1
|
Oh S, Kim MS, Kang HJ, Kim T, Kong J, Choi D. Conserved effector families render Phytophthora species vulnerable to recognition by NLR receptors in nonhost plants. Nat Commun 2024; 15:10070. [PMID: 39567537 PMCID: PMC11579510 DOI: 10.1038/s41467-024-54452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
NLR receptor is suggested as a component of plant nonhost resistance (NHR). However, the evolutionary process of how plants develop receptors for recognizing broad-spectrum pathogens is still elusive. Here, we observe that multiple RxLR effector families including 12 reported avirulence effectors of Phytophthora infestans are broadly conserved across the Phytophthora species. We select 69 effectors distributed into 8 families from 6 Phytophthora species, and confirm that 60.87% of the tested effectors are recognized by Solanum NLRs according to their defined families. Furthermore, we confirm that expression of R1, R8, and Rpi-amr1 confer broad-spectrum resistance against multiple Phytophthora species. Combined results suggest that conserved effector families of Phytophthora species allow solanaceous plants to recognize broad-spectrum pathogens via NLRs that originally reported to recognize P. infestans. Thus, NLR-mediated recognition would contribute to NHR against pathogens that possess similar repertoires of effectors. Moreover, this homology-based approach would be applicable to other plant-pathogen systems and provide an alternative strategy of genetic mapping to identify functional NLRs against various crop-threatening pathogens.
Collapse
Affiliation(s)
- Soohyun Oh
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Myung-Shin Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, 17058, Republic of Korea
| | - Hui Jeong Kang
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taewon Kim
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junhyeong Kong
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Doil Choi
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Coomber A, Saville A, Ristaino JB. Evolution of Phytophthora infestans on its potato host since the Irish potato famine. Nat Commun 2024; 15:6488. [PMID: 39103347 DOI: 10.1038/s41467-024-50749-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Phytophthora infestans is a major oomycete plant pathogen, responsible for potato late blight, which led to the Irish Potato Famine from 1845-1852. Since then, potatoes resistant to this disease have been bred and deployed worldwide. Their resistance (R) genes recognize pathogen effectors responsible for virulence and then induce a plant response stopping disease progression. However, most deployed R genes are quickly overcome by the pathogen. We use targeted sequencing of effector and R genes on herbarium specimens to examine the joint evolution in both P. infestans and potato from 1845-1954. Currently relevant effectors are historically present in P. infestans, but with alternative alleles compared to modern reference genomes. The historic FAM-1 lineage has the virulent Avr1 allele and the ability to break the R1 resistance gene before breeders deployed it in potato. The FAM-1 lineage is diploid, but later, triploid US-1 lineages appear. We show that pathogen virulence genes and host resistance genes have undergone significant changes since the Famine, from both natural and artificial selection.
Collapse
Affiliation(s)
- Allison Coomber
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, USA
- Functional Genomics Program, NC State University, Raleigh, NC, USA
| | - Amanda Saville
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, USA
| | - Jean Beagle Ristaino
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, USA.
- Emerging Plant Disease and Global Food Security Cluster, NC State University, Raleigh, NC, USA.
