1
|
Ouyang HB, Wang YP, He MH, Wu EJ, Hu BH, Zhan J, Yang L. Mutations in the signal peptide of effector gene Pi04314 contribute to the adaptive evolution of the Phytophthora infestans. BMC Ecol Evol 2025; 25:21. [PMID: 40082776 PMCID: PMC11907978 DOI: 10.1186/s12862-025-02360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Effectors are critical in the antagonistic interactions between plants and pathogens. However, knowledge of mutation mechanisms and evolutionary processes of effectors remains fragmented despite its importance for the sustainable management of plant diseases. Here, we used a population genetic approach to explore the evolution of the effector gene Pi04314 in Phytophthora infestans, the causal agent of potato blight. RESULTS We found that Pi04314 gene exhibits a low genetic variation generated by point mutations mainly occurring in the signal peptide. Two of the 14 amino acid isoforms completely abolished the secretion functions of signal peptides. The effector is under purifying selection, supported by the comparative analyses between its population differentiation with that of SSR marker loci as well as by negative Tajima's D (-1.578, p = 0.040) and Fu's FS (-10.485, p = 0.000). Furthermore, we found that the nucleotide diversity of Pi04314 is significantly correlated with the annual mean temperature at the collection sites. CONCLUSION These results suggest that the evolution of effector genes could be influenced by local air temperature and signal peptides may contribute to the ecological adaptation of pathogens. The implications of these results for agricultural and natural sustainability are discussed.
Collapse
Affiliation(s)
- Hai-Bing Ouyang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Bioaffiliationersity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yan-Ping Wang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural, Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Meng-Han He
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - E-Jiao Wu
- Institute of Pomology, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Bin-Hong Hu
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Lina Yang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Bioaffiliationersity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
2
|
Qayyum Z, Thomas WJW, Amas JC, Pazos-Navarro M, Batley J. From Recognition to Response: Resistance-Effector Gene Interactions in the Brassica napus and Leptosphaeria maculans Patho-System. PLANTS (BASEL, SWITZERLAND) 2025; 14:390. [PMID: 39942952 PMCID: PMC11821207 DOI: 10.3390/plants14030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025]
Abstract
Blackleg disease, caused by the hemibiotrophic fungal pathogen Leptosphaeria maculans, poses a serious threat to Brassica crops and requires a broad understanding of the plant defence mechanisms. The Brassica. napus-L. maculans pathosystem provides a useful model to understand plant resistance response to hemibiotrophs. This review aims to explain the mechanisms underlying R-Avr interaction, signalling cascades, and the hypersensitive response (HR) produced by B. napus towards L. maculans, causing local cell death that restricts the pathogen to the site of infection. The role of transcription factors is pivotal to the process of HR, coordinating the regulation of genes involved in pathogen recognition and the activation of SA responsive genes and production of secondary metabolites. The R-Avr interaction signalling cascade involves production of reactive oxygen species (ROS), calcium ion influx, Salicylic acid (SA) hormonal signalling and mitogen activated protein kinases (MAPKs), which are critical in the HR in B. napus. The in-depth understanding of molecular signalling pathway of the R-Avr interaction between B. napus-L. maculans pathosystem provides valuable information for future research endeavours regarding enhancing disease resistance in Brassica crops.
Collapse
Affiliation(s)
| | | | | | | | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia; (Z.Q.); (W.J.W.T.); (J.C.A.); (M.P.-N.)
| |
Collapse
|
3
|
Liu JJ, Sniezko RA, Houston S, Alger G, Krakowski J, Schoettle AW, Sissons R, Zamany A, Williams H, Rancourt B, Kegley A. A New Threat to Limber Pine ( Pinus flexilis) Restoration in Alberta and Beyond: First Documentation of a Cronartium ribicola Race ( vcr4) Virulent to Cr4-Controlled Major Gene Resistance. PHYTOPATHOLOGY 2025; 115:44-53. [PMID: 39321129 DOI: 10.1094/phyto-04-24-0129-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The coevolution of virulence reduces the effectiveness of host resistance to pathogens, posing a direct threat to forest species and their key ecosystem functions. This is a threat to limber pine (Pinus flexilis), an endangered species in Canada due to rapid decline mainly driven by white pine blister rust caused by Cronartium ribicola. We present the first report of a new, virulent race of C. ribicola (designated vcr4) that overcomes limber pine major gene (Cr4) resistance (MGR). Field surveys found that three parental trees (pf-503, pf-508, and pf-2015-0070) were cankered with white pine blister rust in Alberta, but their progenies showed MGR-related phenotypic segregation postinoculation with an avirulent race of C. ribicola (Avcr4). Genotyping of