1
|
Su ZL, Li AM, Wang M, Qin CX, Pan YQ, Liao F, Chen ZL, Zhang BQ, Cai WG, Huang DL. The Role of AP2/ERF Transcription Factors in Plant Responses to Biotic Stress. Int J Mol Sci 2025; 26:4921. [PMID: 40430060 PMCID: PMC12112388 DOI: 10.3390/ijms26104921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/06/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
The APETALA2/ethylene response factor (AP2/ERF) family of transcription factors (TFs) is one of the largest and most important TF families in plants. This family plays a crucial role in regulating growth, development, and responses to both biotic and abiotic stresses. This study provides a comprehensive overview of the structure, classification, and distribution of AP2/ERF TFs in various plant species, with particular emphasis on their roles in responses to biotic stress. These findings provide valuable insights for future research on AP2/ERF TFs and their potential applications in crop improvement through molecular breeding.
Collapse
Affiliation(s)
- Ze-Lin Su
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Ao-Mei Li
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Miao Wang
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Cui-Xian Qin
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - You-Qiang Pan
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Fen Liao
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zhong-Liang Chen
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Bao-Qing Zhang
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wen-Guo Cai
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Dong-Liang Huang
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
2
|
Ma H, Li C, Li S, Zhao Y, Ma W, Wang R, Guo N, Yao W, Yin X. Deciphering Grape Berry Peel Resistance to Botrytis cinerea: A Transcriptomic and Metabolomic Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11435-11451. [PMID: 40262121 DOI: 10.1021/acs.jafc.4c12810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The fruit peel serves as the frontline defense of grapes against pathogens like Botrytis cinerea, yet its defense mechanisms remain poorly understood. This study reveals novel resistance mechanisms underlying peel immunity through comparative transcriptomic and metabolomic analysis of Vitis amurensis "Bei Binghong" (BH) and V. vinifera "Red Globe" (RG). The analysis identified 1277 differentially expressed genes (DEGs) and 38 differentially accumulated metabolites (DAMs), primarily associated with secondary metabolic processes and plant hormone signaling pathways. Weighted gene coexpression network analysis (WGCNA) uncovered three key modules and several novel hub genes. Crucially, transcriptomic profiling identified VaWRKY20 as a central regulator. Postinfection, upregulated genes and metabolites were involved in salicylic acid (SA), lignin, and stilbene biosynthesis in BH, as well as enhanced resistance through overexpression of VaWRKY20. A conceptual model for V. amurensis defense against B. cinerea was proposed, providing novel insights into grapevine defense mechanisms.
Collapse
Affiliation(s)
- Hongyi Ma
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Chengnan Li
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Shan Li
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Yulei Zhao
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Wenling Ma
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Rui Wang
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Ningning Guo
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Wenkong Yao
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Xiao Yin
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
3
|
Wang L, Tian J, Duan R, Feng Y, Xie Q, Lu W, Duan D. The transcription factor bHLH77 promotes the expression of stilbene synthase gene family member STS48 and stilbene biosynthesis by stabilizing MYB15 in Vitis quinquangularis. Int J Biol Macromol 2025; 310:143327. [PMID: 40268022 DOI: 10.1016/j.ijbiomac.2025.143327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
Stilbenes are crucial phytoalexins in plants that can protect against pathogenic invasions. Grapevines, in particular, contain significant amounts of stilbenes. The stilbene synthase (STS) genes have been shown to facilitate the accumulation of these stilbenes. MYB15, a v-myb avian myeloblastosis viral oncogene homolog (MYB) transcription factors (TFs) from grapevine, has been identified as a positive regulator of stilbene synthesis by activating the promoter of STS48, thereby enhancing plant's resistance to biotic and abiotic stresses. MYB TFs have been demonstrated to play diverse roles in plant growth and development through interacting with basic helix-loop-helix (bHLH) TFs. In the present study, we discovered the interaction between VqbHLH77 and VqMYB15 through Y2H screening from Vitis quinquangularis (V. quinquangularis), and the confirmation of this interaction was achieved using Y2H, BiFC, Pull-down and split-luciferase assays. Additionally, transient expression of VqbHLH77 and VqMYB15 in grape leaves revealed that their co-expression significantly increased the expression of VqSTS48 and the accumulation of stilbenes. More importantly, VqbHLH77 was shown to directly enhance the protein stability of VqMYB15. Heterologous expression of VqbHLH77, VqMYB15, and VqSTS48 in Arabidopsis significantly enhanced its resistance to Pst DC3000. Further we found that VqbHLH77 confers resistance to Pst DC3000 in Arabidopsis by activating the salicylic acid (SA) and jasmonic acid (JA) signaling pathways.
