1
|
Cui X, Li X, Li S, Huang Y, Liu N, Lian S, Li B, Wang C. Xylanase VmXyl2 is involved in the pathogenicity of Valsa mali by regulating xylanase activity and inducing cell necrosis. FRONTIERS IN PLANT SCIENCE 2024; 15:1342714. [PMID: 38745923 PMCID: PMC11092374 DOI: 10.3389/fpls.2024.1342714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Xylanase plays a key role in degrading plant cell wall during pathogenic fungi infection. Here, we identified a xylanase gene, VmXyl2 from the transcriptome of Valsa mali and examined its function. VmXyl2 has highly elevated transcript levels during the infection process of V. mali, with 15.02-fold increase. Deletion mutants of the gene were generated to investigate the necessity of VmXyl2 in the development and pathogenicity of V. mali. The VmXyl2 deletion mutant considerably reduced the virulence of V. mali in apple leaves and in twigs, accompanied by 41.22% decrease in xylanase activity. In addition, we found that VmXyl2 induces plant cell necrosis regardless of its xylanase activity, whereas promoting the infection of V. mali in apple tissues. The cell death-inducing activity of VmXyl2 dependent on BRI1-associated kinase-1 (BAK1) but not Suppressor of BIR1-1 (SOBIR1). Furthermore, VmXyl2 interacts with Mp2 in vivo, a receptor-like kinase with leucine-rich repeat. The results offer valuable insights into the roles of VmXyl2 in the pathogenicity of V. mali during its infection of apple trees.
Collapse
Affiliation(s)
- Xinyue Cui
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xinke Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shen Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yan Huang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Na Liu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Sen Lian
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Baohua Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Caixia Wang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Wang H, Tian R, Chen Y, Li W, Wei S, Ji Z, Aioub AAA. In vivo and in vitro antifungal activities of five alkaloid compounds isolated from Picrasma quassioides (D. Don) Benn against plant pathogenic fungi. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105246. [PMID: 36464333 DOI: 10.1016/j.pestbp.2022.105246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 06/17/2023]
Abstract
Highly active and novel antifungal compounds are continuously researched from natural products for pesticide development. Picrasma quassioides (D. Don) Benn, a species of Simaroubaceae, is used in traditional Chinese medicine to treat colds and upper respiratory infections. In this study, the active ingredients of P. quassioides and their antifungal activities against plant pathogenic fungi are investigated to explore the practical application of the plant in the agricultural field. The results showed that the extracts of P. quassioides exhibited highly significant preventive and curative effects on apple valsa canker (AVC) with a reduction of lesion diameter were 80.28% and 83.63%, respectively, and can improve the resistance of apple trees to a pathogen. Five antifungal compounds, namely, canthin-6-one (T1), nigakinone (T2), 4,5-dimethoxycanthin-6-one (T3), 1-methoxycarbonyl-β-carboline (T4), and 1-methoxycarbonyl-3-methoxyl-β-carboline (T5), are isolated from P. quassioides using the bioassay-guided method. This is the first report of 1-methoxycarbonyl-3-methoxyl-β-carboline as a natural product. Canthin-6-one shows strong in vitro inhibitory activity against 11 species of plant pathogenic fungi, and their EC50 values range from 1.49 to 8.80 mg/L. The control efficacy of canthin-6-one at 2000 mg/L are 87.88% and 94.37% against AVC and 80.10% and 84.73% against apple anthracnose (C. gloeosporioides), respectively. Additionally, V. mali is observed after treatment with cannin-6-one, although microscopic. This is the first study on the control of the secondary metabolites of P. quassioides against plant fungal diseases. The results show that P. quassioides is a potential resource for the development of botanical fungicides.
Collapse
Affiliation(s)
- Hua Wang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Runze Tian
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yu Chen
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wenqi Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Shaopeng Wei
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Zhiqin Ji
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Provincial Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, PR China.
| | - Ahmed A A Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
3
|
Wu Y, Su X, Lu J, Wu M, Yang SY, Mai Y, Deng W, Xue Y. In Vitro and in Silico Analysis of Phytochemicals From Fallopia dentatoalata as Dual Functional Cholinesterase Inhibitors for the Treatment of Alzheimer’s Disease. Front Pharmacol 2022; 13:905708. [PMID: 35899116 PMCID: PMC9313597 DOI: 10.3389/fphar.2022.905708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
Current studies have found that butyrylcholinesterase (BuChE) replaces the biological function of acetylcholinesterase (AChE) in the late stage of Alzheimer’s disease. Species in the genus of Fallopia, rich in polyphenols with diverse chemical structures and significant biological activities, are considered as an important resource for screening natural products to against AD. In this study, thirty-four compounds (1–34) were isolated from Fallopia dentatoalata (Fr. Schm.) Holub, and their inhibitory effects against AChE and BuChE were assessed. Compounds of the phenylpropanoid sucrose ester class emerged as the most promising members of the group, with 31–33 displaying moderate AChE inhibition (IC50 values ranging from 30.6 ± 4.7 to 56.0 ± 2.4 µM) and 30–34 showing potential inhibitory effects against BuChE (IC50 values ranging from 2.7 ± 1.7 to 17.1 ± 3.4 µM). Tacrine was used as a positive control (IC50: 126.7 ± 1.1 in AChE and 5.5 ± 1.7 nM in BuChE). Kinetic analysis highlighted compounds 31 and 32 as non-competitive inhibitors of AChE with Ki values of ∼30.0 and ∼34.4 µM, whilst 30–34 were revealed to competitively inhibit BuChE with Ki values ranging from ∼1.8 to ∼17.5 µM. Molecular binding studies demonstrated that 30–34 bound to the catalytic sites of BuChE with negative binding energies. The strong agreement between both in vitro and in silico studies highlights the phenylpropanoid sucrose esters 30–34 as promising candidates for use in future anti-cholinesterase therapeutics against Alzheimer’s disease.
Collapse
Affiliation(s)
- Yichuang Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Xiangdong Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jielang Lu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Meifang Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Seo Young Yang
- Department of Pharmaceutical Engineering, Sangji University, Wonju, South Korea
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- *Correspondence: Wenbin Deng, ; Yongbo Xue,
| | - Yongbo Xue
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- *Correspondence: Wenbin Deng, ; Yongbo Xue,
| |
Collapse
|