their progenies using Cr4-linked DNA markers and a genome-wide association study provided additional support that these cankered parental trees had Cr4-controlled MGR. To confirm the presence of vcr4, aeciospores were collected from the cankered pf-503 tree to inoculate resistant seedlings that had survived prior inoculation using the Avcr4 race, as well as seedlings of two U.S. seed parents, one previously confirmed with MGR (Cr4) and one without MGR, respectively. All inoculated seedlings showed clear stem symptoms, confirming that the virulent race is vcr4. These results provide insights into the evolution of C. ribicola virulence and reinforce caution on deployment of Cr4-controlled MGR. The information will be useful for designing a breeding program for durable resistance by layering both R genes with quantitative trait loci for resistance to white pine blister rust in North America.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada
| | - Richard A Sniezko
- U.S. Department of Agriculture Forest Service, Dorena Genetic Resource Center, 34963 Shoreview Drive, Cottage Grove, OR 97424, U.S.A
| | - Sydney Houston
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada
| | - Genoa Alger
- Parks Canada, Waterton Lakes National Park, Waterton Park, Alberta, T0K 2M0, Canada
| | - Jodie Krakowski
- Independent Consultant, Box 774, Coleman, AB, T0K 0M0, Canada
| | - Anna W Schoettle
- U.S. Department of Agriculture Forest Service, Rocky Mountain Research Station, 240 West Prospect Road, Fort Collins, CO 80526, U.S.A
| | - Robert Sissons
- Parks Canada, Waterton Lakes National Park, Waterton Park, Alberta, T0K 2M0, Canada
| | - Arezoo Zamany
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada
| | - Holly Williams
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada
| | - Benjamin Rancourt
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada
| | - Angelia Kegley
- U.S. Department of Agriculture Forest Service, Dorena Genetic Resource Center, 34963 Shoreview Drive, Cottage Grove, OR 97424, U.S.A
| |
Collapse
|
4
|
Noah JM, Gorse M, Romain C, Gay EJ, Rouxel T, Balesdent M, Soyer JL. To be or not to be a nonhost species: A case study of the Leptosphaeria maculans and Brassica carinata interaction. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70034. [PMID: 39606911 PMCID: PMC11603210 DOI: 10.1111/1758-2229.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
Leptosphaeria maculans is one of the major fungal pathogens on oilseed rape (Brassica napus), causing stem canker disease. The closely related Brassica species B. nigra, B. juncea, and B. carinata display extreme resistance toward stem canker. In this study, we demonstrate the nonhost status of B. carinata toward L. maculans in France through field experiments and inoculations performed in controlled conditions. A few isolates moderately adapted to B. carinata in controlled conditions were recovered in the field on B. nigra leaves, allowing us to investigate the unusual B. carinata-L. maculans interactions using molecular, macroscopic, and microscopic analyses. A cross between a L. maculans isolate adapted to B. napus and an isolate moderately adapted to B. carinata allowed the generation, in the lab, of recombinant L. maculans strains better adapted to B. carinata than the natural parental isolate obtained from B. nigra, and highlighted the polygenic determinism of the adaptation of L. maculans to B. carinata and B. napus. This biological material will allow further investigation of the molecular determinants of the adaptation of L. maculans to nonhost species and elucidate the genetic resistance basis of B. carinata.
Collapse
Affiliation(s)
- Julie M. Noah
- Université Paris‐Saclay, INRAE, UR BIOGERPalaiseauFrance
| | - Mathilde Gorse
- Université Paris‐Saclay, INRAE, UR BIOGERPalaiseauFrance
| | | | - Elise J. Gay
- Université Paris‐Saclay, INRAE, UR BIOGERPalaiseauFrance
| | - Thierry Rouxel
- Université Paris‐Saclay, INRAE, UR BIOGERPalaiseauFrance
| | | | | |
Collapse
|
5
|
Tian M, Zhang L, Li R, Zhang H. Mapping-Based Localization of Blackleg-Resistant Candidate Genes of Chinese Cabbage ( Brassica rapa). PLANT DISEASE 2024; 108:3063-3071. [PMID: 38831591 DOI: 10.1094/pdis-01-24-0194-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Recently, blackleg disease has seriously impacted the cultivation and development of Brassica crops. In this study, we conducted mapping-based localization of blackleg-resistant candidate genes in Chinese cabbage. Through phenotype evaluation, Chinese cabbage materials 15S414 and 15S420 were selected as blackleg-resistant and blackleg-susceptible parents, respectively. Inheritance pattern analysis suggested that the dominant major genes mainly determined the blackleg resistance of Chinese cabbage. Upon bulked segregant analysis, the blackleg-resistant candidate genes were initially located within a 4.3-Mb interval on chromosome A06. Through construction of the genetic linkage map, blackleg-resistant candidate genes were further limited to a region of 160 kb containing seven resistance-related genes. Coding sequence variation analysis revealed that all seven resistance-related genes displayed various degrees of single nucleotide polymorphism variations between the parent materials 15S414 and 15S420.
