1
|
Shin GY, Asselin JA, Smith A, Aegerter B, Coutinho T, Zhao M, Dutta B, Mazzone J, Neupane R, Gugino B, Hoepting C, Khanal M, Malla S, Nischwitz C, Sidhu J, Burke AM, Davey J, Uchanski M, Derie ML, du Toit LJ, Stresow-Cortez S, Bonasera JM, Stodghill P, Kvitko B. Plasmids encode and can mobilize onion pathogenicity in Pantoea agglomerans. THE ISME JOURNAL 2025; 19:wraf019. [PMID: 39883081 PMCID: PMC11896626 DOI: 10.1093/ismejo/wraf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/20/2024] [Accepted: 01/29/2025] [Indexed: 01/31/2025]
Abstract
Pantoea agglomerans is one of four Pantoea species reported in the USA to cause bacterial rot of onion bulbs. However, not all P. agglomerans strains are pathogenic to onion. We characterized onion-associated strains of P. agglomerans to elucidate the genetic and genomic signatures of onion-pathogenic P. agglomerans. We collected >300 P. agglomerans strains associated with symptomatic onion plants and bulbs from public culture collections, research laboratories, and a multi-year survey in 11 states in the USA. Combining the 87 genome assemblies with 100 high-quality, public P. agglomerans genome assemblies we identified two well-supported P. agglomerans phylogroups. Strains causing severe symptoms on onion were only identified in Phylogroup II and encoded the HiVir pantaphos biosynthetic cluster, supporting the role of HiVir as a pathogenicity factor. The P. agglomerans HiVir cluster was encoded in two distinct plasmid contexts: (i) as an accessory gene cluster on a conserved P. agglomerans plasmid (pAggl), or (ii) on a mosaic cluster of plasmids common among onion strains (pOnion). Analysis of closed genomes revealed that the pOnion plasmids harbored alt genes conferring tolerance to Allium thiosulfinate defensive chemistry and many harbored cop genes conferring resistance to copper. We demonstrated that the pOnion plasmid pCB1C can act as a natively mobilizable pathogenicity plasmid that transforms P. agglomerans Phylogroup I strains, including environmental strains, into virulent pathogens of onion. This work indicates a central role for plasmids and plasmid ecology in mediating P. agglomerans interactions with onion plants, with potential implications for onion bacterial disease management.
Collapse
Affiliation(s)
- Gi Yoon Shin
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, United States
| | - Jo Ann Asselin
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United State Department of Agriculture, Ithaca 14853, NY, United States
| | - Amy Smith
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, United States
| | - Brenna Aegerter
- University of California Cooperative Extension, Stockton, CA 95206, United States
| | - Teresa Coutinho
- Department of Biochemistry, Genetics, and Microbiology, Centre for Microbial Ecology and Genomics/Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Mei Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, United States
| | - Jennie Mazzone
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Ram Neupane
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Beth Gugino
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Christy Hoepting
- Cornell Cooperative Extension, Cornell Vegetable Program, Albion, NY 14411, United States
| | - Manzeal Khanal
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, United States
- Department of Environmental Science, University of Arizona, Tucson, AZ 85719, United States
| | - Subas Malla
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, United States
| | - Claudia Nischwitz
- Department of Biology, Utah State University, Logan, UT 84322, United States
| | - Jaspreet Sidhu
- University of California Cooperative Extension, Bakersfield, CA 93307, United States
| | - Antoinette Machado Burke
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, United States
| | - Jane Davey
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, United States
| | - Mark Uchanski
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, United States
| | - Michael L Derie
- Department of Plant Pathology, Washington State University, Mount Vernon, WA 98273, United States
| | - Lindsey J du Toit
- Department of Plant Pathology, Washington State University, Mount Vernon, WA 98273, United States
| | - Stephen Stresow-Cortez
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, United States
| | - Jean M Bonasera
- Plant Pathology & Plant-Microbe Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, United States
| | - Paul Stodghill
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United State Department of Agriculture, Ithaca 14853, NY, United States
- Plant Pathology & Plant-Microbe Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, United States
| | - Brian Kvitko
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
2
|
Crosby KC, Rojas M, Sharma P, Johnson MA, Mazloom R, Kvitko BH, Smits THM, Venter SN, Coutinho TA, Heath LS, Palmer M, Vinatzer BA. Genomic delineation and description of species and within-species lineages in the genus Pantoea. Front Microbiol 2023; 14:1254999. [PMID: 38029109 PMCID: PMC10665919 DOI: 10.3389/fmicb.2023.1254999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
As the name of the genus Pantoea ("of all sorts and sources") suggests, this genus includes bacteria with a wide range of provenances, including plants, animals, soils, components of the water cycle, and humans. Some members of the genus are pathogenic to plants, and some are suspected to be opportunistic human pathogens; while others are used as microbial pesticides or show promise in biotechnological applications. During its taxonomic history, the genus and its species have seen many revisions. However, evolutionary and comparative genomics studies have started to provide a solid foundation for a more stable taxonomy. To move further toward this goal, we have built a 2,509-gene core genome tree of 437 public genome sequences representing the currently known diversity of the genus Pantoea. Clades were evaluated for being evolutionarily and ecologically significant by determining bootstrap support, gene content differences, and recent recombination events. These results were then integrated with genome metadata, published literature, descriptions of named species with standing in nomenclature, and circumscriptions of yet-unnamed species clusters, 15 of which we assigned names under the nascent SeqCode. Finally, genome-based circumscriptions and descriptions of each species and each significant genetic lineage within species were uploaded to the LINbase Web server so that newly sequenced genomes of isolates belonging to any of these groups could be precisely and accurately identified.