Collapse
Affiliation(s)
- Linxia Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Jingwen Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Ruiwei Duan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yang Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Qingqing Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Wenjing Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Dong Duan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
4
|
Wang Y, Lv Y, Han T, Liu Y, Jiang Y. Post-Harvest Quality Changes and Molecular Responses of Epidermal Wax in 'Munage' Grapes with Botrytis cinerea Infection. Int J Mol Sci 2025; 26:3468. [PMID: 40331966 PMCID: PMC12026965 DOI: 10.3390/ijms26083468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 05/08/2025] Open
Abstract
This study aimed to investigate the impact of Botrytis cinerea (B. cinerea) on the post-harvest quality of 'Munage' grapes and their molecular mechanism. The results showed that B. cinerea significantly reduced the post-harvest quality of 'Munage' grapes, which was manifested by an increase in incidence and rot rate, a significant increase in weight loss rate and fruit color difference, and a significant decrease in fruit firmness. In addition, B. cinerea infection significantly changed the reactive oxygen species and antioxidant enzyme activities of 'Munage' grapes, including increasing the H2O2 content and O2- generation rate as well as changing the superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), and peroxidase (POD) activities. B. cinerea also significantly changed the wax structure and content of 'Munage' grapes, causing the wax to completely dissolve and disappear and reducing the relative content of wax components. Through RNA-seq analysis, it was found that after B. cinerea infection, 49 differentially expressed genes (DEGs) related to fatty acid synthesis, extension, cutin and wax synthesis, and wax transport showed up-regulation or down-regulation, and 12 different transcription factors (TFs) also showed significant differential expression. These TFs were correlated with DEGs related to wax synthesis and metabolism, indicating that they may play an important role in the epidermal wax changes in 'Munage' grapes caused by B. cinerea. This study revealed the impact of B. cinerea on the post-harvest quality of 'Munage' grapes and their molecular mechanism and provided a scientific basis for grape disease prevention and quality maintenance.
Collapse
Affiliation(s)
- Yu Wang
- College of Smart Agriculture (Research Institute), Xinjiang University, Urumqi 830046, China;
| | - Yunhao Lv
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (Y.L.); (T.H.)
| | - Tong Han
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (Y.L.); (T.H.)
| | - Yidong Liu
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (Y.L.); (T.H.)
| | - Ying Jiang
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (Y.L.); (T.H.)
| |
Collapse
|
5
|
Zhou RY, Qu JY, Niu HP, Lai L, Yuan PG, Wang YT, Yang N, Wang XH, Xi ZM, Wang XF. VvATG18a participates in grape resistance to gray mold induced by BR signaling pathway. Int J Biol Macromol 2025; 297:139877. [PMID: 39814277 DOI: 10.1016/j.ijbiomac.2025.139877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Autophagy plays an important role in responding to necrotrophic pathogens and plant signal hormones. Brassinosteroids (BRs) are a class of natural steroidal phytohormones that effectively regulated the disease resistance responses in grape. However, the molecular mechanism of BR-autophagy networks responsible for activation of host defense against gray mold remained to be elucidated. We reported a novel defense mechanism that BR-regulated autophagy in grape berry against gray mold. Exogenous application of 24-epibrassinolide (eBR) enhanced the grape disease resistance. Meanwhile, the endogenous BR was accumulated and BR signaling pathway was activated in the berries. In addition, transcriptome analysis in eBR-treated grapes infected with gray mold showed that the differentially expressed genes (DEGs) were enriched in the metabolic pathway of BR signaling pathway and autophagy. DNA affinity purification sequencing (Dap-seq), Yeast one-hybrid assay (Y1H) and dual luciferase assays (LUC) verified VvBZR1 bound to the promoter of VvATG18a to induce its gene expression. Overexpressing VvATG18a and VvBZR1 improved the resistance of grapes to gray mold. Overall, this study sheds light on the immune mechanisms underlying the involvement of the autophagy in grape innate immunity, highlighting the pivotal role of VvATG18a in enhancing disease resistance.