| |
Collapse
|
3
|
Wang S, McLellan H, Boevink PC, Birch PRJ. RxLR Effectors: Master Modulators, Modifiers and Manipulators. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:754-763. [PMID: 37750829 DOI: 10.1094/mpmi-05-23-0054-cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Cytoplasmic effectors with an Arg-any amino acid-Arg-Leu (RxLR) motif are encoded by hundreds of genes within the genomes of oomycete Phytophthora spp. and downy mildew pathogens. There has been a dramatic increase in our understanding of the evolution, function, and recognition of these effectors. Host proteins with a wide range of subcellular localizations and functions are targeted by RxLR effectors. Many processes are manipulated, including transcription, post-translational modifications, such as phosphorylation and ubiquitination, secretion, and intracellular trafficking. This involves an array of RxLR effector modes-of-action, including stabilization or destabilization of protein targets, altering or disrupting protein complexes, inhibition or utility of target enzyme activities, and changing the location of protein targets. Interestingly, approximately 50% of identified host proteins targeted by RxLR effectors are negative regulators of immunity. Avirulence RxLR effectors may be directly or indirectly detected by nucleotide-binding leucine-rich repeat resistance (NLR) proteins. Direct recognition by a single NLR of RxLR effector orthologues conserved across multiple Phytophthora pathogens may provide wide protection of diverse crops. Failure of RxLR effectors to interact with or appropriately manipulate target proteins in nonhost plants has been shown to restrict host range. This knowledge can potentially be exploited to alter host targets to prevent effector interaction, providing a barrier to host infection. Finally, recent evidence suggests that RxLR effectors, like cytoplasmic effectors from fungal pathogen Magnaporthe oryzae, may enter host cells via clathrin-mediated endocytosis. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Shumei Wang
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, U.S.A
| | - Hazel McLellan
- Division of Plant Sciences, School of Life Sciences, University of Dundee, at James Hutton Institute, Invergowrie, Dundee DD2 5DA, U.K
| | - Petra C Boevink
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, U.K
| | - Paul R J Birch
- Division of Plant Sciences, School of Life Sciences, University of Dundee, at James Hutton Institute, Invergowrie, Dundee DD2 5DA, U.K
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, U.K
| |
Collapse
|
4
|
Lin X, Jia Y, Heal R, Prokchorchik M, Sindalovskaya M, Olave-Achury A, Makechemu M, Fairhead S, Noureen A, Heo J, Witek K, Smoker M, Taylor J, Shrestha RK, Lee Y, Zhang C, Park SJ, Sohn KH, Huang S, Jones JDG. Solanum americanum genome-assisted discovery of immune receptors that detect potato late blight pathogen effectors. Nat Genet 2023; 55:1579-1588. [PMID: 37640880 PMCID: PMC10484786 DOI: 10.1038/s41588-023-01486-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 07/21/2023] [Indexed: 08/31/2023]
Abstract
Potato (Solanum tuberosum) and tomato (Solanum lycopersicon) crops suffer severe losses to late blight caused by the oomycete pathogen Phytophthora infestans. Solanum americanum, a relative of potato and tomato, is globally distributed and most accessions are highly blight resistant. We generated high-quality reference genomes of four S. americanum accessions, resequenced 52 accessions, and defined a pan-NLRome of S. americanum immune receptor genes. We further screened for variation in recognition of 315P. infestans RXLR effectors in 52 S. americanum accessions. Using these genomic and phenotypic data, we cloned three NLR-encoding genes, Rpi-amr4, R02860 and R04373, that recognize cognate P. infestans RXLR effectors PITG_22825 (AVRamr4), PITG_02860 and PITG_04373. These genomic resources and methodologies will support efforts to engineer potatoes with durable late blight resistance and can be applied to diseases of other crops.
Collapse
Affiliation(s)
- Xiao Lin
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Yuxin Jia
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Key Laboratory for Potato Biology of Yunnan Province, The CAAS-YNNU-YINMORE Joint Academy of Potato Science, Yunnan Normal University, Kunming, China
| | - Robert Heal
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Maxim Prokchorchik
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Plant Pathology Group, The Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Maria Sindalovskaya
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Andrea Olave-Achury
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Moffat Makechemu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sebastian Fairhead
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Azka Noureen
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jung Heo
- Department of Biological Science and Institute of Basic Science, Wonkwang University, Iksan, Republic of Korea
| | - Kamil Witek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Matthew Smoker
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jodie Taylor
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Ram-Krishna Shrestha
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yoonyoung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Chunzhi Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Soon Ju Park
- Department of Biological Science and Institute of Basic Science, Wonkwang University, Iksan, Republic of Korea
- Division of Applied Life Sciences and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.
- Plant Immunity Research Center, Seoul National University, Seoul, Republic of Korea.
