1
|
Zheng Q, Yang L, Xin J, Zhao C, Li Y, Tian R. Endogenous salicylic acid contributes to cadmium tolerance in Monochoria korsakowii through upregulation of photosynthetic efficiency, antioxidant capacity, and chelators accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109940. [PMID: 40279840 DOI: 10.1016/j.plaphy.2025.109940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Exogenous salicylic acid (SA) enhances plant tolerance to cadmium (Cd) stress by preserving chlorophyll, stabilizing osmoprotectants, and upregulating antioxidant activity alongside the ASA-GSH system. However, the role of endogenous SA in plant tolerance to Cd stress remains poorly understood. Therefore, we cultivated Monochoria korsakowii hydroponically and sprayed the SA biosynthesis inhibitors (2-aminoindane-2-phosphonic acid and 1-aminobenzotriazole) in an attempt to explore the correlation between endogenous SA and other Cd tolerance mechanisms. Compared with control, 0.3 mM Cd treatment induced reductions of net photosynthetic rate (Pn), total chlorophyll (T Chl), catalase (CAT), and soluble protein (SP), while malondialdehyde increased. To mitigate Cd toxicity, M. korsakowii upregulated peroxidase (POD), superoxide dismutase (SOD), glutathione reductase (GR), ascorbic acid (ASA), nonprotein thiols (NPT), phytochelatin (PC), and proline. High concentrations of SA inhibitors exacerbated Cd-induced oxidative damage and suppressed these tolerance mechanisms. Compared with T4, T6 plants exhibited marked reductions in Pn, T Chl, CAT, POD, SOD, GSH, GR, ASA, ascorbate peroxidase, NPT, PCs, SP, and translocation factors. Concurrently, T6 plants sprayed with SA inhibitors exhibited suppressed SA, methyl salicylate, and zeatin accumulation, contrasting with heightened jasmonic acid and abscisic acid concentrations. We propose that endogenous SA is crucial for preserving the photosynthetic apparatus, activating the antioxidant system, and promoting the accumulation of chelators and SP in M. korsakowii under Cd stress. Furthermore, endogenous SA may function synergistically with methyl salicylate and zeatin to regulate plant physiological responses to Cd. This study provides valuable insights into the Cd tolerance mechanisms in M. korsakowii.
Collapse
Affiliation(s)
- Qianqian Zheng
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Lu Yang
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jianpan Xin
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Chu Zhao
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Yan Li
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Runan Tian
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
2
|
Perera I, Kisiala A, Thompson KA, Emery RJN. Soil health improvements under cover crops are associated with enhanced soil content of cytokinins. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:265-278. [PMID: 39642005 PMCID: PMC11846634 DOI: 10.1111/plb.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/25/2024] [Indexed: 12/08/2024]
Abstract
Cytokinins (CKs) are phytohormones produced by plants and other soil life. including bacteria, fungi, insects, and earthworms. These organisms can release CKs to the soil, which may have positive implications for soil health and plant growth. However, no studies have examined phytohormones as soil health indicators. In custom-designed rhizo-pots that separated rhizosphere and bulk soils, the cover crops tillage radish and cereal rye were used to manipulate soil health parameters: soil pH, soil organic matter, soil active carbon, soil microbial community diversity, and extracellular enzyme activities involved in C, N and P cycling. Data were compared to impacts of cover crops on CKs that were purified from the complex soil and measured with HPLC-HRMS/MS. From soil we detected free base-CKs (trans-zeatin (tZ), isopentenyladenine (iP)), riboside-CKs (RB-CKs), cis-zeatin riboside (cZR), isopentenyladenosine (iPR) and four methylthiolated CKs: 2-methylthio-zeatin (2MeSZ), 2-methylthio-zeatin ribosides (2MeSZR), 2-methylthio-isopentenyladenine (2MeSiP), and 2-methylthio-isopentenyladenine riboside (2MeSiPR). These CK levels were significantly enhanced in cover cropped soil compared to uncultivated soil, and reflect a positive relationship between soil CK profiles and other soil health parameters - notably, between total CK and active C levels and soil microbial community diversity. This is the first detailed soil CK analysis and assessment of its potential use as a novel, reliable, short-term soil health parameter. The increased CK concentrations in cover cropped soils likely reflects the activity levels of soil life (plants, microbes, animals) and provides a rationale to use CKs as tools to evaluate soil health as influenced by agricultural management strategies.
Collapse
Affiliation(s)
- I. Perera
- Department of Environmental and Life SciencesTrent UniversityPeterboroughOntarioCanada
| | - A. Kisiala
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | - K. A. Thompson
- Department of Environmental and Life SciencesTrent UniversityPeterboroughOntarioCanada
- Trent School of EnvironmentTrent UniversityPeterboroughOntarioCanada
| | - R. J. N. Emery
- Department of Environmental and Life SciencesTrent UniversityPeterboroughOntarioCanada
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| |
Collapse
|
3
|
Hussain S, Chang J, Li J, Chen L, Ahmad S, Song Z, Zhang B, Chen X. Multifunctional Role of Cytokinin in Horticultural Crops. Int J Mol Sci 2025; 26:1037. [PMID: 39940806 PMCID: PMC11816932 DOI: 10.3390/ijms26031037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 02/16/2025] Open
Abstract
Cytokinins (CKs) are a class of phytohormones identified in the early 1960s and are mainly responsible for stimulating cell division. Following the discovery, research to help understand the pluralistic roles of CKs in plant growth and stress biology increased. With their fascinating ability, CKs serve as an important element in regulating the defense-growth trade-off. Herein, we demonstrate how the CK fine-tuning the organogenesis of different parts of horticultural plants is discussed. CK's role in tailoring reproductive biology (flowering, sex differentiation, fruit set, and fruit attributes) has been presented. An extensive explanation of the CK-mediated response of horticultural crops to abiotic (temperature, drought, and salinity) and biotic stresses (fungal, bacterial, and nematodes) is provided. Finally, we posit the unexplored roles of CKs and highlight the research gaps worth addressing.
Collapse
Affiliation(s)
- Shahid Hussain
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Jingjing Chang
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Jing Li
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Lei Chen
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Sheraz Ahmad
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
| | - Zhao Song
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Baige Zhang
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Xiao Chen
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| |
Collapse
|
4
|
Duhan L, Pasrija R. Unveiling exogenous potential of phytohormones as sustainable arsenals against plant pathogens: molecular signaling and crosstalk insights. Mol Biol Rep 2025; 52:98. [PMID: 39747766 DOI: 10.1007/s11033-024-10206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Plants frequently confront pathogens that disrupt physiological and molecular functions, ultimately reducing agricultural yields. To counter these challenges, plants activate sophisticated defense mechanisms to recognize stress signals while optimizing growth. Phytohormones signaling pathways and their crosstalk are central to regulating plant growth, development and defense. Numerous proteins associated with phytohormone signaling pathways have been identified, including receptors for several vital hormones. Previous studies indicate that defense phytohormones, like salicylic acid (SA), jasmonic acid (JA) and ethylene (ET), are crucial to pathogen defense. SA specifically mediates systemic acquired resistance against biotrophic pathogens, while induced systemic resistance relies on JA and ET signaling in response to necrotrophic pathogens. Other hormones, typically associated with growth and development, such as ethylene, abscisic acid, brassinosteroids, melatonin, gibberellins, auxin, and cytokinin, also interact in a complex network of synergistic and antagonistic relationships with defense phytohormones. Moreover, they can achieve effects that surpass conventional pathogen control methods, suggesting their potential as exogenous biocontrol agents. During the past decade, our knowledge of hormone signaling and stress response has become immense. Thus, this review is an attempt to summarize some of the advances in plant signaling and crosstalk mechanisms as well as their potential to be a future arsenal in biotic stress mitigation strategies. Ultimately, this work emphasizes using exogenous phytohormones as a viable alternative for controlling pathogens to enhance crop productivity in pathogen-affected regions.
