1
|
Wengler MR, Talbot NJ. Mechanisms of regulated cell death during plant infection by the rice blast fungus Magnaporthe oryzae. Cell Death Differ 2025; 32:793-801. [PMID: 39794451 PMCID: PMC12089313 DOI: 10.1038/s41418-024-01442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/10/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Fungi are the most important group of plant pathogens, responsible for many of the world's most devastating crop diseases. One of the reasons they are such successful pathogens is because several fungi have evolved the capacity to breach the tough outer cuticle of plants using specialized infection structures called appressoria. This is exemplified by the filamentous ascomycete fungus Magnaporthe oryzae, causal agent of rice blast, one of the most serious diseases affecting rice cultivation globally. M. oryzae develops a pressurized dome-shaped appressorium that uses mechanical force to rupture the rice leaf cuticle. Appressoria form in response to the hydrophobic leaf surface, which requires the Pmk1 MAP kinase signalling pathway, coupled to a series of cell-cycle checkpoints that are necessary for regulated cell death of the fungal conidium and development of a functionally competent appressorium. Conidial cell death requires autophagy, which occurs within each cell of the spore, and is regulated by components of the cargo-independent autophagy pathway. This results in trafficking of the contents of all three cells to the incipient appressorium, which develops enormous turgor of up to 8.0 MPa, due to glycerol accumulation, and differentiates a thickened, melanin-lined cell wall. The appressorium then re-polarizes, re-orienting the actin and microtubule cytoskeleton to enable development of a penetration peg in a perpendicular orientation, that ruptures the leaf surface using mechanical force. Re-polarization requires septin GTPases which form a ring structure at the base of the appressorium, which delineates the point of plant infection, and acts as a scaffold for actin re-localization, enhances cortical rigidity, and forms a lateral diffusion barrier to focus polarity determinants that regulate penetration peg formation. Here we review the mechanism of regulated cell death in M. oryzae, which requires autophagy but may also involve ferroptosis. We critically evaluate the role of regulated cell death in appressorium morphogenesis and examine how it is initiated and regulated, both temporally and spatially, during plant infection. We then use this synopsis to present a testable model for control of regulated cell death during appressorium-dependent plant infection by the blast fungus.
Collapse
|
2
|
Li Y, Li TT, Qin XJ, Zhu Y, Zhou SW, Xu FR, Liu XY, Dong X. Linalool Inactivates TORC1, Disrupting Ribosome Biogenesis and Inhibiting Fusarium oxysporum Growth. Chem Biodivers 2025:e202403421. [PMID: 40248990 DOI: 10.1002/cbdv.202403421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 04/19/2025]
Abstract
Fusarium oxysporum (Fo), a pathogenic fungus threatening medicinal plants like Panax notoginseng, causes severe root rot. Linalool, the primary component of Alpinia officinarum Hance essential oil (EO), is a biologically active compound with demonstrated anti-inflammatory, antibacterial, and antioxidant properties. Notably, it has garnered considerable attention for its remarkable antifungal efficacy. In vitro studies revealed that linalool significantly inhibited Fo hyphal growth. At 12.08 mmol/L, spore germination decreased by 43%, whereas spore yield dropped by 99%. Transcriptomic analysis identified 562 upregulated and 4095 downregulated genes in the linalool-treated group. The upregulated genes were predominantly enriched in pathways related to metabolism, oxidative phosphorylation, and carbohydrate metabolism, indicating adaptive stress responses. Downregulated genes were primarily associated with the ribosome biogenesis, transcription, and spliceosome pathways, with ribosome biogenesis showing the most pronounced inhibition. Linalool treatment inactivated TORC1 (target of rapamycin complex 1), a crucial regulator of ribosomal biogenesis and protein synthesis. This disruption led to reduced expression of ribosome-related genes, severely impairing protein synthesis and fungal growth. The study highlights linalool's strong antifungal activity, primarily by targeting ribosome biogenesis. Future research should investigate its effects and safety in field applications, offering potential strategies for managing diseases in medicinal plants such as P. notoginseng.