Collapse
Affiliation(s)
- Katherine C. Crosby
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Mariah Rojas
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Parul Sharma
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
- Graduate Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States
| | - Marcela A. Johnson
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
- Graduate Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States
| | - Reza Mazloom
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States
| | - Brian H. Kvitko
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Theo H. M. Smits
- Environmental Genomics and System Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Stephanus N. Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Teresa A. Coutinho
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Lenwood S. Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Boris A. Vinatzer
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
3
|
Geraffi N, Gupta P, Wagner N, Barash I, Pupko T, Sessa G. Comparative sequence analysis of pPATH pathogenicity plasmids in Pantoea agglomerans gall-forming bacteria. FRONTIERS IN PLANT SCIENCE 2023; 14:1198160. [PMID: 37583594 PMCID: PMC10425158 DOI: 10.3389/fpls.2023.1198160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023]
Abstract
Acquisition of the pathogenicity plasmid pPATH that encodes a type III secretion system (T3SS) and effectors (T3Es) has likely led to the transition of a non-pathogenic bacterium into the tumorigenic pathogen Pantoea agglomerans. P. agglomerans pv. gypsophilae (Pag) forms galls on gypsophila (Gypsophila paniculata) and triggers immunity on sugar beet (Beta vulgaris), while P. agglomerans pv. betae (Pab) causes galls on both gypsophila and sugar beet. Draft sequences of the Pag and Pab genomes were previously generated using the MiSeq Illumina technology and used to determine partial T3E inventories of Pab and Pag. Here, we fully assembled the Pab and Pag genomes following sequencing with PacBio technology and carried out a comparative sequence analysis of the Pab and Pag pathogenicity plasmids pPATHpag and pPATHpab. Assembly of Pab and Pag genomes revealed a ~4 Mbp chromosome with a 55% GC content, and three and four plasmids in Pab and Pag, respectively. pPATHpag and pPATHpab share 97% identity within a 74% coverage, and a similar GC content (51%); they are ~156 kb and ~131 kb in size and consist of 198 and 155 coding sequences (CDSs), respectively. In both plasmids, we confirmed the presence of highly similar gene clusters encoding a T3SS, as well as auxin and cytokinins biosynthetic enzymes. Three putative novel T3Es were identified in Pab and one in Pag. Among T3SS-associated proteins encoded by Pag and Pab, we identified two novel chaperons of the ShcV and CesT families that are present in both pathovars with high similarity. We also identified insertion sequences (ISs) and transposons (Tns) that may have contributed to the evolution of the two pathovars. These include seven shared IS elements, and three ISs and two transposons unique to Pab. Finally, comparative sequence analysis revealed plasmid regions and CDSs that are present only in pPATHpab or in pPATHpag. The high similarity and common features of the pPATH plasmids support the hypothesis that the two strains recently evolved into host-specific pathogens.
Collapse
Affiliation(s)
- Naama Geraffi
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Priya Gupta
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Isaac Barash
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Guido Sessa
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Biocontrol of Candida albicans by Antagonistic Microorganisms and Bioactive Compounds. Antibiotics (Basel) 2022; 11:antibiotics11091238. [PMID: 36140017 PMCID: PMC9495215 DOI: 10.3390/antibiotics11091238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Candida albicans is an endogenous opportunistic pathogenic fungus that is harmless when the host system remains stable. However, C. albicans could seriously threaten human life and health when the body’s immune function declines or the normal flora is out of balance. Due to the increasing resistance of candidiasis to existing drugs, it is important to find new strategies to help treat this type of systemic fungal disease. Biological control is considered as a promising strategy which is more friendly and safer. In this review, we compare the bacteriostatic behavior of different antagonistic microorganisms (bacteria and fungi) against C. albicans. In addition, natural products with unique structures have attracted researchers’ attention. Therefore, the bioactive nature products produced by different microorganisms and their possible inhibitory mechanisms are also reviewed. The application of biological control strategies and the discovery of new compounds with antifungal activity will reduce the resistance of C. albicans, thereby promoting the development of novel diverse antifungal drugs.