Collapse
Affiliation(s)
- Lucky Duhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, India.
| |
Collapse
|
5
|
Singh V, Kumar P, Pandey A, Hallan V, Pati PK. Functional characterization of WsPR-1 reveals its interplay with cytokinin and gibberellin signaling pathways. Int J Biol Macromol 2024; 278:134691. [PMID: 39142483 DOI: 10.1016/j.ijbiomac.2024.134691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 05/30/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Pathogenesis-related protein 1 (PR-1) is an antimicrobial protein involved in systemic acquired resistance (SAR) in plants, but its regulatory role and interactions with other pathways remain unclear. In this study, we functionally characterize WsPR-1 gene of Withania somnifera in Nicotiana tabacum to elucidate its role in plant defense, growth, and development. Interestingly, transgenic tobacco plants with increased levels of cytokinin (CK) and decreased gibberellins (GAs) exhibited stunted shoot growth, an underdeveloped root system, modified leaf morphology, reduced seed pod production, and delayed leaf senescence. Transcriptional analysis revealed that WsPR-1 overexpression downregulated the GA 20-oxidase (GA20ox) gene involved in GA biosynthesis while upregulating GA 2-oxidase (GA2ox), a GA catabolic enzyme. Moreover, transcript levels of FRUITFULL (FUL) and LEAFY (NFL2) flowering genes exhibited a decrease in WsPR-1 plants, which could explain the delayed flowering and reduced seed pod development in transgenic plants. Confocal microscopy confirmed increased lignin deposition in stem cross-sections of WsPR-1 transgenic plants, supported by gene expression analysis and lignin content quantification. Additionally, our findings also suggest the involvement of Knotted1-like homeobox (KNOX) gene in enhancing cytokinin levels. This study highlights PR-1's regulatory role in plant growth and development, with potential to boost crop yields and enhance resilience.
Collapse
Affiliation(s)
- Varinder Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Paramdeep Kumar
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Vipin Hallan
- Plant Protection Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
6
|
Marash I, Leibman-Markus M, Gupta R, Israeli A, Teboul N, Avni A, Ori N, Bar M. Abolishing ARF8A activity promotes disease resistance in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112064. [PMID: 38492890 DOI: 10.1016/j.plantsci.2024.112064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/18/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Auxin response factors (ARFs) are a family of transcription factors that regulate auxin-dependent developmental processes. Class A ARFs function as activators of auxin-responsive gene expression in the presence of auxin, while acting as transcriptional repressors in its absence. Despite extensive research on the functions of ARF transcription factors in plant growth and development, the extent, and mechanisms of their involvement in plant resistance, remain unknown. We have previously reported that mutations in the tomato AUXIN RESPONSE FACTOR8 (ARF8) genes SlARF8A and SlARF8B result in the decoupling of fruit development from pollination and fertilization, leading to partial or full parthenocarpy and increased yield under extreme temperatures. Here, we report that fine-tuning of SlARF8 activity results in increased resistance to fungal and bacterial pathogens. This resistance is mostly preserved under fluctuating temperatures. Thus, fine-tuning SlARF8 activity may be a potent strategy for increasing overall growth and yield.
Collapse
Affiliation(s)
- Iftah Marash
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel; School of Plant Science and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Alon Israeli
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Naama Teboul
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Adi Avni
- School of Plant Science and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Naomi Ori
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel.
| |
Collapse
|
7
|
Argueso CT, Kieber JJ. Cytokinin: From autoclaved DNA to two-component signaling. THE PLANT CELL 2024; 36:1429-1450. [PMID: 38163638 PMCID: PMC11062471 DOI: 10.1093/plcell/koad327] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 01/03/2024]
Abstract
Since its first identification in the 1950s as a regulator of cell division, cytokinin has been linked to many physiological processes in plants, spanning growth and development and various responses to the environment. Studies from the last two and one-half decades have revealed the pathways underlying the biosynthesis and metabolism of cytokinin and have elucidated the mechanisms of its perception and signaling, which reflects an ancient signaling system evolved from two-component elements in bacteria. Mutants in the genes encoding elements involved in these processes have helped refine our understanding of cytokinin functions in plants. Further, recent advances have provided insight into the mechanisms of intracellular and long-distance cytokinin transport and the identification of several proteins that operate downstream of cytokinin signaling. Here, we review these processes through a historical lens, providing an overview of cytokinin metabolism, transport, signaling, and functions in higher plants.
Collapse
Affiliation(s)
- Cristiana T Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Marash I, Gupta R, Anand G, Leibman-Markus M, Lindner N, Israeli A, Nir D, Avni A, Bar M. TOR coordinates cytokinin and gibberellin signals mediating development and defense. PLANT, CELL & ENVIRONMENT 2024; 47:629-650. [PMID: 37904283 DOI: 10.1111/pce.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/15/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023]
Abstract
Plants constantly perceive and process environmental signals and balance between the energetic demands of growth and defense. Growth arrest upon pathogen attack was previously suggested to result from a redirection of the plants' metabolic resources towards the activation of plant defense. The energy sensor Target of Rapamycin (TOR) kinase is a conserved master coordinator of growth and development in all eukaryotes. Although TOR is positioned at the interface between development and defense, little is known about the mechanisms by which TOR may potentially regulate the relationship between these two modalities. The plant hormones cytokinin (CK) and gibberellin (GA) execute various aspects of plant development and defense. The ratio between CK and GA was reported to determine the outcome of developmental programmes. Here, investigating the interplay between TOR-mediated development and TOR-mediated defense in tomato, we found that TOR silencing resulted in rescue of several different aberrant developmental phenotypes, demonstrating that TOR is required for the execution of developmental cues. In parallel, TOR inhibition enhanced immunity in genotypes with a low CK/GA ratio but not in genotypes with a high CK/GA ratio. TOR-inhibition mediated disease resistance was found to depend on developmental status, and was abolished in strongly morphogenetic leaves, while being strongest in mature, differentiated leaves. CK repressed TOR activity, suggesting that CK-mediated immunity may rely on TOR downregulation. At the same time, TOR activity was promoted by GA, and TOR silencing reduced GA sensitivity, indicating that GA signalling requires normal TOR activity. Our results demonstrate that TOR likely acts in concert with CK and GA signalling, executing signalling cues in both defense and development. Thus, differential regulation of TOR or TOR-mediated processes could regulate the required outcome of development-defense prioritisation.
Collapse
Affiliation(s)
- Iftah Marash
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan, Israel
- School of Plant Science and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan, Israel
| | - Gautam Anand
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan, Israel
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan, Israel
| | - Naomi Lindner
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alon Israeli
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dov Nir
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Adi Avni
- School of Plant Science and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan, Israel
| |
Collapse
|
9
|
Shinde R, Ayyanath MM, Shukla M, El Kayal W, Saxena PK, Subramanian J. Salicylic and Jasmonic Acid Synergism during Black Knot Disease Progression in Plums. PLANTS (BASEL, SWITZERLAND) 2024; 13:292. [PMID: 38256845 PMCID: PMC10818911 DOI: 10.3390/plants13020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/28/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Black knot (BK) is a deadly disease of European (Prunus domestica) and Japanese (Prunus salicina) plums caused by the hemibiotrophic fungus Apiosporina morbosa. Generally, phytopathogens hamper the balance of primary defense phytohormones, such as salicylic acid (SA)-jasmonic acid (JA) balance, for disease progression. Thus, we quantified the important phytohormone titers in tissues of susceptible and resistant genotypes belonging to European and Japanese plums at five different time points. Our previous results suggested that auxin-cytokinins interplay driven by A. morbosa appeared to be vital in disease progression by hampering the plant defense system. Here, we further show that such hampering of disease progression is likely mediated by perturbance in SA, JA, and, to some extent, gibberellic acid. The results further indicate that SA and JA in plant defense are not always necessarily antagonistic as most of the studies suggest but can be different, especially in woody perennials. Together, our results suggest that the changes in phytohormone levels, especially in terms of SA and JA content due to BK infection and progression in plums, could be used as phytohormonal markers in the identification of BK-resistant cultivars.
Collapse
Affiliation(s)
- Ranjeet Shinde
- Department of Plant Agriculture, University of Guelph, Edmond C. Bovey Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (R.S.); (M.-M.A.); (M.S.); (P.K.S.)
| | - Murali-Mohan Ayyanath
- Department of Plant Agriculture, University of Guelph, Edmond C. Bovey Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (R.S.); (M.-M.A.); (M.S.); (P.K.S.)
| | - Mukund Shukla
- Department of Plant Agriculture, University of Guelph, Edmond C. Bovey Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (R.S.); (M.-M.A.); (M.S.); (P.K.S.)
| | - Walid El Kayal
- Department of Plant Agriculture, University of Guelph, 4890 Victoria Ave N, Vineland Station, ON L0R 2E0, Canada;
- Faculty of Agricultural and Food Sciences, American University of Beirut, Riad El Solh, P.O. Box 11-0236, Beirut 1107-2020, Lebanon
| | - Praveen Kumar Saxena
- Department of Plant Agriculture, University of Guelph, Edmond C. Bovey Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (R.S.); (M.-M.A.); (M.S.); (P.K.S.)
| | - Jayasankar Subramanian
- Department of Plant Agriculture, University of Guelph, 4890 Victoria Ave N, Vineland Station, ON L0R 2E0, Canada;
| |
Collapse
|
10
|
Leibman-Markus M, Schneider A, Gupta R, Marash I, Rav-David D, Carmeli-Weissberg M, Elad Y, Bar M. Immunity priming uncouples the growth-defense trade-off in tomato. Development 2023; 150:dev201158. [PMID: 37882831 DOI: 10.1242/dev.201158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Plants have developed an array of mechanisms to protect themselves against pathogen invasion. The deployment of defense mechanisms is imperative for plant survival, but can come at the expense of plant growth, leading to the 'growth-defense trade-off' phenomenon. Following pathogen exposure, plants can develop resistance to further attack. This is known as induced resistance, or priming. Here, we investigated the growth-defense trade-off, examining how defense priming via systemic acquired resistance (SAR), or induced systemic resistance (ISR), affects tomato development and growth. We found that defense priming can promote, rather than inhibit, plant development, and that defense priming and growth trade-offs can be uncoupled. Cytokinin response was activated during induced resistance, and found to be required for the observed growth and disease resistance resulting from ISR activation. ISR was found to have a stronger effect than SAR on plant development. Our results suggest that growth promotion and induced resistance can be co-dependent, and that, in certain cases, defense priming can drive developmental processes and promote plant yield.