Collapse
Affiliation(s)
- You Li
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Tian-Tian Li
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xue-Jie Qin
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yao Zhu
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Shi-Wei Zhou
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Fu-Rong Xu
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xiao-Yun Liu
- Jianghan University, Yunnan University of Chinese Medicine, Kunming, China
| | - Xian Dong
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
3
|
Yang L, Zhang R, Zhang H, Yang Y, Fu L. TOR Mediates Stress Responses Through Global Regulation of Metabolome in Plants. Int J Mol Sci 2025; 26:2095. [PMID: 40076716 PMCID: PMC11900525 DOI: 10.3390/ijms26052095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
The target of rapamycin (TOR) kinase is an evolutionarily conserved atypical Ser/Thr protein kinase present in yeasts, plants, and mammals. In plants, TOR acts as a central signaling hub, playing a pivotal role in the precise orchestration of growth and development. Extensive studies have underscored its significant role in these processes. Recent research has further elucidated TOR's multifaceted roles in plant stress adaptation. Furthermore, mounting evidence indicates TOR's role in mediating the plant metabolome. In this review, we will discuss recent findings on the involvement of TOR signaling in plant adaptation to various abiotic and biotic stresses, with a specific focus on TOR-regulated metabolome reprogramming in response to different stresses.
Collapse
Affiliation(s)
- Lin Yang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Y.); (R.Z.); (H.Z.); (Y.Y.)
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ran Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Y.); (R.Z.); (H.Z.); (Y.Y.)
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huan Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Y.); (R.Z.); (H.Z.); (Y.Y.)
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingyu Yang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Y.); (R.Z.); (H.Z.); (Y.Y.)
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liwen Fu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Y.); (R.Z.); (H.Z.); (Y.Y.)
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Zhang LY, Li TT, Liao HX, Wen JR, Nie HY, Xu FR, Liu XY, Dong X. Menthone lowers H3K27ac levels to inhibit Fusarium proliferatum growth. Front Microbiol 2025; 16:1533918. [PMID: 39911256 PMCID: PMC11794811 DOI: 10.3389/fmicb.2025.1533918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025] Open
Abstract
Background The antifungal properties of essential oils (EOs) and their active constituents have been well documented. Histone acetylation is pivotal in modulating gene expression and influences biological processes in living organisms. Results This study demonstrated that menthone, the primary component of Mentha haplocalyx EO, exhibited notable antifungal activity against Fusarium proliferatum (EC50 = 6.099 mmol/L). The treatment significantly inhibited hyphal growth, reduced spore germination rates from 31.49 to 4.95%, decreased spore viability from 46.88 to 20.91%, and reduced spore production by a factor of 17.92 compared with the control group while simultaneously enhancing cell membrane permeability. However, the direct relationship between menthone and histone acetylation in inhibiting F. proliferatum remains nebulous. Our RNA sequencing (RNA-seq) analysis identified 7,332 differentially expressed genes (DEGs) between the control and menthone-treated groups, 3,442 upregulated and 3,880 downregulated, primarily enriched in pathways related to ribosome biogenesis and energy metabolism. Chromatin immunoprecipitation sequencing (ChIP-seq) analysis revealed that menthone inhibited the growth of F. proliferatum by decreasing H3K27ac levels and interfering with the transcription of energy metabolism-related genes. By integrating the RNA-seq data with the ChIP-seq results, we identified 110 DEGs associated with reduced H3K27ac modification primarily associated with ribosome biogenesis. Menthone affected the growth of F. proliferatum by reducing the expression of ribosome biogenesis-related genes (FPRO_06392, FPRO_01260, FPRO_10795, and FPRO_01372). Conclusion This study elucidated the mechanism by which menthone inhibits F. proliferatum growth from a histone acetylation modification perspective, providing insights into its application as an antifungal agent to prevent root rot in Panax notoginseng.
Collapse
Affiliation(s)
- Li-Yan Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Tian-Tian Li
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Hong-Xin Liao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Jin-Rui Wen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Hong-Yan Nie
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Fu-Rong Xu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiao-Yun Liu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, China
| | - Xian Dong
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
5
|
Song Y, Wang Y, Zhang H, Saddique MAB, Luo X, Ren M. The TOR signalling pathway in fungal phytopathogens: A target for plant disease control. MOLECULAR PLANT PATHOLOGY 2024; 25:e70024. [PMID: 39508186 PMCID: PMC11541241 DOI: 10.1111/mpp.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024]
Abstract
Plant diseases caused by fungal phytopathogens have led to significant economic losses in agriculture worldwide. The management of fungal diseases is mainly dependent on the application of fungicides, which are not suitable for sustainable agriculture, human health, and environmental safety. Thus, it is necessary to develop novel targets and green strategies to mitigate the losses caused by these pathogens. The target of rapamycin (TOR) complexes and key components of the TOR signalling pathway are evolutionally conserved in pathogens and closely related to the vegetative growth and pathogenicity. As indicated in recent systems, chemical, genetic, and genomic studies on the TOR signalling pathway, phytopathogens with TOR dysfunctions show severe growth defects and nonpathogenicity, which makes the TOR signalling pathway to be developed into an ideal candidate target for controlling plant disease. In this review, we comprehensively discuss the current knowledge on components of the TOR signalling pathway in microorganisms and the diverse roles of various plant TOR in response to plant pathogens. Furthermore, we analyse a range of disease management strategies that rely on the TOR signalling pathway, including genetic modification technologies and chemical controls. In the future, disease control strategies based on the TOR signalling network are expected to become a highly effective weapon for crop protection.