Collapse
Affiliation(s)
- Run-Yu Zhou
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia-Yan Qu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui-Ping Niu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Lai
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pei-Guo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA
| | - Yu-Ting Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ni Yang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xian-Hang Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhu-Mei Xi
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xue-Fei Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Gao L, Zhai Y, Wu J, Li Y, Fan Y, Guo J, Wang X, Li Z. Antifungal activity and active compound identification of Myrothecium spp. against grape anthracnose and gray mold. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106285. [PMID: 40015876 DOI: 10.1016/j.pestbp.2024.106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/25/2024] [Accepted: 12/31/2024] [Indexed: 03/01/2025]
Abstract
Grape anthracnose and gray mold, caused by Elsinoë ampelina and Botrytis cinerea, are devastating fungal diseases resulting in remarkable loss to grapevine production. In this study, the biological control potential of three strains of Myrothecium spp. against E. ampelina and B. cinerea was investigated. The hypha and culture filtrate of Myrothecium spp. exhibited an antifungal activity against E. ampelina. M. cinctum, M. roridum, and Albifimbria verrucaria exhibited biocontrol efficacy of 62.82 %, 80.26 %, and 89.58 % for grape anthracnose in V. vinifera 'Thompson seedless' leaves at 6 days post-inoculation (dpi), respectively. Furthermore, A. verrucaria significantly reduced the disease index of gray mold by 41.56 % and 49.38 % in V. vinifera 'Thompson seedless' leaves at 4 dpi. The relative biomass of B. cinerea was significantly decreased after treatment with culture filtrate of A. verrucaria in berries at 2 and 4 dpi. Combining the inhibition assay of the conidial germination of B. cinerea, the active compounds of A. verrucaria were purified using column chromatography, thin-layer chromatography, and high-performance liquid chromatography. One active compound was identified as verrucarin A by nuclear magnetic resonance. Verrucarin A remarkably inhibited the mycelial growth of E. ampelina, Botrytis cinerea, and Coniella vitis at concentrations of 20 μg/mL. The disease incidence of gray mold was significantly reduced by 10.49 % in V. vinifera 'Red Globe' berries after treatment with verrucarin A at 5 dpi compared with control, and the biocontrol efficacy reached 66.22 %. This study demonstrates that Myrothecium spp. could be developed as an effective biocontrol agent against grape anthracnose and gray mold.
Collapse
Affiliation(s)
- Linlin Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yijie Zhai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiajia Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuwei Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanchun Fan
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junqiang Guo
- Yangling Vocational & Technical College, Yangling, Shaanxi 712100, China
| | - Xiping Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhi Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Maggiolini FAM, Prencipe A, Bergamini C, Marsico AD, Vendemia M, Santamaria M, Giannandrea MA, D’Amico M, Forleo LR, Perniola R, Velasco R, Cardone MF. A Comparative Transcriptomic Study Reveals Temporal and Genotype-Specific Defense Responses to Botrytis cinerea in Grapevine. J Fungi (Basel) 2025; 11:124. [PMID: 39997418 PMCID: PMC11856255 DOI: 10.3390/jof11020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Grapevine (Vitis vinifera L.), a globally significant crop, is highly susceptible to Botrytis cinerea, the causative agent of gray mold disease. This study investigates transcriptomic responses to B. cinerea in tolerant and susceptible grapevine genotypes using RNA sequencing (RNA-seq). Differentially expressed genes (DEGs) were identified at three time points (T1, T2, T3), highlighting both genotype-independent and genotype-specific responses. Early-stage infection (T1) revealed rapid and robust activation of defense pathways in both genotypes, though the tolerant genotype showed enhanced modulation of metabolic processes by T2, prioritizing secondary metabolism and stress adaptation over growth. In contrast, the susceptible genotype exhibited less coordinated metabolic reprogramming, with delayed or weaker activation of key defense mechanisms. Gene Ontology and KEGG analyses identified critical pathways, including phenylpropanoid biosynthesis-like lignin metabolism, MAPK signaling, as well as candidate genes such as WRKY transcription factors and enzymes involved in cell wall fortification and antifungal compound biosynthesis. Genotype-specific responses emphasized metabolic flexibility as a determinant of resistance, with the tolerant genotype exhibiting superior resource allocation to defense pathways. These findings provide insights into the molecular basis of grapevine resistance to B. cinerea, offering potential targets for breeding or genetic engineering to enhance resilience and reduce fungicide dependency.