Collapse
Affiliation(s)
- Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Anat Schneider
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
- Department of Plant Pathology and Microbiology, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Iftah Marash
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
- School of Plant Science and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Dalia Rav-David
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Mira Carmeli-Weissberg
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| |
Collapse
|
11
|
In search of the phytohormone functions in Fungi:Cytokinins. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2023.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Tian S, Liu B, Shen Y, Cao S, Lai Y, Lu G, Wang Z, Wang A. Unraveling the Molecular Mechanisms of Tomatoes' Defense against Botrytis cinerea: Insights from Transcriptome Analysis of Micro-Tom and Regular Tomato Varieties. PLANTS (BASEL, SWITZERLAND) 2023; 12:2965. [PMID: 37631176 PMCID: PMC10459989 DOI: 10.3390/plants12162965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Botrytis cinerea is a devastating fungal pathogen that causes severe economic losses in global tomato cultivation. Understanding the molecular mechanisms driving tomatoes' response to this pathogen is crucial for developing effective strategies to counter it. Although the Micro-Tom (MT) cultivar has been used as a model, its stage-specific response to B. cinerea remains poorly understood. In this study, we examined the response of the MT and Ailsa Craig (AC) cultivars to B. cinerea at different time points (12-48 h post-infection (hpi)). Our results indicated that MT exhibited a stronger resistant phenotype at 18-24 hpi but became more susceptible to B. cinerea later (26-48 hpi) compared to AC. Transcriptome analysis revealed differential gene expression between MT at 24 hpi and AC at 22 hpi, with MT showing a greater number of differentially expressed genes (DEGs). Pathway and functional annotation analysis revealed significant differential gene expression in processes related to metabolism, biological regulation, detoxification, photosynthesis, and carbon metabolism, as well as some immune system-related genes. MT demonstrated an increased reliance on Ca2+ pathway-related proteins, such as CNGCs, CDPKs, and CaMCMLs, to resist B. cinerea invasion. B. cinerea infection induced the activation of PTI, ETI, and SA signaling pathways, involving the modulation of various genes such as FLS2, BAK1, CERK1, RPM, SGT1, and EDS1. Furthermore, transcription factors such as WRKY, MYB, NAC, and AUX/IAA families played crucial regulatory roles in tomatoes' defense against B. cinerea. These findings provide valuable insights into the molecular mechanisms underlying tomatoes' defense against B. cinerea and offer potential strategies to enhance plant resistance.
Collapse
Affiliation(s)
- Shifu Tian
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.T.); (Y.S.); (S.C.); (Y.L.); (G.L.)
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bojing Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yanan Shen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.T.); (Y.S.); (S.C.); (Y.L.); (G.L.)
| | - Shasha Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.T.); (Y.S.); (S.C.); (Y.L.); (G.L.)
| | - Yinyan Lai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.T.); (Y.S.); (S.C.); (Y.L.); (G.L.)
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.T.); (Y.S.); (S.C.); (Y.L.); (G.L.)
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.T.); (Y.S.); (S.C.); (Y.L.); (G.L.)
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350003, China
| | - Airong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.T.); (Y.S.); (S.C.); (Y.L.); (G.L.)
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350003, China
| |
Collapse
|
13
|
Gupta R, Leibman-Markus M, Weiss D, Spiegelman Z, Bar M. Tobamovirus infection aggravates gray mold disease caused by Botrytis cinerea by manipulating the salicylic acid pathway in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1196456. [PMID: 37377809 PMCID: PMC10291333 DOI: 10.3389/fpls.2023.1196456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Botrytis cinerea is the causative agent of gray mold disease, and infects more than 1400 plant species, including important crop plants. In tomato, B. cinerea causes severe damage in greenhouses and post-harvest storage and transport. Plant viruses of the Tobamovirus genus cause significant damage to various crop species. In recent years, the tobamovirus tomato brown rugose fruit virus (ToBRFV) has significantly affected the global tomato industry. Most studies of plant-microbe interactions focus on the interaction between the plant host and a single pathogen, however, in agricultural or natural environments, plants are routinely exposed to multiple pathogens. Here, we examined how preceding tobamovirus infection affects the response of tomato to subsequent infection by B. cinerea. We found that infection with the tobamoviruses tomato mosaic virus (ToMV) or ToBRFV resulted in increased susceptibility to B. cinerea. Analysis of the immune response of tobamovirus-infected plants revealed hyper-accumulation of endogenous salicylic acid (SA), upregulation of SA-responsive transcripts, and activation of SA-mediated immunity. Deficiency in SA biosynthesis decreased tobamovirus-mediated susceptibility to B. cinerea, while exogenous application of SA enhanced B. cinerea symptoms. These results suggest that tobamovirus-mediated accumulation of SA increases the plants' susceptibility to B. cinerea, and provide evidence for a new risk caused by tobamovirus infection in agriculture.
Collapse
Affiliation(s)
| | | | | | - Ziv Spiegelman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
14
|
Ijaz M, Khan F, Zaki HEM, Khan MM, Radwan KSA, Jiang Y, Qian J, Ahmed T, Shahid MS, Luo J, Li B. Recent Trends and Advancements in CRISPR-Based Tools for Enhancing Resistance against Plant Pathogens. PLANTS (BASEL, SWITZERLAND) 2023; 12:1911. [PMID: 37176969 PMCID: PMC10180734 DOI: 10.3390/plants12091911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Targeted genome editing technologies are becoming the most important and widely used genetic tools in studies of phytopathology. The "clustered regularly interspaced short palindromic repeats (CRISPR)" and its accompanying proteins (Cas) have been first identified as a natural system associated with the adaptive immunity of prokaryotes that have been successfully used in various genome-editing techniques because of its flexibility, simplicity, and high efficiency in recent years. In this review, we have provided a general idea about different CRISPR/Cas systems and their uses in phytopathology. This review focuses on the benefits of knock-down technologies for targeting important genes involved in the susceptibility and gaining resistance against viral, bacterial, and fungal pathogens by targeting the negative regulators of defense pathways of hosts in crop plants via different CRISPR/Cas systems. Moreover, the possible strategies to employ CRISPR/Cas system for improving pathogen resistance in plants and studying plant-pathogen interactions have been discussed.
Collapse
Affiliation(s)
- Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fahad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS 7250, Australia
| | - Haitham E. M. Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia 61517, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur 411, Oman
| | - Muhammad Munem Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Khlode S. A. Radwan
- Plant Pathology Department, Faculty of Agriculture, Minia University, El-Minia 61517, Egypt
| | - Yugen Jiang
- Agricultural Technology Extension Center of Fuyang District, Hangzhou 311400, China
| | - Jiahui Qian
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Oman
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Wang S, Wang X, Chen J. Identification of miRNAs Involved in Maize-Induced Systemic Resistance Primed by Trichoderma harzianum T28 against Cochliobolus heterostrophus. J Fungi (Basel) 2023; 9:278. [PMID: 36836392 PMCID: PMC9964586 DOI: 10.3390/jof9020278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
microRNAs (miRNAs) are known to play important roles in the immune response to pathogen infection in different plants. Further, Trichoderma strains are able to activate plant defense responses against pathogen attacks. However, little is known about the involvement of miRNAs in the defense response primed by Trichoderma strains. To explore the miRNAs sensitive to priming by Trichoderma, we studied the small RNAs and transcriptome changes in maize leaves that were systemically induced by seed treatment with Trichoderma harzianum (strain T28) against Cochliobolus heterostrophus (C. heterostrophus) infection in leaves. Through analysis of the sequencing data, 38 differentially expressed miRNAs (DEMs) and 824 differentially expressed genes (DEGs) were identified. GO and KEGG analyses of DEGs demonstrated that genes involved in the plant hormone signal transduction pathway and oxidation-reduction process were significantly enriched. In addition, 15 miRNA-mRNA interaction pairs were identified through the combined analysis of DEMs and DEGs. These pairs were supposed to play roles in the maize resistance primed by T. harzianum T28 to C. heterostrophus, in which miR390, miR169j, miR408b, miR395a/p, and novel miRNA (miRn5231) were more involved in the induction of maize resistance. This study provided valuable information for understanding the regulatory role of miRNA in the T. harzianum primed defense response.