Collapse
Affiliation(s)
- Yun Song
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Yaru Wang
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Huafang Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| | - Muhammad Abu Bakar Saddique
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| |
Collapse
|
6
|
Jackson E, Li J, Weerasinghe T, Li X. The Ubiquitous Wilt-Inducing Pathogen Fusarium oxysporum-A Review of Genes Studied with Mutant Analysis. Pathogens 2024; 13:823. [PMID: 39452695 PMCID: PMC11510031 DOI: 10.3390/pathogens13100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Fusarium oxysporum is one of the most economically important plant fungal pathogens, causing devastating Fusarium wilt diseases on a diverse range of hosts, including many key crop plants. Consequently, F. oxysporum has been the subject of extensive research to help develop and improve crop protection strategies. The sequencing of the F. oxysporum genome 14 years ago has greatly accelerated the discovery and characterization of key genes contributing to F. oxysporum biology and virulence. In this review, we summarize important findings on the molecular mechanisms of F. oxysporum growth, reproduction, and virulence. In particular, we focus on genes studied through mutant analysis, covering genes involved in diverse processes such as metabolism, stress tolerance, sporulation, and pathogenicity, as well as the signaling pathways that regulate them. In doing so, we hope to present a comprehensive review of the molecular understanding of F. oxysporum that will aid the future study of this and related species.
Collapse
Affiliation(s)
- Edan Jackson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Josh Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Thilini Weerasinghe
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
7
|
Su J, Wang J, Tang J, Yu W, Liu J, Dong X, Dong J, Chai X, Ji P, Zhang L. Zinc finger transcription factor ZFP1 is associated with growth, conidiation, osmoregulation, and virulence in the Polygonatum kingianum pathogen Fusarium oxysporum. Sci Rep 2024; 14:16061. [PMID: 38992190 PMCID: PMC11239662 DOI: 10.1038/s41598-024-67040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Rhizome rot is a destructive soil-borne disease of Polygonatum kingianum and adversely affects the yield and sustenance of the plant. Understanding how the causal fungus Fusarium oxysporum infects P. kingianum may suggest effective control measures against rhizome rot. In germinating conidia of infectious F. oxysporum, expression of the zinc finger transcription factor gene Zfp1, consisting of two C2H2 motifs, was up-regulated. To characterize the critical role of ZFP1, we generated independent deletion mutants (zfp1) and complemented one mutant with a transgenic copy of ZFP1 (zfp1 tZFP1). Mycelial growth and conidial production of zfp1 were slower than those of wild type (ZFP1) and zfp1 tZFP1. Additionally, a reduced inhibition of growth suggested zfp1 was less sensitive to conditions promoting cell wall and osmotic stresses than ZFP1 and zfp1 tZFP1. Furthermore pathogenicity tests suggested a critical role for growth of zfp1 in infected leaves and rhizomes of P. kingianum. Thus ZFP1 is important for mycelial growth, conidiation, osmoregulation, and pathogenicity in P. kingianum.
Collapse
Affiliation(s)
- Jianyun Su
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Jingyi Wang
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Jingying Tang
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Weimei Yu
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Jiajia Liu
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xian Dong
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Jiahong Dong
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xia Chai
- Yunnan Normal University, Kunming, 650500, China.