Collapse
Affiliation(s)
- Flavia Angela Maria Maggiolini
- Council for Agricultural Research and Economics—Research Center Viticulture and Enology (CREA-VE), 8 Via Casamassima 148, 70010 Turi, Italy
| | - Annalisa Prencipe
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Carlo Bergamini
- Council for Agricultural Research and Economics—Research Center Viticulture and Enology (CREA-VE), 8 Via Casamassima 148, 70010 Turi, Italy
| | - Antonio Domenico Marsico
- Council for Agricultural Research and Economics—Research Center Viticulture and Enology (CREA-VE), 8 Via Casamassima 148, 70010 Turi, Italy
| | - Marco Vendemia
- Council for Agricultural Research and Economics—Research Center Viticulture and Enology (CREA-VE), 8 Via Casamassima 148, 70010 Turi, Italy
| | - Marika Santamaria
- Council for Agricultural Research and Economics—Research Center Viticulture and Enology (CREA-VE), 8 Via Casamassima 148, 70010 Turi, Italy
| | - Maria Angela Giannandrea
- Council for Agricultural Research and Economics—Research Center Viticulture and Enology (CREA-VE), 8 Via Casamassima 148, 70010 Turi, Italy
| | - Margherita D’Amico
- Council for Agricultural Research and Economics—Research Center Viticulture and Enology (CREA-VE), 8 Via Casamassima 148, 70010 Turi, Italy
| | - Lucia Rosaria Forleo
- Council for Agricultural Research and Economics—Research Center Viticulture and Enology (CREA-VE), 8 Via Casamassima 148, 70010 Turi, Italy
| | - Rocco Perniola
- Council for Agricultural Research and Economics—Research Center Viticulture and Enology (CREA-VE), 8 Via Casamassima 148, 70010 Turi, Italy
| | - Riccardo Velasco
- Council for Agricultural Research and Economics—Research Center Viticulture and Enology (CREA-VE), 8 Via Casamassima 148, 70010 Turi, Italy
| | - Maria Francesca Cardone
- Council for Agricultural Research and Economics—Research Center Viticulture and Enology (CREA-VE), 8 Via Casamassima 148, 70010 Turi, Italy
| |
Collapse
|
8
|
Li Y, Ma X, Xiao LD, Yu YN, Gong ZH. CaWRKY20 Negatively Regulates Plant Resistance to Colletotrichum scovillei in Pepper. PLANT, CELL & ENVIRONMENT 2025; 48:1514-1534. [PMID: 39462903 DOI: 10.1111/pce.15205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/09/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024]
Abstract
Chili anthracnose, a fungal disease caused by Colletotrichum scovillei, is among the most devastating diseases affecting pepper (Capsicum annuum L.). Although WRKY transcription factors play important roles in plant immunity, it is unknown how WRKY gene family members contribute to pepper plant resistance to C. scovillei. Here, CaWRKY20 was found to negatively regulate pepper resistance to C. scovillei, which was demonstrated by virus-induced gene silencing and transient overexpression in pepper. Moreover, overexpression of CaWRKY20 enhanced susceptibility to C. scovillei in tomato. Additionally, our findings demonstrated that CaWRKY20 can indirectly regulate the expression of salicylic acid (SA)-related defense genes (CaPR1, CaPR10 and CaSAR8.2) as well as reactive oxygen species (ROS)-scavenging enzyme genes (CaCAT, CaPOD and CaSOD) in response to C. scovillei. In addition, CaWRKY20 was found to interact with CaMIEL1 in the nucleus to regulate the defense response to C. scovillei in pepper. Furthermore, CaWRKY20 directly bound to the W-box in the promoter of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (CaSARD1) and suppressed its expression, resulting in reduced resistance to C. scovillei. These results will clarify the mechanism by which WRKY transcription factors are involved in pepper disease resistance and can thus facilitate molecular breeding for anthracnose-resistant varieties.