Collapse
Affiliation(s)
- Shaoqing Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xinhua Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
16
|
Liu X, Zhou X, Li D, Hong B, Gao J, Zhang Z. Rose WRKY13 promotes disease protection to Botrytis by enhancing cytokinin content and reducing abscisic acid signaling. PLANT PHYSIOLOGY 2023; 191:679-693. [PMID: 36271872 PMCID: PMC9806554 DOI: 10.1093/plphys/kiac495] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The plant hormones cytokinin (CK) and abscisic acid (ABA) play critical and often opposite roles during plant growth, development, and responses to abiotic and biotic stresses. Rose (Rosa sp.) is an economically important ornamental crop sold as cut flowers. Rose petals are extremely susceptible to gray mold disease caused by the necrotrophic fungal pathogen Botrytis cinerea. The infection of rose petals by B. cinerea leads to tissue collapse and rot, causing severe economic losses. In this study, we showed that CK and ABA play opposite roles in the susceptibility of rose to B. cinerea. Treatment with CK enhanced the disease protection of rose petals to B. cinerea, while ABA promoted disease progression. We further demonstrated that rose flowers activate CK-mediated disease protection via a B. cinerea-induced rose transcriptional repressor, Rosa hybrida (Rh)WRKY13, which is an ortholog of Arabidopsis (Arabidopsis thaliana), AtWRKY40. RhWRKY13 binds to promoter regions of the CK degradation gene CKX3 (RhCKX3) and the ABA-response gene ABA insensitive4 (RhABI4), leading to simultaneous inhibition of their expression in rose petals. The increased CK content and reduced ABA responses result in enhanced protection from B. cinerea. Collectively, these data reveal opposite roles for CK and ABA in the susceptibility of rose petals against B. cinerea infection, which is mediated by B. cinerea-induced RhWRKY13 expression.
Collapse
Affiliation(s)
- Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100083, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100083, China
| | - Dandan Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100083, China
| | - Bo Hong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100083, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100083, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100083, China
| |
Collapse
|
17
|
Pan L, Berka M, Černý M, Novák J, Luklová M, Brzobohatý B, Saiz-Fernández I. Cytokinin Deficiency Alters Leaf Proteome and Metabolome during Effector-Triggered Immunity in Arabidopsis thaliana Plants. PLANTS 2022; 11:plants11162123. [PMID: 36015426 PMCID: PMC9415597 DOI: 10.3390/plants11162123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022]
Abstract
The involvement of cytokinins (CK) in biotic stresses has been recognized, while knowledge regarding the effects of CK deficiency on plant response against pathogens is less abundant. Thus, the purpose of this study was to reveal the effects of CK deficiency on proteomics and metabolomic responses of flg22-triggered immunity. We conducted a series of histochemical assays to investigate the activity of the downstream pathways caused by flg22, such as accumulation of ROS, induction of defence genes, and callose deposition, that occurred in Arabidopsis thaliana transgenic lines overexpressing the Hordeum vulgare CKX2 gene (HvCKX2), which are therefore CK-deficient. We also used GC and LC-MS-based technology to quantify variations in stress hormone levels and metabolomic and proteomic responses in flg22-treated HvCKX2 and wild-type Arabidopsis plants. We found that CK deficiency alters the flg22-triggered plant defence response, especially through induction of callose deposition, upregulation of defence response-related proteins, increased amino acid biosynthesis, and regulation of plant photosynthesis. We also indicated that JA might be an important contributor to immune response in plants deficient in CKs. The present study offers new evidence on the fundamental role of endogenous CK in the response to pathogens, as well as the possibility of altering plant biotic tolerance by manipulating CK pools.
Collapse
Affiliation(s)
- Ling Pan
- College of Forestry, Hainan University, 58 Renmin Avenue, Haikou 570228, China
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
- Correspondence: (L.P.); (I.S.-F.)
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Markéta Luklová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Iñigo Saiz-Fernández
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
- Correspondence: (L.P.); (I.S.-F.)
| |
Collapse
|
18
|
Leibman-Markus M, Schuster S, Vasquez-Soto B, Bar M, Avni A, Pizarro L. Dynamin-Related Proteins Enhance Tomato Immunity by Mediating Pattern Recognition Receptor Trafficking. MEMBRANES 2022; 12:membranes12080760. [PMID: 36005675 PMCID: PMC9415932 DOI: 10.3390/membranes12080760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023]
Abstract
Pattern recognition receptor (PRR) trafficking to the plasma membrane and endocytosis plays a crucial role in pattern triggered immunity (PTI). Dynamin-related proteins (DRPs) participate in endocytosis and recycling. In Arabidopsis, DRP1 and DRP2 are involved in plasma membrane scission during endocytosis. They are required for the PRR FLS2 endocytosis induction and PTI activation after elicitation with flg22, the MAMP recognized by FLS2. In tomato, SlDRP2A regulates the PRR LeEIX2 endocytosis and PTI activation in response to EIX, the MAMP recognized by LeEIX2. However, it is unknown if other DRPs participate in these processes. Taking advantage of bioinformatics tools, we selected SlDRP2B among the eight DRP2 tomato orthologues to study its functionality in trafficking and plant immunity. Through transient expression of SlDRP1B and its dominant-negative mutant on Nicotiana benthamiana and Nicotiana tabacum, we analyzed SlDRP1B function. We observed that SlDRP1B is physically associated with the LeEIX2 and modifies LeEIX2 trafficking, increasing its presence in endosomes. An enhancement of EIX-elicitated defense responses accompanies the role of SlDRP1B on LeEIX endocytosis. In addition, SlDRP1B overexpression enhanced flg22-elicited defense response. With these results, we conclude that SlDRP1B regulates PRR trafficking and, therefore, plant immunity, similarly to the SlDRP2A role.
Collapse
Affiliation(s)
- Meirav Leibman-Markus
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel;
| | - Silvia Schuster
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
| | - Beatriz Vasquez-Soto
- Institute of Agri-Food, Animal and Environmental Sciences, Universidad de O’Higgins, Rancagua 2820000, Chile;
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel;
| | - Adi Avni
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
| | - Lorena Pizarro
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel;
- Institute of Agri-Food, Animal and Environmental Sciences, Universidad de O’Higgins, Rancagua 2820000, Chile;
- Correspondence: ; Tel.: +56-233-286-050
| |
Collapse
|
19
|
Cytokinin Regulates Energy Utilization in Botrytis cinerea. Microbiol Spectr 2022; 10:e0028022. [PMID: 35894612 PMCID: PMC9430538 DOI: 10.1128/spectrum.00280-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The plant hormone cytokinin (CK) is an important developmental regulator. Previous work has demonstrated that CKs mediate plant immunity and disease resistance. Some phytopathogens have been reported to secrete CKs and may manipulate CK signaling to improve pathogenesis. In recent work, we demonstrated that CK directly inhibits the development and virulence of fungal phytopathogens by attenuating the cell cycle and reducing cytoskeleton organization. Here, focusing on Botrytis cinerea, we report that CK possesses a dual role in fungal biology, with role prioritization being based on sugar availability. In a sugar-rich environment, CK strongly inhibited B. cinerea growth and deregulated cytoskeleton organization. This effect diminished as sugar availability decreased. In its second role, we show using biochemical assays and transgenic redox-sensitive fungal lines that CK can promote glycolysis and energy consumption in B. cinerea, both in vitro and in planta. Glycolysis and increased oxidation mediated by CK were stronger in low sugar availability, indicating that sugar availability could indeed be one possible element determining the role of CK in the fungus. Transcriptomic data further support our findings, demonstrating significant upregulation to glycolysis, oxidative phosphorylation, and sucrose metabolism upon CK treatment. Thus, the effect of CK in fungal biology likely depends on energy status. In addition to the plant producing CK during its interaction with the pathogen for defense priming and pathogen inhibition, the pathogen may take advantage of this increased CK to boost its metabolism and energy production, in preparation for the necrotrophic phase of the infection. IMPORTANCE The hormone cytokinin (CK) is a plant developmental regulator. Previous research has highlighted the involvement of CK in plant defense. Here, we report that CK has a dual role in plant-fungus interactions, inhibiting fungal growth while positively regulating B. cinerea energy utilization, causing an increase in glucose utilization and energy consumption. The effect of CK on B. cinerea was dependent on sugar availability, with CK primarily causing increases in glycolysis when sugar availability was low, and growth inhibition in a high-sugar environment. We propose that CK acts as a signal to the fungus that plant tissue is present, causing it to activate energy metabolism pathways to take advantage of the available food source, while at the same time, CK is employed by the plant to inhibit the attacking pathogen.