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
5
|
Ahn H, Lin X, Olave‐Achury AC, Derevnina L, Contreras MP, Kourelis J, Wu C, Kamoun S, Jones JDG. Effector-dependent activation and oligomerization of plant NRC class helper NLRs by sensor NLR immune receptors Rpi-amr3 and Rpi-amr1. EMBO J 2023; 42:e111484. [PMID: 36592032 PMCID: PMC9975942 DOI: 10.15252/embj.2022111484] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 01/03/2023] Open
Abstract
Plant pathogens compromise crop yields. Plants have evolved robust innate immunity that depends in part on intracellular Nucleotide-binding, Leucine rich-Repeat (NLR) immune receptors that activate defense responses upon detection of pathogen-derived effectors. Most "sensor" NLRs that detect effectors require the activity of "helper" NLRs, but how helper NLRs support sensor NLR function is poorly understood. Many Solanaceae NLRs require NRC (NLR-Required for Cell death) class of helper NLRs. We show here that Rpi-amr3, a sensor NLR from Solanum americanum, detects AVRamr3 from the potato late blight pathogen, Phytophthora infestans, and activates oligomerization of helper NLRs NRC2 and NRC4 into high-molecular-weight resistosomes. In contrast, recognition of P. infestans effector AVRamr1 by another sensor NLR Rpi-amr1 induces formation of only the NRC2 resistosome. The activated NRC2 oligomer becomes enriched in membrane fractions. ATP-binding motifs of both Rpi-amr3 and NRC2 are required for NRC2 resistosome formation, but not for the interaction of Rpi-amr3 with its cognate effector. NRC2 resistosome can be activated by Rpi-amr3 upon detection of AVRamr3 homologs from other Phytophthora species. Mechanistic understanding of NRC resistosome formation will underpin engineering crops with durable disease resistance.
Collapse
Affiliation(s)
- Hee‐Kyung Ahn
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | - Xiao Lin
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | - Lida Derevnina
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
- Present address:
Department of Plant Sciences, Crop Science CentreUniversity of CambridgeCambridgeUK
| | | | | | - Chih‐Hang Wu
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | |
Collapse
|
6
|
Hamim I, Sekine KT, Komatsu K. How do emerging long-read sequencing technologies function in transforming the plant pathology research landscape? PLANT MOLECULAR BIOLOGY 2022; 110:469-484. [PMID: 35962900 DOI: 10.1007/s11103-022-01305-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Long-read sequencing technologies are revolutionizing the sequencing and analysis of plant and pathogen genomes and transcriptomes, as well as contributing to emerging areas of interest in plant-pathogen interactions, disease management techniques, and the introduction of new plant varieties or cultivars. Long-read sequencing (LRS) technologies are progressively being implemented to study plants and pathogens of agricultural importance, which have substantial economic effects. The variability and complexity of the genome and transcriptome affect plant growth, development and pathogen responses. Overcoming the limitations of second-generation sequencing, LRS technology has significantly increased the length of a single contiguous read from a few hundred to millions of base pairs. Because of the longer read lengths, new analysis methods and tools have been developed for plant and pathogen genomics and transcriptomics. LRS technologies enable faster, more efficient, and high-throughput ultralong reads, allowing direct sequencing of genomes that would be impossible or difficult to investigate using short-read sequencing approaches. These benefits include genome assembly in repetitive areas, creating more comprehensive and exact genome determinations, assembling full-length transcripts, and detecting DNA and RNA alterations. Furthermore, these technologies allow for the identification of transcriptome diversity, significant structural variation analysis, and direct epigenetic mark detection in plant and pathogen genomic regions. LRS in plant pathology is found efficient for identifying and characterization of effectors in plants as well as known and unknown plant pathogens. In this review, we investigate how these technologies are transforming the landscape of determination and characterization of plant and pathogen genomes and transcriptomes efficiently and accurately. Moreover, we highlight potential areas of interest offered by LRS technologies for future study into plant-pathogen interactions, disease control strategies, and the development of new plant varieties or cultivars.