Collapse
Affiliation(s)
- Yang Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin, People's Republic of China
| | - Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Luo-Dan Xiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Yibin Research Institute of Tea Industry, Yibin, People's Republic of China
| | - Ya-Nan Yu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
9
|
Lv K, Xie Y, Yu Q, Zhang N, Zheng Q, Wu J, Zhang J, Li J, Zhao H, Xu W. Amur Grape VaMYB4a-VaERF054-Like Module Regulates Cold Tolerance Through a Regulatory Feedback Loop. PLANT, CELL & ENVIRONMENT 2025; 48:1130-1148. [PMID: 39412230 DOI: 10.1111/pce.15196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 01/04/2025]
Abstract
Cold stress can limit the growth and development of grapevines, which can ultimately reduce productivity. However, the mechanisms by which grapevines respond to cold stress are not yet fully understood. Here, we characterized an APETALA2/ethylene response factor (AP2/ERF) which was shown to be a target gene of our previously identified VaMYB4a from Amur grape. We further investigated the molecular interactions between VaMYB4a and VaERF054-like transcription factors in grapes and their role in cold stress tolerance. Our results demonstrated that VaMYB4a directly binds to and activates the VaERF054-like gene promoter, leading to its enhanced expression. Moreover, we also explored the influence of ethylene precursors and inhibitors on VaERF054-like expression and grape cold tolerance. Our findings indicate that VaERF054-like contribute to cold tolerance in grapes through modulation of the ethylene pathway and the CBF signal pathway. Overexpression of VaERF054-like in Vitis vinifera 'Chardonnay' calli and transgenic grape lines resulted in increased freezing stress tolerance, confirming its role in the cold stress response. We further confirmed the interaction between VaMYB4a and VaERF054-like in vivo and in vitro. The co-transformation of VaMYB4a and VaERF054-like in grape calli demonstrates a synergistic interaction, enhancing the cold tolerance through a regulatory feedback mechanism. Our finding provides new insights into grape cold tolerance mechanisms, potentially contributing to the development of cold-resistant grape varieties.
Collapse
Affiliation(s)
- Kai Lv
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Yaping Xie
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Qinhan Yu
- School of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Ningbo Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan, China
| | - Qiaoling Zheng
- School of Life Science, Ningxia University, Yinchuan, Ningxia, China
| | - Jieping Wu
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Junxia Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Junduo Li
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Huixian Zhao
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
| | - Weirong Xu
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia, China
- School of Life Science, Ningxia University, Yinchuan, Ningxia, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan, China
| |
Collapse
|
10
|
Li Z, Wu R, Guo F, Wang Y, Nick P, Wang X. Advances in the molecular mechanism of grapevine resistance to fungal diseases. MOLECULAR HORTICULTURE 2025; 5:1. [PMID: 39743511 DOI: 10.1186/s43897-024-00119-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/14/2024] [Indexed: 01/04/2025]
Abstract
Grapevine is an important economic fruit tree worldwide, but grape production has been plagued by a vast number of fungal diseases, which affect tree vigor and the quality and yield of berries. To seek remedies for such issues, researchers have always been committed to conventional and biotechnological breeding. In recent years, increasing progress has been made in elucidating the molecular mechanisms of grape-pathogenic fungi interactions and resistance regulation. Here, we summarize the current knowledge on the molecular basis of grapevine resistance to fungal diseases, including fungal effector-mediated susceptibility and resistance, resistant regulatory networks in grapevine, innovative approaches of genetic transformation, and strategies to improve grape resistance. Understanding the molecular basis is important for exploring and accurately regulating grape resistance to fungal diseases.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Ronghui Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fangying Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuejin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Xiping Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
11
|
Shu W, Yuan J, Zhang J, Wang S, Ba Q, Li G, Zhang G. The stripe rust effector Pst3180.3 inhibits the transcriptional activity of TaMYB4L to modulate wheat immunity and analyzes the key active sites of the interaction conformation. Int J Biol Macromol 2024; 280:135584. [PMID: 39270915 DOI: 10.1016/j.ijbiomac.2024.135584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Puccinia striiformis f. sp. tritici (Pst) has a wide range and serious damage, which severely threatens global wheat production. In this study, we focused on an effector protein Pst3180.3, which was induced to be highly expressed during the Pst infection stage. The N-terminal 19 amino acid of Pst3180.3 was verified to function as a signal peptide and transferred to cytoplasm and nucleus of wheat following Pst infection. Transient overexpression of Pst3180.3 in Nicotiana benthamiana inhibited programmed cell death triggered via BAX. The instantaneous silencing of Pst3180.3 by BSMV- HIGS significantly reduced the number of uredinia and increased accumulation of reactive oxygen species. Those results indicated that Pst3180.3 is an important pathogenic factor of Pst. Interaction of Pst3180.3 with a transcription factor TaMYB4L in host was confirmed through yeast two-hybrid, luciferase complementation, and co-immunoprecipitation. Virus-induced gene silencing of TaMYB4L weakened the resistance to Pst, indicated that TaMYB4L may be involved in the positive regulation of plant immunity. Dual-luciferase assays revealed that Pst3180.3 inhibited the transcriptional activity of TaMYB4L. Meanwhile, molecular docking analysis identified the key residue sites for the interaction and binding between Pst3180.3 and MYB4L. Those results demonstrated that Pst3180.3 binds to TaMYB4L and interacts to inhibit wheat resistance to Pst infection.