Collapse
Affiliation(s)
- Min Tian
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lugang Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ru Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huamin Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Vasquez-Teuber P, Rouxel T, Mason AS, Soyer JL. Breeding and management of major resistance genes to stem canker/blackleg in Brassica crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:192. [PMID: 39052130 PMCID: PMC11272824 DOI: 10.1007/s00122-024-04641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/29/2024] [Indexed: 07/27/2024]
Abstract
Blackleg (also known as Phoma or stem canker) is a major, worldwide disease of Brassica crop species, notably B. napus (rapeseed, canola), caused by the ascomycete fungus Leptosphaeria maculans. The outbreak and severity of this disease depend on environmental conditions and management practices, as well as a complex interaction between the pathogen and its hosts. Genetic resistance is a major method to control the disease (and the only control method in some parts of the world, such as continental Europe), but efficient use of genetic resistance is faced with many difficulties: (i) the scarcity of germplasm/genetic resources available, (ii) the different history of use of resistance genes in different parts of the world and the different populations of the fungus the resistance genes are exposed to, (iii) the complexity of the interactions between the plant and the pathogen that expand beyond typical gene-for-gene interactions, (iv) the incredible evolutionary potential of the pathogen and the importance of knowing the molecular processes set up by the fungus to "breakdown' resistances, so that we may design high-throughput diagnostic tools for population surveys, and (v) the different strategies and options to build up the best resistances and to manage them so that they are durable. In this paper, we aim to provide a comprehensive overview of these different points, stressing the differences between the different continents and the current prospects to generate new and durable resistances to blackleg disease.
Collapse
Affiliation(s)
- Paula Vasquez-Teuber
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Department of Plant Production, Faculty of Agronomy, University of Concepción, Av. Vicente Méndez 595, Chillán, Chile
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Thierry Rouxel
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
| | - Jessica L Soyer
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France.
| |
Collapse
|
7
|
Stotz HU, Ali AM, de Lope LR, Rafi MS, Mitrousia GK, Huang YJ, Fitt BDL. Leptosphaeria maculans isolates with variations in AvrLm1 and AvrLm4 effector genes induce differences in defence responses but not in resistance phenotypes in cultivars carrying the Rlm7 gene. PEST MANAGEMENT SCIENCE 2024; 80:2435-2442. [PMID: 36869585 DOI: 10.1002/ps.7432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/16/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The phoma stem canker pathogen Leptosphaeria maculans is one of the most widespread and devastating pathogens of oilseed rape (Brassica napus) in the world. Pathogen colonization is stopped by an interaction of a pathogen Avr effector gene with the corresponding host resistance (R) gene. While molecular mechanisms of this gene-for-gene interaction are being elucidated, understanding of effector function remains limited. The purpose of this study was to determine the action of L. maculans effector (AvrLm) genes on incompatible interactions triggered by B. napus noncorresponding R (Rlm) genes. Specifically, effects of AvrLm4-7 and AvrLm1 on Rlm7-mediated resistance were studied. RESULTS Although there was no major effect on symptom expression, induction of defence genes (e.g. PR1) and accumulation of reactive oxygen species was reduced when B. napus cv. Excel carrying Rlm7 was challenged with a L. maculans isolate containing AvrLm1 and a point mutation in AvrLm4-7 (AvrLm1, avrLm4-AvrLm7) compared to an isolate lacking AvrLm1 (avrLm1, AvrLm4-AvrLm7). AvrLm7-containing isolates, isogenic for presence or absence of AvrLm1, elicited similar symptoms on hosts with or without Rlm7, confirming results obtained with more genetically diverse isolates. CONCLUSION Careful phenotypic examination of isogenic L. maculans isolates and B. napus introgression lines demonstrated a lack of effect of AvrLm1 on Rlm7-mediated resistance despite an apparent alteration of the Rlm7-dependent defence response using more diverse fungal isolates with differences in AvrLm1 and AvrLm4. As deployment of Rlm7 resistance in crop cultivars increases, other effectors need to be monitored because they may alter the predominance of AvrLm7. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Henrik Uwe Stotz
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hertfordshire, UK
| | - Ajisa Muthayil Ali
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hertfordshire, UK
| | - Lucia Robado de Lope
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hertfordshire, UK
| | - Mohammed Sajid Rafi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, PO Box 15551, United Arab Emirates
| | | | - Yong-Ju Huang
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hertfordshire, UK
| | - Bruce David Ledger Fitt
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hertfordshire, UK
| |
Collapse
|
8
|