Collapse
Affiliation(s)
- Islam Hamim
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- International Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ken-Taro Sekine
- Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan.
| |
Collapse
|
7
|
Lin X, Olave-Achury A, Heal R, Pais M, Witek K, Ahn HK, Zhao H, Bhanvadia S, Karki HS, Song T, Wu CH, Adachi H, Kamoun S, Vleeshouwers VGAA, Jones JDG. A potato late blight resistance gene protects against multiple Phytophthora species by recognizing a broadly conserved RXLR-WY effector. MOLECULAR PLANT 2022; 15:1457-1469. [PMID: 35915586 DOI: 10.1016/j.molp.2022.07.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Species of the genus Phytophthora, the plant killer, cause disease and reduce yields in many crop plants. Although many Resistance to Phytophthora infestans (Rpi) genes effective against potato late blight have been cloned, few have been cloned against other Phytophthora species. Most Rpi genes encode nucleotide-binding domain, leucine-rich repeat-containing (NLR) immune receptor proteins that recognize RXLR (Arg-X-Leu-Arg) effectors. However, whether NLR proteins can recognize RXLR effectors from multiple Phytophthora species has rarely been investigated. Here, we identified a new RXLR-WY effector AVRamr3 from P. infestans that is recognized by Rpi-amr3 from a wild Solanaceae species Solanum americanum. Rpi-amr3 associates with AVRamr3 in planta. AVRamr3 is broadly conserved in many different Phytophthora species, and the recognition of AVRamr3 homologs by Rpi-amr3 activates resistance against multiple Phytophthora pathogens, including the tobacco black shank disease and cacao black pod disease pathogens P. parasitica and P. palmivora. Rpi-amr3 is thus the first characterized resistance gene that acts against P. parasitica or P. palmivora. These findings suggest a novel path to redeploy known R genes against different important plant pathogens.
Collapse
Affiliation(s)
- Xiao Lin
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Andrea Olave-Achury
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Robert Heal
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Marina Pais
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Kamil Witek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Hee-Kyung Ahn
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - He Zhao
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Shivani Bhanvadia
- Wageningen UR Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Hari S Karki
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Tianqiao Song
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Vivianne G A A Vleeshouwers
- Wageningen UR Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK.
| |
Collapse
|
8
|
Ngou BPM, Ding P, Jones JDG. Thirty years of resistance: Zig-zag through the plant immune system. THE PLANT CELL 2022; 34:1447-1478. [PMID: 35167697 PMCID: PMC9048904 DOI: 10.1093/plcell/koac041] [Citation(s) in RCA: 413] [Impact Index Per Article: 137.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/02/2022] [Indexed: 05/05/2023]
Abstract
Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| |
Collapse
|
9
|
Luo M, Sun X, Qi Y, Zhou J, Wu X, Tian Z. Phytophthora infestans RXLR effector Pi04089 perturbs diverse defense-related genes to suppress host immunity. BMC PLANT BIOLOGY 2021; 21:582. [PMID: 34886813 PMCID: PMC8656059 DOI: 10.1186/s12870-021-03364-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The oomycete pathogen secretes many effectors into host cells to manipulate host defenses. For the majority of effectors, the mechanisms related to how they alter the expression of host genes and reprogram defenses are not well understood. In order to investigate the molecular mechanisms governing the influence that the Phytophthora infestans RXLR effector Pi04089 has on host immunity, a comparative transcriptome analysis was conducted on Pi04089 stable transgenic and wild-type potato plants. RESULTS Potato plants stably expressing Pi04089 were more susceptible to P. infestans. RNA-seq analysis revealed that 658 upregulated genes and 722 downregulated genes were characterized in Pi04089 transgenic lines. A large number of genes involved in the biological process, including many defense-related genes and certain genes that respond to salicylic acid, were suppressed. Moreover, the comparative transcriptome analysis revealed that Pi04089 significantly inhibited the expression of many flg22 (a microbe-associated molecular pattern, PAMP)-inducible genes, including various Avr9/Cf-9 rapidly elicited (ACRE) genes. Four selected differentially expressed genes (StWAT1, StCEVI57, StKTI1, and StP450) were confirmed to be involved in host resistance against P. infestans when they were transiently expressed in Nicotiana benthamiana. CONCLUSION The P. infestans effector Pi04089 was shown to suppress the expression of many resistance-related genes in potato plants. Moreover, Pi04089 was found to significantly suppress flg22-triggered defense signaling in potato plants. This research provides new insights into how an oomycete effector perturbs host immune responses at the transcriptome level.