Collapse
Affiliation(s)
- Weixue Shu
- College of Life Science, Huaibei Normal University, Anhui Key Laboratory of Plant Resources and Biology, Huaibei Key Laboratory of Crop Genetic Improvement and Efficient Green Safe Production, Huaibei, Anhui, PR China
| | - Jiawei Yuan
- College of Life Science, Huaibei Normal University, Anhui Key Laboratory of Plant Resources and Biology, Huaibei Key Laboratory of Crop Genetic Improvement and Efficient Green Safe Production, Huaibei, Anhui, PR China
| | - Jing Zhang
- College of Life Science, Huaibei Normal University, Anhui Key Laboratory of Plant Resources and Biology, Huaibei Key Laboratory of Crop Genetic Improvement and Efficient Green Safe Production, Huaibei, Anhui, PR China
| | - Shenglong Wang
- College of Life Science, Huaibei Normal University, Anhui Key Laboratory of Plant Resources and Biology, Huaibei Key Laboratory of Crop Genetic Improvement and Efficient Green Safe Production, Huaibei, Anhui, PR China
| | - Qingsong Ba
- College of Life Science, Huaibei Normal University, Anhui Key Laboratory of Plant Resources and Biology, Huaibei Key Laboratory of Crop Genetic Improvement and Efficient Green Safe Production, Huaibei, Anhui, PR China
| | - Guiping Li
- College of Life Science, Huaibei Normal University, Anhui Key Laboratory of Plant Resources and Biology, Huaibei Key Laboratory of Crop Genetic Improvement and Efficient Green Safe Production, Huaibei, Anhui, PR China.
| | - Gensheng Zhang
- College of Life Science, Huaibei Normal University, Anhui Key Laboratory of Plant Resources and Biology, Huaibei Key Laboratory of Crop Genetic Improvement and Efficient Green Safe Production, Huaibei, Anhui, PR China; State Key Laboratory of Crop Stress Resistance and High-Effeciency Production, NWAFU, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
12
|
Zhang Y, Liu Y, Gan Z, Du W, Ai X, Zhu W, Wang H, Wang F, Gong L, He H. Transcriptomic and sugar metabolic analysis reveals molecular mechanisms of peach gummosis in response to Neofusicoccum parvum infection. FRONTIERS IN PLANT SCIENCE 2024; 15:1478055. [PMID: 39464283 PMCID: PMC11503026 DOI: 10.3389/fpls.2024.1478055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024]
Abstract
Peach gummosis, a devastating disease caused by Neofusicoccum parvum, significantly shortens peach tree lifespan and reduces the yield of peach trees. Despite its impact, the molecular mechanism underlying this disease remains largely unexplored. In this study, we used RNA-seq, sugar metabolism measurements, and an integrated transcriptional and metabolomic analysis to uncover the molecular events driving peach gummosis. Our results revealed that N. parvum infection drastically altered the transcripts of cell wall degradation-related genes, the log2Fold change in the transcript level of Prupe.1G088900 encoding xyloglucan endotransglycosylase decreased 2.6-fold, while Prupe.6G075100 encoding expansin increased by 2.58-fold at 12 hpi under N. parvum stress. Additionally, sugar content analysis revealed an increase in maltose, sucrose, L-rhamnose, and inositol levels in the early stages of infection, while D-galactose, D-glucose, D-fructose consistently declined as gummosis progressed. Key genes related to cell wall degradation and starch degradation, as well as UDP-sugar biosynthesis, were significantly upregulated in response to N. parvum. These findings suggest that N. parvum manipulates cell wall degradation and UDP-sugar-related genes to invade peach shoot cells, ultimately triggering gum secretion. Furthermore, weighted gene co-expression network analysis (WGCNA) identified two transcription factors, ERF027 and bZIP9, as central regulators in the downregulated and upregulated modules, respectively. Overall, this study enhances our understanding of the physiological and molecular responses of peach trees to N. parvum infection and provide valuable insights into the mechanisms of peach defense against biotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Linzhong Gong
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Huaping He
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| |
Collapse
|
13
|