Balesdent MH, Laval V, Noah JM, Bagot P, Mousseau A, Rouxel T. Large-scale population survey of Leptosphaeria maculans in France highlights both on-going breakdowns and potentially effective resistance genes in oilseed rape. PEST MANAGEMENT SCIENCE 2024; 80:2426-2434. [PMID: 36750403 DOI: 10.1002/ps.7401] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/03/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Leptosphaeria maculans, the cause of stem canker of oilseed rape, develops gene-for-gene interactions with its host and shows a high evolutionary potential to 'break down' novel resistance genes (R, Rlm) deployed in cultivars over large areas. For optimal management of R genes, updated knowledge of the population structure of the pathogen is needed. In France, large-scale surveys have been done at 10-year intervals since 2000. Here we report the characterization of a large L. maculans population collected in France in 2019-2020. RESULTS A total of 844 isolates were collected from 11 sites in ten French departments and were phenotyped for their virulence against nine Brassica napus R genes. All isolates were virulent toward Rlm2 and Rlm9. Very few isolates were avirulent on Rlm1 (1.8%) and Rlm4 (0.6%). Avirulent isolates toward Rlm7 ('AvrLm7') varied from 67% to 11.3%, depending on the site sampled, illustrating the ongoing breakdown of Rlm7. The decrease of AvrLm7 isolates (29.2% at the national level) compared to the 2010 survey (96.5%) was accompanied by an increase of avirulent isolates on Rlm3 (0% in 2010; 54% in 2019-2020). However, virulent isolates on both Rlm3 and Rlm7, previously rarely detected, were found in all sites with a frequency of 17.3%. Finally, most or all isolates were avirulent on Rlm11 (96.1%), LepR2 (RlmS, 99.8%), and Rlm6 (100%), suggesting these three genes still effectively control the disease. CONCLUSION These data will help guide strategies for breeding and deploying resistant oilseed rape varieties against L. maculans in France. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Marie-Hélène Balesdent
- Université Paris-Saclay, INRAE, UR Bioger, 22, Place de l'Agronomie, Palaiseau, 91120, France
| | - Valérie Laval
- Université Paris-Saclay, INRAE, UR Bioger, 22, Place de l'Agronomie, Palaiseau, 91120, France
| | - Julie Marie Noah
- Université Paris-Saclay, INRAE, UR Bioger, 22, Place de l'Agronomie, Palaiseau, 91120, France
| | - Patrick Bagot
- GEVES, Domaine de l'Anjouère, La Pouëze, 49370, Erdre en Anjou, France
| | - Arnaud Mousseau
- GEVES, Domaine de l'Anjouère, La Pouëze, 49370, Erdre en Anjou, France
| | - Thierry Rouxel
- Université Paris-Saclay, INRAE, UR Bioger, 22, Place de l'Agronomie, Palaiseau, 91120, France
| |
Collapse
|
9
|
Clairet C, Gay EJ, Porquier A, Blaise F, Marais CL, Balesdent MH, Rouxel T, Soyer JL, Fudal I. Regulation of effector gene expression as concerted waves in Leptosphaeria maculans: a two-player game. THE NEW PHYTOLOGIST 2024; 242:247-261. [PMID: 38358035 DOI: 10.1111/nph.19581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
Effector genes, encoding molecules involved in disease establishment, are concertedly expressed throughout the lifecycle of plant-pathogenic fungi. However, little is known about how effector gene expression is regulated. Since many effector genes are located in repeat-rich regions, the role of chromatin remodeling in their regulation was recently investigated, notably establishing that the repressive histone modification H3K9me3, deposited by KMT1, was involved in several fungal species including Leptosphaeria maculans. Nevertheless, previous data suggest that a second regulatory layer, probably involving a specific transcription factor (TF), might be required. In L. maculans, a Dothideomycete causing stem canker of oilseed rape, we identified the ortholog of Pf2, a TF belonging to the Zn2Cys6 fungal-specific family, and described as essential for pathogenicity and effector gene expression. We investigated its role together with KMT1, by inactivating and over-expressing LmPf2 in a wild-type strain and a ∆kmt1 mutant. Functional analyses of the corresponding transformants highlighted an essential role of LmPf2 in the establishment of pathogenesis and we found a major effect of LmPf2 on the induction of effector gene expression once KMT1 repression is lifted. Our results show, for the first time, a dual control of effector gene expression.
Collapse
Affiliation(s)
- Colin Clairet
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Elise J Gay
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Antoine Porquier
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Françoise Blaise
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | | | | | - Thierry Rouxel
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Jessica L Soyer
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Isabelle Fudal
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| |
Collapse
|
10
|
Talbi N, Fokkens L, Audran C, Petit‐Houdenot Y, Pouzet C, Blaise F, Gay EJ, Rouxel T, Balesdent M, Rep M, Fudal I. The neighbouring genes AvrLm10A and AvrLm10B are part of a large multigene family of cooperating effector genes conserved in Dothideomycetes and Sordariomycetes. MOLECULAR PLANT PATHOLOGY 2023; 24:914-931. [PMID: 37128172 PMCID: PMC10346447 DOI: 10.1111/mpp.13338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 05/03/2023]
Abstract
Fungal effectors (small-secreted proteins) have long been considered as species or even subpopulation-specific. The increasing availability of high-quality fungal genomes and annotations has allowed the identification of trans-species or trans-genera families of effectors. Two avirulence effectors, AvrLm10A and AvrLm10B, of Leptosphaeria maculans, the fungus causing stem canker of oilseed rape, are members of such a large family of effectors. AvrLm10A and AvrLm10B are neighbouring genes, organized in divergent transcriptional orientation. Sequence searches within the L. maculans genome showed that AvrLm10A/AvrLm10B belong to a multigene family comprising five pairs of genes with a similar tail-to-tail organization. The two genes, in a pair, always had the same expression pattern and two expression profiles were distinguished, associated with the biotrophic colonization of cotyledons and/or petioles and stems. Of the two protein pairs further investigated, AvrLm10A_like1/AvrLm10B_like1 and AvrLm10A_like2/AvrLm10B_like2, the second one had the ability to physically interact, similarly to what was previously described for the AvrLm10A/AvrLm10B pair, and cross-interactions were also detected for two pairs. AvrLm10A homologues were identified in more than 30 Dothideomycete and Sordariomycete plant-pathogenic fungi. One of them, SIX5, is an effector from Fusarium oxysporum f. sp. lycopersici physically interacting with the avirulence effector Avr2. We found that AvrLm10A/SIX5 homologues were associated with at least eight distinct putative effector families, suggesting that AvrLm10A/SIX5 is able to cooperate with different effectors. These results point to a general role of the AvrLm10A/SIX5 proteins as "cooperating proteins", able to interact with diverse families of effectors whose encoding gene is co-regulated with the neighbouring AvrLm10A homologue.