Collapse
Affiliation(s)
- Ming Luo
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China
| | - Xinyuan Sun
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China
| | - Yetong Qi
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China
| | - Jing Zhou
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China
| | - Xintong Wu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China.
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China.
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China.
- Hubei Hongshan laboratory. Huazhong Agricultural University (HZAU), No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China.
| |
Collapse
|
10
|
Bello JC, Hausbeck MK, Sakalidis ML. Application of Target Enrichment Sequencing for Population Genetic Analyses of the Obligate Plant Pathogens Pseudoperonospora cubensis and P. humuli in Michigan. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1103-1118. [PMID: 34227836 DOI: 10.1094/mpmi-11-20-0329-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Technological advances in genome sequencing have improved our ability to catalog genomic variation and have led to an expansion of the scope and scale of genetic studies over the past decade. Yet, for agronomically important plant pathogens such as the downy mildews (Peronosporaceae), the scale of genetic studies remains limited. This is, in part, due to the difficulties associated with maintaining obligate pathogens and the logistical constraints involved in the genotyping of these species (e.g., obtaining DNA of sufficient quantity and quality). To gain an evolutionary and ecological perspective of downy mildews, adaptable methods for the genotyping of their populations are required. Here, we describe a targeted enrichment (TE) protocol to genotype isolates from two Pseudoperonospora species (P. cubensis and P. humuli), using less than 50 ng of mixed pathogen and plant DNA for library preparation. We were able to enrich 830 target genes across 128 samples and identified 2,514 high-quality single nucleotide polymorphism (SNP) variants. Using these SNPs, we detected significant genetic differentiation (analysis of molecular variance [AMOVA], P = 0.01) between P. cubensis subpopulations from Cucurbita moschata (clade I) and Cucumis sativus (clade II) in the state of Michigan. No evidence of location-based differentiation was detected within the P. cubensis (clade II) subpopulation in Michigan. However, a significant effect of location on the genetic variation of the P. humuli subpopulation was detected in the state (AMOVA, P = 0.01). Mantel tests found evidence that the genetic distance among P. humuli samples was associated with the physical distance of the hop yards from which the samples were collected (P = 0.005). The differences in the distribution of genetic variation of the Michigan P. humuli and P. cubensis subpopulations suggest differences in the dispersal of these two species. The TE protocol described here provides an additional tool for genotyping obligate biotrophic plant pathogens and the execution of new genetic studies.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Julian C Bello
- Department of Plant, Soil and Microbial Sciences, Michigan State, University, East Lansing, MI 48824, U.S.A
| | - Mary K Hausbeck
- Department of Plant, Soil and Microbial Sciences, Michigan State, University, East Lansing, MI 48824, U.S.A
| | - Monique L Sakalidis
- Department of Plant, Soil and Microbial Sciences, Michigan State, University, East Lansing, MI 48824, U.S.A
- Department of Forestry, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
11
|
Dong S, Ma W. How to win a tug-of-war: the adaptive evolution of Phytophthora effectors. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102027. [PMID: 33684881 DOI: 10.1016/j.pbi.2021.102027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The 'zigzag' model formulates some of the fundamental principles underpinning the dynamic interactions between pathogen effectors and plant immunity. As key virulence factors, effectors often exhibit a pattern of rapid evolution, presumably as a result of the host-pathogen arms race. Here, we summarize the current knowledge of mechanisms that may accelerate effector evolution in the highly successful Phytophthora pathogens. Recent findings on epigenetic regulation of effector genes that allows evasion of host recognition and maintenance of cost/benefit balance, and a conserved structural unit in effector proteins that may promote the evolution of virulence activities are highlighted.