Peng Y, Liang M, Zhang X, Yu M, Liu H, Cheng Z, Xiong J. FaERF2 activates two β-1,3-glucanase genes to enhance strawberry resistance to Botrytis cinerea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112179. [PMID: 39004407 DOI: 10.1016/j.plantsci.2024.112179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Ethylene response factor (ERF) is a class of plant-specific transcription factors that play an important role in plant growth, development, and stress response. However, the underlying mechanism of strawberry ERFs in pathogenic responses against Botrytis cinerea (B. cinerea) remains largely unclear. In this study, we isolated FaERF2, a nucleus-localized ERF transcription factor from Fragaria x ananassa. Transiently overexpressing FaERF2 in strawberry fruits significantly enhances their resistant ability to B. cinerea, while silencing FaERF2 in strawberry fruits enhances their susceptibility to B. cinerea. In addition, we found that FaERF2 could directly bind to the cis-acting element GCC box in the promoters of two β-1,3-glucanase genes, FaBG-1 and FaBG-2, and activate their expression. Finally, both strawberry fruits transient expression followed by B. cinerea inoculation assays and recombinant protein incubation tests collectively substantiated the inhibitory effect of FaBG-1 and FaBG-2 on B. cinerea mycelium growth. These results revealed the molecular regulation mechanism of FaERF2 in response to B. cinerea and laid foundations for creating disease-resistance strawberry cultivar through genome editing approach.
Collapse
Affiliation(s)
- Yue Peng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Morong Liang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zongming Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinsong Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Yuan S, Jiang H, Wang Y, Zhang L, Shi Z, Jiao L, Meng D. A 3R-MYB transcription factor is involved in Methyl Jasmonate-Induced disease resistance in Agaricus bisporus and has implications for disease resistance in Arabidopsis. J Adv Res 2024:S2090-1232(24)00380-1. [PMID: 39233001 DOI: 10.1016/j.jare.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Methyl jasmonate (MeJA) and MYB transcription factors (TFs) play important roles in pathogen resistance in several plants, but MYB TFs in conjunction with MeJA-induced defense against Pseudomonas tolaasii in edible mushrooms remain unknown. OBJECTIVES To investigate the role of a novel 3R-MYB transcription factor (AbMYB11) in MeJA-induced disease resistance of Agaricus bisporus and in the resistance of transgenic Arabidopsis to P. tolaasii. METHODS Mushrooms were treated with MeJA alone or in combination with phenylpropanoid pathway inhibitors, and the effects of the treatments on the disease-related and physiological indicators of the mushrooms were determined to assess the role of MeJA in inducing resistance and the importance of the phenylpropanoid pathway involved. Subcellular localization, gene expression analysis, dual-luciferase reporter assay, electrophoretic mobility shift assay, and transgenic Arabidopsis experiments were performed to elucidate the molecular mechanism of AbMYB11 in regulating disease resistance. RESULTS MeJA application greatly improved mushroom resistance to P. tolaasii infection, and suppression of the phenylpropanoid pathway significantly weakened this effect. MeJA treatment stimulated the accumulation of phenylpropanoid metabolites, which was accompanied by increased the activities of biosynthetic enzymes and the expression of phenylpropanoid pathway-related genes (AbPAL1, Ab4CL1, AbC4H1) and an AbPR-like gene, further confirming the critical role of the phenylpropanoid pathway in MeJA-induced responses to P. tolaasii. Importantly, AbMYB11, localized in the nucleus, was rapidly induced by MeJA treatment under P. tolaasii infection; it transcriptionally activated the phenylpropanoid pathway-related and AbPR-like genes, and AbMYB11 overexpression in Arabidopsis significantly increased the transcription of phenylpropanoid-related genes, the accumulation of total phenolics and flavonoids, and improved resistance to P. tolaasii. CONCLUSION This study clarified the pivotal role of AbMYB11 as a regulator in disease resistance by modulating the phenylpropanoid pathway, providing a novel idea for the breeding of highly disease-resistant edible mushrooms and plants.