Collapse
|
20
|
Interplay between phytohormone signalling pathways in plant defence - other than salicylic acid and jasmonic acid. Essays Biochem 2022; 66:657-671. [PMID: 35848080 PMCID: PMC9528083 DOI: 10.1042/ebc20210089] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022]
Abstract
Phytohormones are essential for all aspects of plant growth, development, and immunity; however, it is the interplay between phytohormones, as they dynamically change during these processes, that is key to this regulation. Hormones have traditionally been split into two groups: growth-promoting and stress-related. Here, we will discuss and show that all hormones play a role in plant defence, regardless of current designation. We highlight recent advances in our understanding of the complex phytohormone networks with less focus on archetypal immunity-related pathways and discuss protein and transcription factor signalling hubs that mediate hormone interplay.
Collapse
|
21
|
Marash I, Leibman‐Markus M, Gupta R, Avni A, Bar M. TOR inhibition primes immunity and pathogen resistance in tomato in a salicylic acid-dependent manner. MOLECULAR PLANT PATHOLOGY 2022; 23:1035-1047. [PMID: 35441436 PMCID: PMC9190978 DOI: 10.1111/mpp.13207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
All organisms need to sense and process information about the availability of nutrients, energy status, and environmental cues to determine the best time for growth and development. The conserved target of rapamycin (TOR) protein kinase has a central role in sensing and perceiving nutritional information. TOR connects environmental information about nutrient availability to developmental and metabolic processes to maintain cellular homeostasis. Under favourable energy conditions, TOR is activated and promotes anabolic processes such as cell division, while suppressing catabolic processes. Conversely, when nutrients are limited or environmental stresses are present, TOR is inactivated, and catabolic processes are promoted. Given the central role of TOR in regulating metabolism, several previous works have examined whether TOR is wired to plant defence. To date, the mechanisms by which TOR influences plant defence are not entirely clear. Here, we addressed this question by testing the effect of inhibiting TOR on immunity and pathogen resistance in tomato. Examining which hormonal defence pathways are influenced by TOR, we show that tomato immune responses and disease resistance to several pathogens increase on TOR inhibition, and that TOR inhibition-mediated resistance probably requires a functional salicylic acid, but not jasmonic acid, pathway. Our results support the notion that TOR is a master regulator of the development-defence switch in plants.
Collapse
Affiliation(s)
- Iftah Marash
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteBet DaganIsrael
- School of Plant Science and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Meirav Leibman‐Markus
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteBet DaganIsrael
| | - Rupali Gupta
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteBet DaganIsrael
| | - Adi Avni
- School of Plant Science and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Maya Bar
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteBet DaganIsrael
| |
Collapse
|
22
|
Cytokinins: Wide-Spread Signaling Hormones from Plants to Humans with High Medical Potential. Nutrients 2022; 14:nu14071495. [PMID: 35406107 PMCID: PMC9003334 DOI: 10.3390/nu14071495] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Nature is a rich source of biologically active novel compounds. Sixty years ago, the plant hormones cytokinins were first discovered. These play a major role in cell division and cell differentiation. They affect organogenesis in plant tissue cultures and contribute to many other physiological and developmental processes in plants. Consequently, the effect of cytokinins on mammalian cells has caught the attention of researchers. Many reports on the contribution and potential of cytokinins in the therapy of different human diseases and pathophysiological conditions have been published and are reviewed here. We compare cytokinin effects and pathways in plants and mammalian systems and highlight the most important biological activities. We present the strong profile of the biological actions of cytokinins and their possible therapeutic applications.
Collapse
|
23
|
Dauda WP, Shanmugam V, Tyagi A, Solanke AU, Kumar V, Krishnan SG, Bashyal BM, Aggarwal R. Genome-Wide Identification and Characterisation of Cytokinin-O-Glucosyltransferase (CGT) Genes of Rice Specific to Potential Pathogens. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070917. [PMID: 35406897 PMCID: PMC9002877 DOI: 10.3390/plants11070917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 05/12/2023]
Abstract
Cytokinin glucosyltransferases (CGTs) are key enzymes of plants for regulating the level and function of cytokinins. In a genomic identification of rice CGTs, 41 genes with the plant secondary product glycosyltransferases (PSPG) motif of 44-amino-acid consensus sequence characteristic of plant uridine diphosphate (UDP)-glycosyltransferases (UGTs) were identified. In-silico physicochemical characterisation revealed that, though the CGTs belong to the same subfamily, they display varying molecular weights, ranging from 19.6 kDa to 59.7 kDa. The proteins were primarily acidic (87.8%) and hydrophilic (58.6%) and were observed to be distributed in the plastids (16), plasma membrane (13), mitochondria (5), and cytosol (4). Phylogenetic analysis of the CGTs revealed that their evolutionary relatedness ranged from 70-100%, and they aligned themselves into two major clusters. In a comprehensive analysis of the available transcriptomics data of rice samples representing different growth stages only the CGT, Os04g25440.1 was significantly expressed at the vegetative stage, whereas 16 other genes were highly expressed only at the reproductive growth stage. On the contrary, six genes, LOC_Os07g30610.1, LOC_Os04g25440.1, LOC_Os07g30620.1, LOC_Os04g25490.1, LOC_Os04g37820.1, and LOC_Os04g25800.1, were significantly upregulated in rice plants inoculated with Rhizoctonia solani (RS), Xoo (Xanthomonas oryzae pv. oryzae) and Mor (Magnaporthe oryzae). In a qRT-PCR analysis of rice sheath tissue susceptible to Rhizoctonia solani, Mor, and Xoo pathogens, compared to the sterile distilled water control, at 24 h post-infection only two genes displayed significant upregulation in response to all the three pathogens: LOC_Os07g30620.1 and LOC_Os04g25820.1. On the other hand, the expression of genes LOC_Os07g30610.1, LOC_Os04g25440, LOC_Os04g25490, and LOC_Os04g25800 were observed to be pathogen-specific. These genes were identified as the candidate-responsive CGT genes and could serve as potential susceptibility genes for facilitating pathogen infection.
Collapse
Affiliation(s)
- Wadzani Palnam Dauda
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (W.P.D.); (A.T.); (S.G.K.); (B.M.B.); (R.A.)
- Crop Science Unit, Department of Agronomy, Federal University, Gashua 1005, Nigeria
| | - Veerubommu Shanmugam
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (W.P.D.); (A.T.); (S.G.K.); (B.M.B.); (R.A.)
- Correspondence:
| | - Aditya Tyagi
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (W.P.D.); (A.T.); (S.G.K.); (B.M.B.); (R.A.)
| | - Amolkumar U. Solanke
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India; (A.U.S.); (V.K.)
| | - Vishesh Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India; (A.U.S.); (V.K.)
| | - Subbaiyan Gopala Krishnan
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (W.P.D.); (A.T.); (S.G.K.); (B.M.B.); (R.A.)
| | - Bishnu Maya Bashyal
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (W.P.D.); (A.T.); (S.G.K.); (B.M.B.); (R.A.)
| | - Rashmi Aggarwal
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (W.P.D.); (A.T.); (S.G.K.); (B.M.B.); (R.A.)
| |
Collapse
|
24
|
Tabassum N, Blilou I. Cell-to-Cell Communication During Plant-Pathogen Interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:98-108. [PMID: 34664986 DOI: 10.1094/mpmi-09-21-0221-cr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Being sessile, plants are continuously challenged by changes in their surrounding environment and must survive and defend themselves against a multitude of pathogens. Plants have evolved a mode for pathogen recognition that activates signaling cascades such as reactive oxygen species, mitogen-activated protein kinase, and Ca2+ pathways, in coordination with hormone signaling, to execute the defense response at the local and systemic levels. Phytopathogens have evolved to manipulate cellular and hormonal signaling and exploit hosts' cell-to-cell connections in many ways at multiple levels. Overall, triumph over pathogens depends on how efficiently the pathogens are recognized and how rapidly the plant response is initiated through efficient intercellular communication via apoplastic and symplastic routes. Here, we review how intercellular communication in plants is mediated, manipulated, and maneuvered during plant-pathogen interaction.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.