Collapse
Affiliation(s)
- Nacera Talbi
- BIOGER, INRAEUniversité Paris‐SaclayPalaiseauFrance
| | - Like Fokkens
- Molecular Plant PathologyUniversity of AmsterdamAmsterdamNetherlands
- Present address:
Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
| | - Corinne Audran
- UMR LIPMEUniversité de Toulouse, INRAE, CNRSCastanet‐TolosanFrance
| | | | - Cécile Pouzet
- FRAIB‐TRI Imaging Platform Facilities, FR AIBUniversité de Toulouse, CNRSCastanet‐TolosanFrance
| | | | - Elise J. Gay
- BIOGER, INRAEUniversité Paris‐SaclayPalaiseauFrance
| | | | | | - Martijn Rep
- Molecular Plant PathologyUniversity of AmsterdamAmsterdamNetherlands
| | | |
Collapse
|
11
|
Gautier A, Laval V, Faure S, Rouxel T, Balesdent MH. Polymorphism of Avirulence Genes and Adaptation to Brassica Resistance Genes Is Gene-Dependent in the Phytopathogenic Fungus Leptosphaeria maculans. PHYTOPATHOLOGY 2023; 113:1222-1232. [PMID: 36802873 DOI: 10.1094/phyto-12-22-0466-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The fungal phytopathogen Leptosphaeria maculans, which causes stem canker (blackleg) of rapeseed (Brassica napus), is mainly controlled worldwide by genetic resistance, which includes major resistance genes (Rlm). This model is one of those for which the highest number of avirulence genes (AvrLm) has been cloned. In many systems, including the L. maculans-B. napus interaction, intense use of resistance genes exerts strong selection pressure on the corresponding avirulent isolates, and the fungi may rapidly escape resistance through various molecular events which modify the avirulence genes. In the literature, the study of polymorphism at avirulence loci is often focused on single genes under selection pressure. In this study, we investigate allelic polymorphism at 11 avirulence loci in a French population of 89 L. maculans isolates collected on a trap cultivar in four geographic locations in the 2017-2018 cropping season. The corresponding Rlm genes have been (i) used for a long time, (ii) recently used, or (iii) unused in agricultural practice. The sequence data generated indicate an extreme diversity of situations. For example, genes submitted to an ancient selection may have either been deleted in populations (AvrLm1) or replaced by a single-nucleotide mutated virulent version (AvrLm2, AvrLm5-9). Genes that have never been under selection may either be nearly invariant (AvrLm6, AvrLm10A, AvrLm10B), exhibit rare deletions (AvrLm11, AvrLm14), or display a high diversity of alleles and isoforms (AvrLmS-Lep2). These data suggest that the evolutionary trajectory of avirulence/virulence alleles is gene-dependent and independent of selection pressure in L. maculans. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Angélique Gautier
- Université Paris-Saclay, INRAE, UR BIOGER, Bâtiment F, 22 Place de l'Agronomie, CS 80022, 91120 Palaiseau Cedex, France
| | - Valérie Laval
- Université Paris-Saclay, INRAE, UR BIOGER, Bâtiment F, 22 Place de l'Agronomie, CS 80022, 91120 Palaiseau Cedex, France
| | | | - Thierry Rouxel
- Université Paris-Saclay, INRAE, UR BIOGER, Bâtiment F, 22 Place de l'Agronomie, CS 80022, 91120 Palaiseau Cedex, France
| | - Marie-Hélène Balesdent
- Université Paris-Saclay, INRAE, UR BIOGER, Bâtiment F, 22 Place de l'Agronomie, CS 80022, 91120 Palaiseau Cedex, France
| |
Collapse
|
12
|
Borhan MH, Van de Wouw AP, Larkan NJ. Molecular Interactions Between Leptosphaeria maculans and Brassica Species. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:237-257. [PMID: 35576591 DOI: 10.1146/annurev-phyto-021621-120602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Canola is an important oilseed crop, providing food, feed, and fuel around the world. However, blackleg disease, caused by the ascomycete Leptosphaeria maculans, causes significant yield losses annually. With the recent advances in genomic technologies, the understanding of the Brassica napus-L. maculans interaction has rapidly increased, with numerous Avr and R genes cloned, setting this system up as a model organism for studying plant-pathogen associations. Although the B. napus-L. maculans interaction follows Flor's gene-for-gene hypothesis for qualitative resistance, it also puts some unique spins on the interaction. This review discusses the current status of the host-pathogen interaction and highlights some of the future gaps that need addressing moving forward.