| | - Pengzhang Ji
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Lei Zhang
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
8
|
Wu Y, Li X, Dong L, Liu T, Tang Z, Lin R, Norvienyeku J, Xing M. A New Insight into 6-Pentyl-2H-pyran-2-one against Peronophythora litchii via TOR Pathway. J Fungi (Basel) 2023; 9:863. [PMID: 37623635 PMCID: PMC10515317 DOI: 10.3390/jof9080863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
The litchi downy blight disease of litchi caused by Peronophythora litchii accounts for severe losses in the field and during storage. While ample quantitative studies have shown that 6-pentyl-2H-pyran-2-one (6PP) possesses antifungal activities against multiple plant pathogenic fungi, the regulatory mechanisms of 6PP-mediated inhibition of fungal pathogenesis and growth are still unknown. Here, we investigated the potential molecular targets of 6PP in the phytopathogenic oomycetes P. litchii through integrated deployment of RNA-sequencing, functional genetics, and biochemical techniques to investigate the regulatory effects of 6PP against P. litchii. Previously we demonstrated that 6PP exerted significant oomyticidal activities. Also, comparative transcriptomic evaluation of P. litchii strains treated with 6PP Revealed significant up-regulations in the expression profile of TOR pathway-related genes, including PlCytochrome C and the transcription factors PlYY1. We also noticed that 6PP treatment down-regulated putative negative regulatory genes of the TOR pathway, including PlSpm1 and PlrhoH12 in P. litchii. Protein-ligand binding analyses revealed stable affinities between PlYY1, PlCytochrome C, PlSpm1, PlrhoH12 proteins, and the 6PP ligand. Phenotypic characterization of PlYY1 targeted gene deletion strains generated in this study using CRISPR/Cas9 and homologous recombination strategies significantly reduced the vegetative growth, sporangium, encystment, zoospore release, and pathogenicity of P. litchii. These findings suggest that 6PP-mediated activation of PlYY1 expression positively regulates TOR-related responses and significantly influences vegetative growth and the virulence of P. litchii. The current investigations revealed novel targets for 6PP and underscored the potential of deploying 6PP in developing management strategies for controlling the litchi downy blight pathogen.
Collapse
Affiliation(s)
- Yinggu Wu
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Xinyu Li
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Li Dong
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Tong Liu
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Zhengbin Tang
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Runmao Lin
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Justice Norvienyeku
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Mengyu Xing
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| |
Collapse
|
9
|
Navarro‐Velasco GY, Di Pietro A, López‐Berges MS. Constitutive activation of TORC1 signalling attenuates virulence in the cross-kingdom fungal pathogen Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2023; 24:289-301. [PMID: 36840362 PMCID: PMC10013769 DOI: 10.1111/mpp.13292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
The filamentous fungus Fusarium oxysporum causes vascular wilt disease in a wide range of plant species and opportunistic infections in humans. Previous work suggested that invasive growth in this pathogen is controlled by environmental cues such as pH and nutrient status. Here we investigated the role of Target Of Rapamycin Complex 1 (TORC1), a global regulator of eukaryotic cell growth and development. Inactivation of the negative regulator Tuberous Sclerosis Complex 2 (Tsc2), but not constitutive activation of the positive regulator Gtr1, in F. oxysporum resulted in inappropriate activation of TORC1 signalling under nutrient-limiting conditions. The tsc2Δ mutants showed reduced colony growth on minimal medium with different nitrogen sources and increased sensitivity to cell wall or high temperature stress. Furthermore, these mutants were impaired in invasive hyphal growth across cellophane membranes and exhibited a marked decrease in virulence, both on tomato plants and on the invertebrate animal host Galleria mellonella. Importantly, invasive hyphal growth in tsc2Δ strains was rescued by rapamycin-mediated inhibition of TORC1. Collectively, these results reveal a key role of TORC1 signalling in the development and pathogenicity of F. oxysporum and suggest new potential targets for controlling fungal infections.
Collapse
Affiliation(s)
- Gesabel Yaneth Navarro‐Velasco
- Departamento de GenéticaUniversidad de CórdobaCórdobaSpain
- Present address:
Centro de Investigación e Información de Medicamentos y Tóxicos, Facultad de MedicinaUniversidad de PanamáPanama CityPanama
| | | | | |
Collapse
|
10
|
Jiao W, Ding W, Rollins JA, Liu J, Zhang Y, Zhang X, Pan H. Cross-Talk and Multiple Control of Target of Rapamycin (TOR) in Sclerotinia sclerotiorum. Microbiol Spectr 2023; 11:e0001323. [PMID: 36943069 PMCID: PMC10100786 DOI: 10.1128/spectrum.00013-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
Sclerotinia sclerotiorum is a necrotrophic phytopathogenic fungus that cross-talks with its hosts for control of cell-death pathways for colonization. Target of rapamycin (TOR) is a central regulator that controls cell growth, intracellular metabolism, and stress responses in a variety of eukaryotes, but little is known about TOR signaling in S. sclerotiorum. In this study, we identified a conserved TOR signaling pathway and characterized SsTOR as a critical component of this pathway. Hyphal growth of S. sclerotiorum was retarded by silencing SsTOR, moreover, sclerotia and compound appressoria formation were severely disrupted. Notably, pathogenicity assays of strains shows that the virulence of the SsTOR-silenced strains were dramatically decreased. SsTOR was determined to participate in cell wall integrity (CWI) by regulating the phosphorylation level of SsSmk3, a core MAP kinase in the CWI pathway. Importantly, the inactivation of SsTOR induced autophagy in S. sclerotiorum potentially through SsAtg1 and SsAtg13. Taken together, our results suggest that SsTOR is a global regulator controlling cell growth, stress responses, cell wall integrity, autophagy, and virulence of S. sclerotiorum. IMPORTANCE TOR is a conserved protein kinase that regulates cell growth and metabolism in response to growth factors and nutrient abundance. Here, we used gene silencing to characterize SsTOR, which is a critical component of TOR signaling pathway. SsTOR-silenced strains have limited mycelium growth, and the virulence of the SsTOR-silenced strains was decreased. Phosphorylation analysis indicated that SsTOR influenced CWI by regulating the phosphorylation level of SsSmk3. Autophagy is essential to preserve cellular homeostasis in response to cellular and environmental stresses. Inactivation of SsTOR induced autophagy in S. sclerotiorum potentially through SsAtg1 and SsAtg13. These findings further indicated that SsTOR is a global regulator of the growth, development, and pathogenicity of S. sclerotiorum in multiple ways.