Collapse
Affiliation(s)
- Naheed Tabassum
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ikram Blilou
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
25
|
Yang S, Cai W, Shen L, Wu R, Cao J, Tang W, Lu Q, Huang Y, Guan D, He S. Solanaceous plants switch to cytokinin-mediated immunity against Ralstonia solanacearum under high temperature and high humidity. PLANT, CELL & ENVIRONMENT 2022; 45:459-478. [PMID: 34778967 DOI: 10.1111/pce.14222] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Plant diseases generally tend to be more serious under conditions of high temperature and high humidity (HTHH) than under ambient temperature, but plant immunity against pathogen attacks under HTHH remains elusive. Herein, we used pepper as an example to study how Solanaceae cope with Ralstonia solanacearum infection (RSI) under HTHH by performing RNA-seq combined with the reverse genetic method. The result showed that immunities mediated by salicylic acid (SA) and jasmonic acid (JA) in pepper roots were activated by RSI under ambient temperature. However, upon RSI under HTHH, JA signalling was blocked and SA signalling was activated early but its duration was greatly shortened in pepper roots, instead, expression of CaIPT5 and Glutathione S-transferase encoding genes, as well as endogenous content of trans-Zeatin, were enhanced. In addition, by silencing in pepper plants and overexpression in Nicotiana benthamiana, CaIPT5 was found to act positively in the immune response to RSI under HTHH in a way related to CaPRP1 and CaMgst3. Furthermore, the susceptibility of pepper, tomato and tobacco to RSI under HTHH was significantly reduced by exogenously applied tZ, but not by either SA or MeJA. All these data collectively suggest that pepper employs cytokinin-mediated immunity to cope with RSI under HTHH.
Collapse
Affiliation(s)
- Sheng Yang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Weiwei Cai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Lei Shen
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Ruijie Wu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Jianshen Cao
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Weiqi Tang
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qiaoling Lu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Yu Huang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Deyi Guan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Shuilin He
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| |
Collapse
|
26
|
Thomas H, Van den Broeck L, Spurney R, Sozzani R, Frank M. Gene regulatory networks for compatible versus incompatible grafts identify a role for SlWOX4 during junction formation. THE PLANT CELL 2022; 34:535-556. [PMID: 34609518 DOI: 10.1101/2021.02.26.433082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/25/2021] [Indexed: 05/22/2023]
Abstract
Grafting has been adopted for a wide range of crops to enhance productivity and resilience; for example, grafting of Solanaceous crops couples disease-resistant rootstocks with scions that produce high-quality fruit. However, incompatibility severely limits the application of grafting and graft incompatibility remains poorly understood. In grafts, immediate incompatibility results in rapid death, but delayed incompatibility can take months or even years to manifest, creating a significant economic burden for perennial crop production. To gain insight into the genetic mechanisms underlying this phenomenon, we developed a model system using heterografting of tomato (Solanum lycopersicum) and pepper (Capsicum annuum). These grafted plants express signs of anatomical junction failure within the first week of grafting. By generating a detailed timeline for junction formation, we were able to pinpoint the cellular basis for this delayed incompatibility. Furthermore, we inferred gene regulatory networks for compatible self-grafts and incompatible heterografts based on these key anatomical events, which predict core regulators for grafting. Finally, we examined the role of vascular development in graft formation and uncovered SlWOX4 as a potential regulator of graft compatibility. Following this predicted regulator up with functional analysis, we show that Slwox4 homografts fail to form xylem bridges across the junction, demonstrating that indeed, SlWOX4 is essential for vascular reconnection during grafting, and may function as an early indicator of graft failure.
Collapse
Affiliation(s)
- Hannah Thomas
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14850, USA
| | - Lisa Van den Broeck
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Ryan Spurney
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Margaret Frank
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14850, USA
| |
Collapse
|
27
|
Thomas H, Van den Broeck L, Spurney R, Sozzani R, Frank M. Gene regulatory networks for compatible versus incompatible grafts identify a role for SlWOX4 during junction formation. THE PLANT CELL 2022; 34:535-556. [PMID: 34609518 PMCID: PMC8846177 DOI: 10.1093/plcell/koab246] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/25/2021] [Indexed: 06/01/2023]
Abstract
Grafting has been adopted for a wide range of crops to enhance productivity and resilience; for example, grafting of Solanaceous crops couples disease-resistant rootstocks with scions that produce high-quality fruit. However, incompatibility severely limits the application of grafting and graft incompatibility remains poorly understood. In grafts, immediate incompatibility results in rapid death, but delayed incompatibility can take months or even years to manifest, creating a significant economic burden for perennial crop production. To gain insight into the genetic mechanisms underlying this phenomenon, we developed a model system using heterografting of tomato (Solanum lycopersicum) and pepper (Capsicum annuum). These grafted plants express signs of anatomical junction failure within the first week of grafting. By generating a detailed timeline for junction formation, we were able to pinpoint the cellular basis for this delayed incompatibility. Furthermore, we inferred gene regulatory networks for compatible self-grafts and incompatible heterografts based on these key anatomical events, which predict core regulators for grafting. Finally, we examined the role of vascular development in graft formation and uncovered SlWOX4 as a potential regulator of graft compatibility. Following this predicted regulator up with functional analysis, we show that Slwox4 homografts fail to form xylem bridges across the junction, demonstrating that indeed, SlWOX4 is essential for vascular reconnection during grafting, and may function as an early indicator of graft failure.
Collapse
Affiliation(s)
- Hannah Thomas
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14850, USA
| | - Lisa Van den Broeck
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Ryan Spurney
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Margaret Frank
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14850, USA
| |
Collapse
|
28
|
Gupta R, Elkabetz D, Leibman-Markus M, Jami E, Bar M. Cytokinin-microbiome interactions regulate developmental functions. ENVIRONMENTAL MICROBIOME 2022; 17:2. [PMID: 35033189 PMCID: PMC8760676 DOI: 10.1186/s40793-022-00397-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/05/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND The interaction of plants with the complex microbial networks that inhabit them is important for plant health. While the reliance of plants on their microbial inhabitants for defense against invading pathogens is well documented, the acquisition of data concerning the relationships between plant developmental stage or aging, and microbiome assembly, is still underway. The plant hormone cytokinin (CK) regulates various plant growth and developmental processes. Here, examining the relationships between plant development and microbiome assembly, we observed developmental-age dependent changes in the phyllopshere microbiome. We show that age-related shifts in microbiome content vary based on content of, or sensitivity to, CK. RESULTS We found a developmental age associated decline in microbial richness and diversity, accompanied by a decline in the presence of growth promoting and resistance inducing Bacilli in the phyllosphere. This decline was absent from CK-rich or CK-hypersensitive genotypes. Bacillus isolates we obtained from CK rich genotypes were found to alter the expression of developmental genes to support morphogenesis and alter the leaf developmental program when applied to seedlings, and enhance yield and agricultural productivity when applied to mature plants. CONCLUSIONS Our results support the notion that CK supports developmental functions in part via the bacterial community.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Dorin Elkabetz
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
- Department of Plant Pathology and Microbiology, Hebrew University of Jerusalem, Rehovot, Israel
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Elie Jami
- Department of Ruminant Science, Animal Science Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel.
| |
Collapse
|
29
|
Gupta R, Elkabetz D, Leibman-Markus M, Sayas T, Schneider A, Jami E, Kleiman M, Bar M. Cytokinin drives assembly of the phyllosphere microbiome and promotes disease resistance through structural and chemical cues. THE ISME JOURNAL 2022; 16:122-137. [PMID: 34272494 PMCID: PMC8692462 DOI: 10.1038/s41396-021-01060-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
The plant hormone cytokinin (CK) is an important developmental regulator, promoting morphogenesis and delaying differentiation and senescence. From developmental processes, to growth, to stress tolerance, CKs are central in plant life. CKs are also known to mediate plant immunity and disease resistance, and several classes of microbes can also produce CKs, affecting the interaction with their plant hosts. While host species and genotype can be a driving force in shaping the plant microbiome, how plant developmental hormones such as CK can shape the microbiome is largely uninvestigated. Here, we examined the relationship between CK and the phyllosphere microbiome, finding that CK acts as a selective force in microbiome assembly, increasing richness, and promoting the presence of Firmicutes. CK-mediated immunity was found to partially depend on the microbial community, and bacilli isolated from previously described CK-rich plant genotypes, which overexpress a CK biosynthesis gene or have increased CK sensitivity, induced plant immunity, and promoted disease resistance. Using a biomimetic system, we investigated the relationship between the leaf microstructure, which is differentially patterned upon changes in CK content or signaling, and the growth of different phyllosphere microbes. We found that leaf structures derived from CK-rich plant genotypes support bacilli in the biomimetic system. CK was able to promote the growth, swarming, and biofilm formation of immunity inducing bacillus isolates in vitro. Overall, our results indicate that host genotype and hormonal profiles can act as a strong selective force in microbiome assembly, underlying differential immunity profiles, and pathogen resistance as a result.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Dorin Elkabetz
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
- Department of Plant Pathology and Microbiology, Hebrew University of Jerusalem, Rehovot, Israel
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Tali Sayas
- Department of Vegetable and Field crops, Plant Sciences Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Anat Schneider
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
- Department of Plant Pathology and Microbiology, Hebrew University of Jerusalem, Rehovot, Israel
| | - Elie Jami
- Department of Ruminant Science, Animal Science Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Maya Kleiman
- Department of Vegetable and Field crops, Plant Sciences Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
- Agro-NanoTechnology and Advanced Materials Center, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel.