Collapse
Affiliation(s)
- M Hossein Borhan
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada;
| | | | - Nicholas J Larkan
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada;
| |
Collapse
|
13
|
Van de Wouw AP, Sheedy EM, Ware AH, Marcroft S, Idnurm A. Independent breakdown events of the Brassica napus Rlm7 resistance gene including via the off-target impact of a dual-specificity avirulence interaction. MOLECULAR PLANT PATHOLOGY 2022; 23:997-1010. [PMID: 35249259 PMCID: PMC9190981 DOI: 10.1111/mpp.13204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/01/2022] [Accepted: 02/15/2022] [Indexed: 05/08/2023]
Abstract
Protection of many crops is achieved through the use of genetic resistance. Leptosphaeria maculans, the causal agent of blackleg disease of Brassica napus, has emerged as a model for understanding gene-for-gene interactions that occur between plants and pathogens. Whilst many of the characterized avirulence effector genes interact with a single resistance gene in the host, the AvrLm4-7 avirulence gene is recognized by two resistance genes, Rlm4 and Rlm7. Here, we report the "breakdown" of the Rlm7 resistance gene in Australia, under two different field conditions. The first, and more typical, breakdown probably resulted from widescale use of Rlm7-containing cultivars whereby selection has led to an increase of individuals in the L. maculans population that have undergone repeat-induced point (RIP) mutations at the AvrLm4-7 locus. This has rendered the AvrLm4-7 gene ineffective and therefore these isolates have become virulent towards both Rlm4 and Rlm7. The second, more atypical, situation was the widescale use of Rlm4 cultivars. Whilst a single-nucleotide polymorphism is the more common mechanism of virulence towards Rlm4, in this field situation, RIP mutations have been selected leading to the breakdown of resistance for both Rlm4 and Rlm7. This is an example of a resistance gene being rendered ineffective without having grown cultivars with the corresponding resistance gene due to the dual specificity of the avirulence gene. These findings highlight the value of pathogen surveillance in the context of expanded knowledge about potential complexities for Avr-R interactions for the deployment of appropriate resistance gene strategies.
Collapse
Affiliation(s)
| | | | | | | | - Alexander Idnurm
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
14
|
Lazar N, Mesarich CH, Petit-Houdenot Y, Talbi N, Li de la Sierra-Gallay I, Zélie E, Blondeau K, Gracy J, Ollivier B, Blaise F, Rouxel T, Balesdent MH, Idnurm A, van Tilbeurgh H, Fudal I. A new family of structurally conserved fungal effectors displays epistatic interactions with plant resistance proteins. PLoS Pathog 2022. [PMID: 35793393 DOI: 10.1101/2020.12.17.423041v1.full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Recognition of a pathogen avirulence (AVR) effector protein by a cognate plant resistance (R) protein triggers a set of immune responses that render the plant resistant. Pathogens can escape this so-called Effector-Triggered Immunity (ETI) by different mechanisms including the deletion or loss-of-function mutation of the AVR gene, the incorporation of point mutations that allow recognition to be evaded while maintaining virulence function, and the acquisition of new effectors that suppress AVR recognition. The Dothideomycete Leptosphaeria maculans, causal agent of oilseed rape stem canker, is one of the few fungal pathogens where suppression of ETI by an AVR effector has been demonstrated. Indeed, AvrLm4-7 suppresses Rlm3- and Rlm9-mediated resistance triggered by AvrLm3 and AvrLm5-9, respectively. The presence of AvrLm4-7 does not impede AvrLm3 and AvrLm5-9 expression, and the three AVR proteins do not appear to physically interact. To decipher the epistatic interaction between these L. maculans AVR effectors, we determined the crystal structure of AvrLm5-9 and obtained a 3D model of AvrLm3, based on the crystal structure of Ecp11-1, a homologous AVR effector candidate from Fulvia fulva. Despite a lack of sequence similarity, AvrLm5-9 and AvrLm3 are structural analogues of AvrLm4-7 (structure previously characterized). Structure-informed sequence database searches identified a larger number of putative structural analogues among L. maculans effector candidates, including the AVR effector AvrLmS-Lep2, all produced during the early stages of oilseed rape infection, as well as among effector candidates from other phytopathogenic fungi. These structural analogues are named LARS (for Leptosphaeria AviRulence and Suppressing) effectors. Remarkably, transformants of L. maculans expressing one of these structural analogues, Ecp11-1, triggered oilseed rape immunity in several genotypes carrying Rlm3. Furthermore, this resistance could be suppressed by AvrLm4-7. These results suggest that Ecp11-1 shares a common activity with AvrLm3 within the host plant which is detected by Rlm3, or that the Ecp11-1 structure is sufficiently close to that of AvrLm3 to be recognized by Rlm3.