Collapse
Affiliation(s)
- Wenli Jiao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Weichen Ding
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jeffrey A. Rollins
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
11
|
An H, Gan T, Tang M, Chen H. Molecular Mechanism of Overcoming Host Resistance by the Target of Rapamycin Gene in Leptographium qinlingensis. Microorganisms 2022; 10:microorganisms10030503. [PMID: 35336079 PMCID: PMC8954470 DOI: 10.3390/microorganisms10030503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Leptographium qinlingensis is a fungal symbiont of the Chinese white pine beetle (Dendroctonus armandi) and a pathogen of the Chinese white pine (Pinus armandii) that must overcome the terpenoid oleoresin defenses of host trees to invade and colonize. L. qinlingensis responds to monoterpene flow with abundant mechanisms that include the decomposing and use of these compounds as a nitrogen source. Target of Rapamycin (TOR) is an evolutionarily conserved protein kinase that plays a central role in both plants and animals through integration of nutrients, energies, hormones, growth factors and environmental inputs to control proliferation, growth and metabolism in diverse multicellular organisms. In this study, in order to explore the relationship between TOR gene and carbon sources, nitrogen sources, host nutrients and host volatiles (monoterpenoids) in L. qinlingensis, we set up eight carbon source treatments, ten nitrogen source treatments, two host nutrients and six monoterpenoids (5%, 10% and 20%) treatments, and prepared different media conditions. By measuring the biomass and growth rate of mycelium, the results revealed that, on the whole, the response of L. qinlingensis to nitrogen sources was better than carbon sources, and the fungus grew well in maltose (carbon source), (NH4)2C2O4 (inorganic nitrogen source), asparagine (organic nitrogen source) and P. armandii (host nutrient) versus other treatments. Then, by analyzing the relationship between TOR expression and different nutrients, the data showed that: (i) TOR expression exhibited negative regulation in response to carbon sources and host nutrition. (ii) The treatments of nitrogen sources and terpenoids had positively regulatory effects on TOR gene; moreover, the fungus was most sensitive to β-pinene and 3-carene. In conclusion, our findings reveal that TOR in L. qinlingensis plays a key role in the utilization of host volatiles as nutrient intake, overcoming the physical and chemical host resistances and successful colonization.
Collapse
|
12
|
Li L, Zhu T, Song Y, Feng L, Kear PJ, Riseh RS, Sitohy M, Datla R, Ren M. Salicylic acid fights against Fusarium wilt by inhibiting target of rapamycin signaling pathway in Fusarium oxysporum. J Adv Res 2021; 39:1-13. [PMID: 35777900 PMCID: PMC9263656 DOI: 10.1016/j.jare.2021.10.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 01/04/2023] Open
Abstract
Isolating and sequencing the genome of F. oxysporum from potato tubers with dry rot symptoms. SA efficiently arrests hyphal growth, sporular production and pathogenicity of F. oxysporum. SA inhibits the activity of FoTORC1 via activating FoSNF1 in F. oxysporum. Transgenic potato plants with interference of FoTOR1 and FoSAH1 genes prevent the occurrence of Fusarium wilt. Providing insights SA into controlling various fungal diseases by targeting the SNF1-TORC1 pathway of pathogens.
Introduction Objectives Methods Results Conclusion
Collapse
Affiliation(s)
- Linxuan Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Tingting Zhu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yun Song
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China
| | - Li Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Philip James Kear
- International Potato Center (CIP) China Center Asia Pacific, Beijing 100000, China
| | - Rooallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Raju Datla
- Global Institute for Food Security in Saskatoon, University of Saskatchewan, Saskatoon S7N0W9, Canada
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| |
Collapse
|