| |
Collapse
|
30
|
Singh D, Singla-Pareek SL, Pareek A. Two-component signaling system in plants: interaction network and specificity in response to stress and hormones. PLANT CELL REPORTS 2021; 40:2037-2046. [PMID: 34109469 DOI: 10.1007/s00299-021-02727-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Plants are exposed to various environmental challenges that can hamper their growth, development, and productivity. Being sedentary, plants cannot escape from these unfavorable environmental conditions and have evolved various signaling cascades to endure them. The two-component signaling (TCS) system is one such essential signaling circuitry present in plants regulating responses against multiple abiotic and biotic stresses. It is among the most ancient and evolutionary conserved signaling pathways in plants, which include membrane-bound histidine kinases (HKs), cytoplasmic histidine phosphotransfer proteins (Hpts), and nuclear or cytoplasmic response regulators (RRs). At the same time, TCS also involved in many signaling circuitries operative in plants in response to diverse hormones. These plant growth hormones play a significant role in diverse physiological and developmental processes, and their contribution to plant stress responses is coming up in a big way. Therefore, it is intriguing to know how TCS and various plant growth regulators, along with the key transcription factors, directly or indirectly control the responses of plants towards diverse stresses. The present review attempts to explore this relationship, hoping that this knowledge will contribute towards developing crop plants with enhanced climate resilience.
Collapse
Affiliation(s)
- Deepti Singh
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, Delhi, India.
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| |
Collapse
|
31
|
Cytokinin Inhibits Fungal Development and Virulence by Targeting the Cytoskeleton and Cellular Trafficking. mBio 2021; 12:e0306820. [PMID: 34663100 PMCID: PMC8524340 DOI: 10.1128/mbio.03068-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cytokinin (CK) is an important plant developmental regulator, having activities in many aspects of plant life and response to the environment. CKs are involved in diverse processes in the plant, including stem cell maintenance, vascular differentiation, growth and branching of roots and shoots, leaf senescence, nutrient balance, and stress tolerance. In some cases, phytopathogens secrete CKs. It has been suggested that to achieve pathogenesis in the host, CK-secreting biotrophs manipulate CK signaling to regulate the host cell cycle and nutrient allocation. CK is known to induce host plant resistance to several classes of phytopathogens from a few works, with induced host immunity via salicylic acid signaling suggested to be the prevalent mechanism for this host resistance. Here, we show that CK directly inhibits the growth, development, and virulence of fungal phytopathogens. Focusing on Botrytis cinerea (Bc), we demonstrate that various aspects of fungal development can be reversibly inhibited by CK. We also found that CK affects both budding and fission yeast in a similar manner. Investigating the mechanism by which CK influences fungal development, we conducted RNA next-generation sequencing (RNA-NGS) on mock- and CK-treated B. cinerea samples, finding that CK alters the cell cycle, cytoskeleton, and endocytosis. Cell biology experiments demonstrated that CK affects cytoskeleton components and cellular trafficking in Bc, lowering endocytic rates and endomembrane compartment sizes, likely leading to reduced growth rates and arrested developmental programs. Mutant analyses in yeast confirmed that the endocytic pathway is altered by CK. Our work uncovers a remarkably conserved role for a plant growth hormone in fungal biology, suggesting that pathogen-host interactions resulted in fascinating molecular adaptations on fundamental processes in eukaryotic biology.
Collapse
|
32
|
McIntyre KE, Bush DR, Argueso CT. Cytokinin Regulation of Source-Sink Relationships in Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:677585. [PMID: 34504504 PMCID: PMC8421792 DOI: 10.3389/fpls.2021.677585] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/12/2021] [Indexed: 06/01/2023]
Abstract
Cytokinins are plant hormones known for their role in mediating plant growth. First discovered for their ability to promote cell division, this class of hormones is now associated with many other cellular and physiological functions. One of these functions is the regulation of source-sink relationships, a tightly controlled process that is essential for proper plant growth and development. As discovered more recently, cytokinins are also important for the interaction of plants with pathogens, beneficial microbes and insects. Here, we review the importance of cytokinins in source-sink relationships in plants, with relation to both carbohydrates and amino acids, and highlight a possible function for this regulation in the context of plant biotic interactions.
Collapse
Affiliation(s)
- Kathryn E. McIntyre
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Daniel R. Bush
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Cristiana T. Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
33
|
Mou S, Meng Q, Gao F, Zhang T, He W, Guan D, He S. A cysteine-rich receptor-like protein kinase CaCKR5 modulates immune response against Ralstonia solanacearum infection in pepper. BMC PLANT BIOLOGY 2021; 21:382. [PMID: 34412592 PMCID: PMC8375189 DOI: 10.1186/s12870-021-03150-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/28/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Cysteine-rich receptor-like kinases (CRKs) represent a large subfamily of receptor-like kinases and play vital roles in diverse physiological processes in regulating plant growth and development. RESULTS CaCRK5 transcripts were induced in pepper upon the infection of Ralstonia solanacearum and treatment with salicylic acid. The fusions between CaCRK5 and green fluorescence protein were targeted to the plasma membrane. Suppression of CaCRK5 via virus-induced gene silencing (VIGS) made pepper plants significantly susceptible to R. solanacearum infection, which was accompanied with decreased expression of defense related genes CaPR1, CaSAR8.2, CaDEF1 and CaACO1. Overexpression of CaCRK5 increased resistance against R. solanacearum in Nicotiana benthamiana. Furthermore, electrophoretic mobility shift assay and chromatin immunoprecipitation coupled with quantitative real-time PCR analysis revealed that a homeodomain zipper I protein CaHDZ27 can active the expression of CaCRK5 through directly binding to its promoter. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) analyses suggested that CaCRK5 heterodimerized with the homologous member CaCRK6 on the plasma membrane. CONCLUSIONS Our data revealed that CaCRK5 played a positive role in regulating immune responses against R. solanacearum infection in pepper.
Collapse
Affiliation(s)
- Shaoliang Mou
- College of Life Science, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Plant Genetic Improvement, National Education Minister, Comprehensive Utilization Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
| | - Qianqian Meng
- College of Life Science, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Plant Genetic Improvement, National Education Minister, Comprehensive Utilization Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
| | - Feng Gao
- College of Life Science, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Plant Genetic Improvement, National Education Minister, Comprehensive Utilization Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
| | - Tingting Zhang
- College of Life Science, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Plant Genetic Improvement, National Education Minister, Comprehensive Utilization Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
| | - Weihong He
- College of Life Science, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Plant Genetic Improvement, National Education Minister, Comprehensive Utilization Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
| | - Deyi Guan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Plant Genetic Improvement, National Education Minister, Comprehensive Utilization Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- College of Agriculture Science, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China.
- Key Laboratory of Plant Genetic Improvement, National Education Minister, Comprehensive Utilization Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China.
- College of Agriculture Science, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China.
| |
Collapse
|
34
|
Pizarro L, Munoz D, Marash I, Gupta R, Anand G, Leibman-Markus M, Bar M. Cytokinin Modulates Cellular Trafficking and the Cytoskeleton, Enhancing Defense Responses. Cells 2021; 10:1634. [PMID: 34209875 PMCID: PMC8307962 DOI: 10.3390/cells10071634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/23/2022] Open
Abstract
The plant hormone cytokinin (CK) plays central roles in plant development and throughout plant life. The perception of CKs initiating their signaling cascade is mediated by histidine kinase receptors (AHKs). Traditionally thought to be perceived mostly at the endoplasmic reticulum (ER) due to receptor localization, CK was recently reported to be perceived at the plasma membrane (PM), with CK and its AHK receptors being trafficked between the PM and the ER. Some of the downstream mechanisms CK employs to regulate developmental processes are unknown. A seminal report in this field demonstrated that CK regulates auxin-mediated lateral root organogenesis by regulating the endocytic recycling of the auxin carrier PIN1, but since then, few works have addressed this issue. Modulation of the cellular cytoskeleton and trafficking could potentially be a mechanism executing responses downstream of CK signaling. We recently reported that CK affects the trafficking of the pattern recognition receptor LeEIX2, influencing the resultant defense output. We have also recently found that CK affects cellular trafficking and the actin cytoskeleton in fungi. In this work, we take an in-depth look at the effects of CK on cellular trafficking and on the actin cytoskeleton in plant cells. We find that CK influences the actin cytoskeleton and endomembrane compartments, both in the context of defense signaling-where CK acts to amplify the signal-as well as in steady state. We show that CK affects the distribution of FLS2, increasing its presence in the plasma membrane. Furthermore, CK enhances the cellular response to flg22, and flg22 sensing activates the CK response. Our results are in agreement with what we previously reported for fungi, suggesting a fundamental role for CK in regulating cellular integrity and trafficking as a mechanism for controlling and executing CK-mediated processes.