Collapse
Affiliation(s)
- Noureddine Lazar
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Carl H Mesarich
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | | | - Nacera Talbi
- Université Paris-Saclay, INRAE, UR BIOGER, Thiverval-Grignon, France
| | - Ines Li de la Sierra-Gallay
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Emilie Zélie
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Karine Blondeau
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Jérôme Gracy
- CNRS UMR 5048, INSERM U1054, Centre de Biochimie Structurale, Université Montpellier, Montpellier, France
| | | | - Françoise Blaise
- Université Paris-Saclay, INRAE, UR BIOGER, Thiverval-Grignon, France
| | - Thierry Rouxel
- Université Paris-Saclay, INRAE, UR BIOGER, Thiverval-Grignon, France
| | | | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Herman van Tilbeurgh
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Isabelle Fudal
- Université Paris-Saclay, INRAE, UR BIOGER, Thiverval-Grignon, France
| |
Collapse
|
15
|
Lazar N, Mesarich CH, Petit-Houdenot Y, Talbi N, Li de la Sierra-Gallay I, Zélie E, Blondeau K, Gracy J, Ollivier B, Blaise F, Rouxel T, Balesdent MH, Idnurm A, van Tilbeurgh H, Fudal I. A new family of structurally conserved fungal effectors displays epistatic interactions with plant resistance proteins. PLoS Pathog 2022; 18:e1010664. [PMID: 35793393 PMCID: PMC9292093 DOI: 10.1371/journal.ppat.1010664] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/18/2022] [Accepted: 06/10/2022] [Indexed: 12/31/2022] Open
Abstract
Recognition of a pathogen avirulence (AVR) effector protein by a cognate plant resistance (R) protein triggers a set of immune responses that render the plant resistant. Pathogens can escape this so-called Effector-Triggered Immunity (ETI) by different mechanisms including the deletion or loss-of-function mutation of the AVR gene, the incorporation of point mutations that allow recognition to be evaded while maintaining virulence function, and the acquisition of new effectors that suppress AVR recognition. The Dothideomycete Leptosphaeria maculans, causal agent of oilseed rape stem canker, is one of the few fungal pathogens where suppression of ETI by an AVR effector has been demonstrated. Indeed, AvrLm4-7 suppresses Rlm3- and Rlm9-mediated resistance triggered by AvrLm3 and AvrLm5-9, respectively. The presence of AvrLm4-7 does not impede AvrLm3 and AvrLm5-9 expression, and the three AVR proteins do not appear to physically interact. To decipher the epistatic interaction between these L. maculans AVR effectors, we determined the crystal structure of AvrLm5-9 and obtained a 3D model of AvrLm3, based on the crystal structure of Ecp11-1, a homologous AVR effector candidate from Fulvia fulva. Despite a lack of sequence similarity, AvrLm5-9 and AvrLm3 are structural analogues of AvrLm4-7 (structure previously characterized). Structure-informed sequence database searches identified a larger number of putative structural analogues among L. maculans effector candidates, including the AVR effector AvrLmS-Lep2, all produced during the early stages of oilseed rape infection, as well as among effector candidates from other phytopathogenic fungi. These structural analogues are named LARS (for Leptosphaeria AviRulence and Suppressing) effectors. Remarkably, transformants of L. maculans expressing one of these structural analogues, Ecp11-1, triggered oilseed rape immunity in several genotypes carrying Rlm3. Furthermore, this resistance could be suppressed by AvrLm4-7. These results suggest that Ecp11-1 shares a common activity with AvrLm3 within the host plant which is detected by Rlm3, or that the Ecp11-1 structure is sufficiently close to that of AvrLm3 to be recognized by Rlm3.