Collapse
Affiliation(s)
- Suomeng Dong
- Department of Plant Pathology and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom; Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
12
|
Nellist CF, Armitage AD, Bates HJ, Sobczyk MK, Luberti M, Lewis LA, Harrison RJ. Comparative Analysis of Host-Associated Variation in Phytophthora cactorum. Front Microbiol 2021; 12:679936. [PMID: 34276614 PMCID: PMC8285097 DOI: 10.3389/fmicb.2021.679936] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/21/2021] [Indexed: 12/30/2022] Open
Abstract
Phytophthora cactorum is often described as a generalist pathogen, with isolates causing disease in a range of plant species. It is the causative agent of two diseases in the cultivated strawberry, crown rot (CR; causing whole plant collapse) and leather rot (LR; affecting the fruit). In the cultivated apple, P. cactorum causes girdling bark rots on the scion (collar rot) and rootstock (crown rot), as well as necrosis of the fine root system (root rot) and fruit rots. We investigated evidence for host specialisation within P. cactorum through comparative genomic analysis of 18 isolates. Whole genome phylogenetic analysis provided genomic support for discrete lineages within P. cactorum, with well-supported non-recombining clades for strawberry CR and apple infecting isolates specialised to strawberry crowns and apple tissue. Isolates of strawberry CR are genetically similar globally, while there is more diversity in apple-infecting isolates. We sought to identify the genetic basis of host specialisation, demonstrating gain and loss of effector complements within the P. cactorum phylogeny, representing putative determinants of host boundaries. Transcriptomic analysis highlighted that those effectors found to be specific to a single host or expanded in the strawberry lineage are amongst those most highly expressed during infection of strawberry and give a wider insight into the key effectors active during strawberry infection. Many effectors that had homologues in other Phytophthoras that have been characterised as avirulence genes were present but not expressed in our tested isolate. Our results highlight several RxLR-containing effectors that warrant further investigation to determine whether they are indeed virulence factors and host-specificity determinants for strawberry and apple. Furthermore, additional work is required to determine whether these effectors are suitable targets to focus attention on for future resistance breeding efforts.
Collapse
Affiliation(s)
| | - Andrew D. Armitage
- NIAB EMR, East Malling, United Kingdom
- National Resources Institute, University of Greenwich, Chatham, United Kingdom
| | - Helen J. Bates
- NIAB EMR, East Malling, United Kingdom
- NIAB, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
Monino‐Lopez D, Nijenhuis M, Kodde L, Kamoun S, Salehian H, Schentsnyi K, Stam R, Lokossou A, Abd‐El‐Haliem A, Visser RG, Vossen JH. Allelic variants of the NLR protein Rpi-chc1 differentially recognize members of the Phytophthora infestans PexRD12/31 effector superfamily through the leucine-rich repeat domain. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:182-197. [PMID: 33882622 PMCID: PMC8362081 DOI: 10.1111/tpj.15284] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 05/22/2023]
Abstract
Phytophthora infestans is a pathogenic oomycete that causes the infamous potato late blight disease. Resistance (R) genes from diverse Solanum species encode intracellular receptors that trigger effective defense responses upon the recognition of cognate RXLR avirulence (Avr) effector proteins. To deploy these R genes in a durable fashion in agriculture, we need to understand the mechanism of effector recognition and the way the pathogen evades recognition. In this study, we cloned 16 allelic variants of the Rpi-chc1 gene from Solanum chacoense and other Solanum species, and identified the cognate P. infestans RXLR effectors. These tools were used to study effector recognition and co-evolution. Functional and non-functional alleles of Rpi-chc1 encode coiled-coil nucleotide-binding leucine-rich repeat (CNL) proteins, being the first described representatives of the CNL16 family. These alleles have distinct patterns of RXLR effector recognition. While Rpi-chc1.1 recognized multiple PexRD12 (Avrchc1.1) proteins, Rpi-chc1.2 recognized multiple PexRD31 (Avrchc1.2) proteins, both belonging to the PexRD12/31 effector superfamily. Domain swaps between Rpi-chc1.1 and Rpi-chc1.2 revealed that overlapping subdomains in the leucine-rich repeat (LRR) domain are responsible for the difference in effector recognition. This study showed that Rpi-chc1.1 and Rpi-chc1.2 evolved to recognize distinct members of the same PexRD12/31 effector family via the LRR domain. The biased distribution of polymorphisms suggests that exchange of LRRs during host-pathogen co-evolution can lead to novel recognition specificities. These insights will guide future strategies to breed durable resistant varieties.
