstract
Background Pseudomonas fluorescens 2P24 is a rhizosphere bacterium that produces 2,4-diacetyphloroglucinol (2,4-DAPG) as the decisive secondary metabolite to suppress soilborne plant diseases. The biosynthesis of 2,4-DAPG is strictly regulated by the RsmA family proteins RsmA and RsmE. However, mutation of both of rsmA and rsmE genes results in reduced bacterial growth. Results In this study, we showed that overproduction of 2,4-DAPG in the rsmA rsmE double mutant influenced the growth of strain 2P24. This delay of growth could be partially reversal when the phlD gene was deleted or overexpression of the phlG gene encoding the 2,4-DAPG hydrolase in the rsmA rsmE double mutant. RNA-seq analysis of the rsmA rsmE double mutant revealed that a substantial portion of the P. fluorescens genome was regulated by RsmA family proteins. These genes are involved in the regulation of 2,4-DAPG production, cell motility, carbon metabolism, and type six secretion system. Conclusions These results suggest that RsmA and RsmE are the important regulators of genes involved in the plant-associated strain 2P24 ecologic fitness and operate a sophisticated mechanism for fine-tuning the concentration of 2,4-DAPG in the cells.
Collapse
Affiliation(s)
- Yang Zhang
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Bo Zhang
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Haiyan Wu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Xiaogang Wu
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| | - Qing Yan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, 59717, USA.
| | - Li-Qun Zhang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Liu J, Yu M, Chatnaparat T, Lee JH, Tian Y, Hu B, Zhao Y. Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in Pseudomonas syringae. BMC Genomics 2020; 21:296. [PMID: 32272893 PMCID: PMC7146990 DOI: 10.1186/s12864-020-6701-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/25/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Pseudomonas syringae is an important plant pathogen, which could adapt many different environmental conditions. Under the nutrient-limited and other stress conditions, P. syringae produces nucleotide signal molecules, i.e., guanosine tetra/pentaphosphate ((p)ppGpp), to globally regulate gene expression. Previous studies showed that (p) ppGpp played an important role in regulating virulence factors in P. syringae pv. tomato DC3000 (PstDC3000) and P. syringae pv. syringae B728a (PssB728a). Here we present a comparative transcriptomic analysis to uncover the overall effects of (p)ppGpp-mediated stringent response in P. syringae. RESULTS In this study, we investigated global gene expression profiles of PstDC3000 and PssB728a and their corresponding (p)ppGpp0 mutants in hrp-inducing minimal medium (HMM) using RNA-seq. A total of 1886 and 1562 differentially expressed genes (DEGs) were uncovered between the (p)ppGpp0 mutants and the wild-type in PstDC3000 and PssB728a, respectively. Comparative transcriptomics identified 1613 common DEGs, as well as 444 and 293 unique DEGs in PstDC3000 and PssB728a, respectively. Functional cluster analysis revealed that (p) ppGpp positively regulated a variety of virulence-associated genes, including type III secretion system (T3SS), type VI secretion system (T6SS), cell motility, cell division, and alginate biosynthesis, while negatively regulated multiple basic physiological processes, including DNA replication, RNA processes, nucleotide biosynthesis, fatty acid metabolism, ribosome protein biosynthesis, and amino acid metabolism in both PstDC3000 and PssB728a. Furthermore, (p) ppGpp had divergent effects on other processes in PstDC3000 and PssB728a, including phytotoxin, nitrogen regulation and general secretion pathway (GSP). CONCLUSION In this study, comparative transcriptomic analysis reveals common regulatory networks in both PstDC3000 and PssB728a mediated by (p) ppGpp in HMM. In both P. syringae systems, (p) ppGpp re-allocate cellular resources by suppressing multiple basic physiological activities and enhancing virulence gene expression, suggesting a balance between growth, survival and virulence. Our research is important in that due to similar global gene expression mediated by (p) ppGpp in both PstDC3000 and PssB728a, it is reasonable to propose that (p) ppGpp could be used as a target to develop novel control measures to fight against important plant bacterial diseases.
Collapse
Affiliation(s)
- Jun Liu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Tiyakhon Chatnaparat
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Yanli Tian
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Baishi Hu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA.
| |
Collapse
|