Collapse
Affiliation(s)
- Lorena Pizarro
- Institute of Agri-Food, Animal and Environmental Sciences, Universidad de O’Higgins, Rancagua 2820000, Chile;
| | - Daniela Munoz
- Institute of Agri-Food, Animal and Environmental Sciences, Universidad de O’Higgins, Rancagua 2820000, Chile;
| | - Iftah Marash
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel; (I.M.); (R.G.); (G.A.); (M.L.-M.)
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel; (I.M.); (R.G.); (G.A.); (M.L.-M.)
| | - Gautam Anand
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel; (I.M.); (R.G.); (G.A.); (M.L.-M.)
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel; (I.M.); (R.G.); (G.A.); (M.L.-M.)
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel; (I.M.); (R.G.); (G.A.); (M.L.-M.)
| |
Collapse
|
35
|
Coordinating the morphogenesis-differentiation balance by tweaking the cytokinin-gibberellin equilibrium. PLoS Genet 2021; 17:e1009537. [PMID: 33901177 PMCID: PMC8102002 DOI: 10.1371/journal.pgen.1009537] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/06/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
Morphogenesis and differentiation are important stages in organ development and shape determination. However, how they are balanced and tuned during development is not fully understood. In the compound leaved tomato, an extended morphogenesis phase allows for the initiation of leaflets, resulting in the compound form. Maintaining a prolonged morphogenetic phase in early stages of compound-leaf development in tomato is dependent on delayed activity of several factors that promote differentiation, including the CIN-TCP transcription factor (TF) LA, the MYB TF CLAU and the plant hormone Gibberellin (GA), as well as on the morphogenesis-promoting activity of the plant hormone cytokinin (CK). Here, we investigated the genetic regulation of the morphogenesis-differentiation balance by studying the relationship between LA, CLAU, TKN2, CK and GA. Our genetic and molecular examination suggest that LA is expressed earlier and more broadly than CLAU and determines the developmental context of CLAU activity. Genetic interaction analysis indicates that LA and CLAU likely promote differentiation in parallel genetic pathways. These pathways converge downstream on tuning the balance between CK and GA. Comprehensive transcriptomic analyses support the genetic data and provide insights into the broader molecular basis of differentiation and morphogenesis processes in plants. Morphogenesis and differentiation are crucial steps in the formation and shaping of organs in both plants and animals. A wide array of transcription factors and hormones were shown to act together to support morphogenesis or promote differentiation. However, a comprehensive molecular and genetic understating of how morphogenesis and differentiation are coordinated during development is still missing. We addressed these questions in the context of the development of the tomato compound leaf, for which many regulators have been described. Investigating the coordination among these different actors, we show that several discrete genetic pathways promote differentiation. Downstream of these separate pathways, two important plant hormones, cytokinin and gibberellin, act antagonistically to tweak the morphogenesis-differentiation balance.
Collapse
|
36
|
Alonso-Díaz A, Satbhai SB, de Pedro-Jové R, Berry HM, Göschl C, Argueso CT, Novak O, Busch W, Valls M, Coll NS. A genome-wide association study reveals cytokinin as a major component in the root defense responses against Ralstonia solanacearum. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2727-2740. [PMID: 33475698 PMCID: PMC8006551 DOI: 10.1093/jxb/eraa610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/19/2021] [Indexed: 05/30/2023]
Abstract
Bacterial wilt caused by the soil-borne pathogen Ralstonia solancearum is economically devastating, with no effective methods to fight the disease. This pathogen invades plants through their roots and colonizes their xylem, clogging the vasculature and causing rapid wilting. Key to preventing colonization are the early defense responses triggered in the host's root upon infection, which remain mostly unknown. Here, we have taken advantage of a high-throughput in vitro infection system to screen natural variability associated with the root growth inhibition phenotype caused by R. solanacearum in Arabidopsis during the first hours of infection. To analyze the genetic determinants of this trait, we have performed a genome-wide association study, identifying allelic variation at several loci related to cytokinin metabolism, including genes responsible for biosynthesis and degradation of cytokinin. Further, our data clearly demonstrate that cytokinin signaling is induced early during the infection process and cytokinin contributes to immunity against R. solanacearum. This study highlights a new role for cytokinin in root immunity, paving the way for future research that will help in understanding the mechanisms underpinning root defenses.
Collapse
Affiliation(s)
- Alejandro Alonso-Díaz
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Barcelona, Spain
| | - Santosh B Satbhai
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr-Gasse 3, Vienna 1030, Austria
- Salk Institute For Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Roger de Pedro-Jové
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Barcelona, Spain
| | - Hannah M Berry
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Christian Göschl
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr-Gasse 3, Vienna 1030, Austria
| | - Cristiana T Argueso
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| | - Ondrej Novak
- Laboratory of Growth Regulators, Olomouc, The Czech Republic
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr-Gasse 3, Vienna 1030, Austria
- Salk Institute For Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Barcelona, Spain
- Genetics Department, University of Barcelona, Barcelona, Spain
| | - Núria S Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Barcelona, Spain
| |
Collapse
|
37
|
Li B, Wang R, Wang S, Zhang J, Chang L. Diversified Regulation of Cytokinin Levels and Signaling During Botrytis cinerea Infection in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:584042. [PMID: 33643340 PMCID: PMC7902887 DOI: 10.3389/fpls.2021.584042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/06/2021] [Indexed: 05/28/2023]
Abstract
Cytokinins (CKs) can modulate plant immunity to various pathogens, but how CKs are involved in plant defense responses to the necrotrophic pathogen Botrytis cinerea is still unknown. Here, we found that B. cinerea infection induced transcriptional changes in multiple genes involved in the biosynthesis, degradation, and signaling of CKs, as well as their contents, in pathogen-infected Arabidopsis leaves. Among the CKs, the gene expression of CYTOKININ OXIDASE/DEHYDROGENASE 5 (CKX5) was remarkably induced in the local infected leaves and the distant leaves of the same plant without pathogen inoculation. Cis-zeatin (cZ) and its riboside (cZR) accumulated considerably in infected leaves, suggesting an important role of the cis-zeatin type of CKs in the plant response to B. cinerea. Cytokinin double-receptor mutants were more susceptible to B. cinerea infection, whereas an exogenous CK treatment enhanced the expression levels of defense-related genes and of jasmonic acid (JA) and ethylene (ET), but not salicylic acid (SA), resulting in higher resistance of Arabidopsis to B. cinerea. Investigation of CK responses to B. cinerea infection in the JA biosynthesis mutant, jar1-1, and ET-insensitive mutant, ein2-1, showed that CK signaling and levels of CKs, namely, those of isopentenyladenine (iP), isopentenyladenine riboside (iPR), and trans-zeatin (tZ), were enhanced in jar1-1-infected leaves. By contrast, reductions in iP, iPR, tZ, and tZ riboside (tZR) as well as cZR contents occurred in ein2-1-infected leaves, whose transcript levels of CK signaling genes were likewise differentially regulated. The Arabidopsis Response Regulator 5 (ARR5) gene was upregulated in infected leaves of ein2-1 whereas another type-A response regulator, ARR16, was significantly downregulated, suggesting the existence of a complex regulation of CK signaling via the ET pathway. Accumulation of the cis-zeatin type of CKs in B. cinerea-infected leaves depended on ET but not JA pathways. Collectively, our findings provide evidence that CK responds to B. cinerea infection in a variety of ways that are differently modulated by JA and ET pathways in Arabidopsis.
Collapse
Affiliation(s)
- Beibei Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ruolin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Shiya Wang
- School of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, China
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ling Chang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
38
|
The Hulks and the Deadpools of the Cytokinin Universe: A Dual Strategy for Cytokinin Production, Translocation, and Signal Transduction. Biomolecules 2021; 11:biom11020209. [PMID: 33546210 PMCID: PMC7913349 DOI: 10.3390/biom11020209] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cytokinins are plant hormones, derivatives of adenine with a side chain at the N6-position. They are involved in many physiological processes. While the metabolism of trans-zeatin and isopentenyladenine, which are considered to be highly active cytokinins, has been extensively studied, there are others with less obvious functions, such as cis-zeatin, dihydrozeatin, and aromatic cytokinins, which have been comparatively neglected. To help explain this duality, we present a novel hypothesis metaphorically comparing various cytokinin forms, enzymes of CK metabolism, and their signalling and transporter functions to the comics superheroes Hulk and Deadpool. Hulk is a powerful but short-lived creation, whilst Deadpool presents a more subtle and enduring force. With this dual framework in mind, this review compares different cytokinin metabolites, and their biosynthesis, translocation, and sensing to illustrate the different mechanisms behind the two CK strategies. This is put together and applied to a plant developmental scale and, beyond plants, to interactions with organisms of other kingdoms, to highlight where future study can benefit the understanding of plant fitness and productivity.
Collapse
|