Collapse
|
5
|
Yuan X, McGhee GC, Slack SM, Sundin GW. A Novel Signaling Pathway Connects Thiamine Biosynthesis, Bacterial Respiration, and Production of the Exopolysaccharide Amylovoran in Erwinia amylovora. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1193-1208. [PMID: 34081536 DOI: 10.1094/mpmi-04-21-0095-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Erwinia amylovora is a plant pathogen causing necrotrophic fire blight disease of apple, pear, and other rosaceous plants. This bacterium colonizes host vascular tissues via the production of exopolysaccharides (EPSs) including amylovoran. It is well-established that the nearly ubiquitous plasmid pEA29 of E. amylovora is an essential virulence factor, but the underlying mechanism remains uncharacterized. Here, we demonstrated that pEA29 was required for E. amylovora to produce amylovoran and to form a biofilm, and this regulation was dependent on the thiamine biosynthesis operon thiOSGF. We then conducted carbohydrate and genetic analyses demonstrating that the thiamine-mediated effect on amylovoran production was indirect, as cells lacking thiOSGF produced an EPS that did not contain glucuronic acid, one of the key components of amylovoran, whereas the transcriptional activity and RNA levels of the amylovoran biosynthesis genes were not altered. Alternatively, addition of exogenous thiamine restored amylovoran production in the pEA29-cured strain of E. amylovora and positively impacted amylovoran production in a dose-dependent manner. Individual deletion of several chromosomal thiamine biosynthesis genes also affected amylovoran production, implying that a complete thiamine biosynthesis pathway is required for the thiamine-mediated effect on amylovoran production in E. amylovora. Finally, we determined that an imbalanced tricarboxylic acid cycle negatively affected amylovoran production, which was restored by addition of exogenous thiamine or overexpression of the thiOSGF operon. In summary, our report revealed a novel signaling pathway that impacts E. amylovora virulence in which thiamine biosynthesis enhances bacterial respiration that provides energetic requirements for the biosynthesis of EPS amylovoran.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Gayle C McGhee
- United States Department of Agriculture, Agriculture Research Service, Horticultural Crops Research Laboratory, Corvallis, OR 97330, U.S.A
| | - Suzanne M Slack
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
6
|
Savory EA, Weisberg AJ, Stevens DM, Creason AL, Fuller SL, Pearce EM, Chang JH. Phytopathogenic Rhodococcus Have Diverse Plasmids With Few Conserved Virulence Functions. Front Microbiol 2020; 11:1022. [PMID: 32523572 PMCID: PMC7261884 DOI: 10.3389/fmicb.2020.01022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/27/2020] [Indexed: 11/13/2022] Open
Abstract
Rhodococcus is a genus of Gram-positive bacteria with species that can cause growth deformations to a large number of plant species. This ability to cause disease is hypothesized to be dependent on a cluster of three gene loci on an almost 200 kb-sized linear plasmid. To reevaluate the roles of some of the genes in pathogenicity, we constructed and characterized deletion mutants of fasR and four fas genes. Findings confirmed that fasR, which encodes a putative transcriptional regulator, is necessary for pathogenesis. However, three of the fas genes, implicated in the metabolism of plant growth promoting cytokinins, are dispensable for the ability of the pathogen to cause disease. We also used long-read sequencing technology to generate high quality genome sequences for two phytopathogenic strains in which virulence genes are diverged in sequence and/or hypothesized to have recombined into the chromosome. Surprisingly, findings showed that the two strains carry extremely diverse virulence plasmids. Ortholog clustering identified only 12 genes present on all three virulence plasmids. Rhodococcus requires a small number of horizontally acquired traits to be pathogenic and the transmission of the corresponding genes, via recombination and conjugation, has the potential to rapidly diversify plasmids and bacterial populations.
Collapse
Affiliation(s)
- Elizabeth A Savory
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Danielle M Stevens
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Allison L Creason
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Skylar L Fuller
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Emma M Pearce
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.,Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
| |
Collapse
|