Collapse
Affiliation(s)
- Daniel Monino‐Lopez
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Maarten Nijenhuis
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
- Present address:
Agrico ResearchBurchtweg 17Bant8314PPThe Netherlands
| | - Linda Kodde
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East AngliaNorwich Research Park, NorwichUK
| | - Hamed Salehian
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Kyrylo Schentsnyi
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
- Present address:
Center for Plant Molecular BiologyAuf der Morgenstelle 32Tübingen2076Germany
| | - Remco Stam
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
- Present address:
Technical University MunichMunichGermany
| | - Anoma Lokossou
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Ahmed Abd‐El‐Haliem
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
- Present address:
Rijk Zwaan Breeding B.VBurgemeester Crezéelaan 40De Lier2678KXThe Netherlands
| | - Richard G.F. Visser
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Jack H. Vossen
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| |
Collapse
|
14
|
Witek K, Lin X, Karki HS, Jupe F, Witek AI, Steuernagel B, Stam R, van Oosterhout C, Fairhead S, Heal R, Cocker JM, Bhanvadia S, Barrett W, Wu CH, Adachi H, Song T, Kamoun S, Vleeshouwers VGAA, Tomlinson L, Wulff BBH, Jones JDG. A complex resistance locus in Solanum americanum recognizes a conserved Phytophthora effector. NATURE PLANTS 2021; 7:198-208. [PMID: 33574576 PMCID: PMC7116783 DOI: 10.1038/s41477-021-00854-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/12/2021] [Indexed: 05/05/2023]
Abstract
Late blight caused by Phytophthora infestans greatly constrains potato production. Many Resistance (R) genes were cloned from wild Solanum species and/or introduced into potato cultivars by breeding. However, individual R genes have been overcome by P. infestans evolution; durable resistance remains elusive. We positionally cloned a new R gene, Rpi-amr1, from Solanum americanum, that encodes an NRC helper-dependent CC-NLR protein. Rpi-amr1 confers resistance in potato to all 19 P. infestans isolates tested. Using association genomics and long-read RenSeq, we defined eight additional Rpi-amr1 alleles from different S. americanum and related species. Despite only ~90% identity between Rpi-amr1 proteins, all confer late blight resistance but differentially recognize Avramr1 orthologues and paralogues. We propose that Rpi-amr1 gene family diversity assists detection of diverse paralogues and alleles of the recognized effector, facilitating durable resistance against P. infestans.
Collapse
Affiliation(s)
- Kamil Witek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Xiao Lin
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Hari S Karki
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- US Department of Agriculture-Agricultural Research Service, Madison, WI, USA
| | - Florian Jupe
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Bayer Crop Science, Chesterfield, MO, USA
| | - Agnieszka I Witek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | | | - Remco Stam
- Phytopathology, Technical University Munich, Freising, Germany
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sebastian Fairhead
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Robert Heal
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jonathan M Cocker
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
- University of Hull, Hull, UK
| | - Shivani Bhanvadia
- Plant Breeding, Wageningen University and Research, Wageningen, the Netherlands
| | - William Barrett
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- The New Zealand Institute for Plant & Food Research Ltd, Nelson, New Zealand
| | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Tianqiao Song
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | | | - Laurence Tomlinson
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | | | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|