Collapse
Affiliation(s)
- Noureddine Lazar
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Carl H. Mesarich
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | | | - Nacera Talbi
- Université Paris-Saclay, INRAE, UR BIOGER, Thiverval-Grignon, France
| | - Ines Li de la Sierra-Gallay
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Emilie Zélie
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Karine Blondeau
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Jérôme Gracy
- CNRS UMR 5048, INSERM U1054, Centre de Biochimie Structurale, Université Montpellier, Montpellier, France
| | | | - Françoise Blaise
- Université Paris-Saclay, INRAE, UR BIOGER, Thiverval-Grignon, France
| | - Thierry Rouxel
- Université Paris-Saclay, INRAE, UR BIOGER, Thiverval-Grignon, France
| | | | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Herman van Tilbeurgh
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Isabelle Fudal
- Université Paris-Saclay, INRAE, UR BIOGER, Thiverval-Grignon, France
| |
Collapse
|
16
|
Xiang Neik T, Ghanbarnia K, Ollivier B, Scheben A, Severn‐Ellis A, Larkan NJ, Haddadi P, Fernando DWG, Rouxel T, Batley J, Borhan HM, Balesdent M. Two independent approaches converge to the cloning of a new Leptosphaeria maculans avirulence effector gene, AvrLmS-Lep2. MOLECULAR PLANT PATHOLOGY 2022; 23:733-748. [PMID: 35239989 PMCID: PMC8995059 DOI: 10.1111/mpp.13194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 05/10/2023]
Abstract
Brassica napus (oilseed rape, canola) seedling resistance to Leptosphaeria maculans, the causal agent of blackleg (stem canker) disease, follows a gene-for-gene relationship. The avirulence genes AvrLmS and AvrLep2 were described to be perceived by the resistance genes RlmS and LepR2, respectively, present in B. napus 'Surpass 400'. Here we report cloning of AvrLmS and AvrLep2 using two independent methods. AvrLmS was cloned using combined in vitro crossing between avirulent and virulent isolates with sequencing of DNA bulks from avirulent or virulent progeny (bulked segregant sequencing). AvrLep2 was cloned using a biparental cross of avirulent and virulent L. maculans isolates and a classical map-based cloning approach. Taking these two approaches independently, we found that AvrLmS and AvrLep2 are the same gene. Complementation of virulent isolates with this gene confirmed its role in inducing resistance on Surpass 400, Topas-LepR2, and an RlmS-line. The gene, renamed AvrLmS-Lep2, encodes a small cysteine-rich protein of unknown function with an N-terminal secretory signal peptide, which is a common feature of the majority of effectors from extracellular fungal plant pathogens. The AvrLmS-Lep2/LepR2 interaction phenotype was found to vary from a typical hypersensitive response through intermediate resistance sometimes towards susceptibility, depending on the inoculation conditions. AvrLmS-Lep2 was nevertheless sufficient to significantly slow the systemic growth of the pathogen and reduce the stem lesion size on plant genotypes with LepR2, indicating the potential efficiency of this resistance to control the disease in the field.
Collapse
Affiliation(s)
- Ting Xiang Neik
- School of Biological SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Kaveh Ghanbarnia
- Agriculture and Agri‐Food CanadaSaskatoon Research CenterSaskatoonSaskatchewanCanada
- Department of Plant SciencesUniversity of ManitobaWinnipegManitobaCanada
| | | | - Armin Scheben
- School of Biological SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
- Simons Center for Quantitative Biology, Cold Spring Harbor LaboratoryCold Spring HarborNew YorkUSA
| | - Anita Severn‐Ellis
- School of Biological SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Nicholas J. Larkan
- Agriculture and Agri‐Food CanadaSaskatoon Research CenterSaskatoonSaskatchewanCanada
- Armatus Genetics Inc.SaskatoonSaskatchewanCanada
| | - Parham Haddadi
- Agriculture and Agri‐Food CanadaSaskatoon Research CenterSaskatoonSaskatchewanCanada
| | | | - Thierry Rouxel
- Université Paris‐SaclayINRAEUR BIOGERThiverval‐GrignonFrance
| | - Jacqueline Batley
- School of Biological SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Hossein M. Borhan
- Agriculture and Agri‐Food CanadaSaskatoon Research CenterSaskatoonSaskatchewanCanada
| | | |
Collapse
|
17
|
Sperschneider J, Dodds PN. EffectorP 3.0: Prediction of Apoplastic and Cytoplasmic Effectors in Fungi and Oomycetes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:146-156. [PMID: 34698534 DOI: 10.1094/mpmi-08-21-0201-r] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Many fungi and oomycete species are devasting plant pathogens. These eukaryotic filamentous pathogens secrete effector proteins to facilitate plant infection. Fungi and oomycete pathogens have diverse infection strategies and their effectors generally do not share sequence homology. However, they occupy similar host environments, either the plant apoplast or plant cytoplasm, and, therefore, may share some unifying properties based on the requirements of these host compartments. Here, we exploit these biological signals and present the first classifier (EffectorP 3.0) that uses two machine-learning models: one trained on apoplastic effectors and one trained on cytoplasmic effectors. EffectorP 3.0 accurately predicts known apoplastic and cytoplasmic effectors in fungal and oomycete secretomes with low estimated false-positive rates of 3 and 8%, respectively. Cytoplasmic effectors have a higher proportion of positively charged amino acids, whereas apoplastic effectors are enriched for cysteine residues. The combination of fungal and oomycete effectors in training leads to a higher number of predicted cytoplasmic effectors in biotrophic fungi. EffectorP 3.0 expands predicted effector repertoires beyond small, cysteine-rich secreted proteins in fungi and RxLR-motif containing secreted proteins in oomycetes. We show that signal peptide prediction is essential for accurate effector prediction, because EffectorP 3.0 recognizes a cytoplasmic signal also in intracellular, nonsecreted proteins.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Canberra, Australia
| | - Peter N Dodds
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, Canberra, Australia
| |
Collapse
|