Collapse
Affiliation(s)
- Shuai Yuan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Hanyue Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yating Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Lei Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Zixuan Shi
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Lu Jiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| |
Collapse
|
15
|
Rahman MU, Liu X, Wang X, Fan B. Grapevine gray mold disease: infection, defense and management. HORTICULTURE RESEARCH 2024; 11:uhae182. [PMID: 39247883 PMCID: PMC11374537 DOI: 10.1093/hr/uhae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
Grapevine (Vitis vinifera L.,) is among the world's leading fruit crops. The production of grapes is severely affected by many diseases including gray mold, caused by the necrotrophic fungus Botrytis cinerea. Although all Vitis species can be hosts for B. cinerea, V. vinifera are particularly susceptible. Accordingly, this disease poses a significant threat to the grape industry and causes substantial economic losses. Development of resistant V. vinifera cultivars has progressed from incidental selection by farmers, to targeted selection through the use of statistics and experimental design, to the employment of genetic and genomic data. Emerging technologies such as marker-assisted selection and genetic engineering have facilitated the development of cultivars that possess resistance to B. cinerea. A promising method involves using the CRISPR/Cas9 system to induce targeted mutagenesis and develop genetically modified non-transgenic crops. Hence, scientists are now engaged in the active pursuit of identifying genes associated with susceptibility and resistance. This review focuses on the known mechanisms of interaction between the B. cinerea pathogen and its grapevine host. It also explores innate immune systems that have evolved in V. vinifera, with the objective of facilitating the rapid development of resistant grapevine cultivars.
Collapse
Affiliation(s)
- Mati Ur Rahman
- Co-Innovation Center for Sustainable Forestry in Southern China, Department of Forest Protection, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210073, China
| | - Xia Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Department of Forest Protection, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210073, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100 Yangling, Xianyang, Shaanxi, China
| | - Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, Department of Forest Protection, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210073, China
| |
Collapse
|
16
|
Lei C, Dang Z, Zhu M, Zhang M, Wang H, Chen Y, Zhang H. Identification of the ERF gene family of Mangifera indica and the defense response of MiERF4 to Xanthomonas campestris pv. mangiferaeindicae. Gene 2024; 912:148382. [PMID: 38493974 DOI: 10.1016/j.gene.2024.148382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
An important regulatory role for ethylene-responsive transcription factors (ERFs) is in plant growth and development, stress response, and hormone signaling. However, AP2/ERF family genes in mango have not been systematically studied. In this study, a total of 113 AP2/ERF family genes were identified from the mango genome and phylogenetically classified into five subfamilies: AP2 (28 genes), DREB (42 genes), ERF (33 genes), RAV (6 genes), and Soloist (4 genes). Of these, the ERF family, in conjunction with Arabidopsis and rice, forms a phylogenetic tree divided into seven groups, five of which have MiERF members. Analysis of gene structure and cis-elements showed that each MiERF gene contains only one AP2 structural domain, and that MiERF genes contain a large number of cis-elements associated with hormone signaling and stress response. Collinearity tests revealed a high degree of homology between MiERFs and CsERFs. Tissue-specific and stress-responsive expression profiling revealed that MiERF genes are primarily involved in the regulation of reproductive growth and are differentially and positively expressed in response to external hormones and pathogenic bacteria. Physiological results from a gain-of-function analysis of MiERF4 transiently overexpressed in tobacco and mango showed that transient expression of MiERF4 resulted in decreased colony count and callose deposition, as well as varying degrees of response to hormonal signals such as ETH, JA, and SA. Thus, MiERF4 may be involved in the JA/ETH signaling pathway to enhance plant defense against pathogenic bacteria. This study provides a basis for further research on the function and regulation of MiERF genes and lays a foundation for the selection of disease-resistant genes in mango.
Collapse
Affiliation(s)
- Chen Lei
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zhiguo Dang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Min Zhu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Mengting Zhang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Huiliang Wang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yeyuan Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China.
| | - He Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
17
|
Wang Y, An H, Yang Y, Yi C, Duan Y, Wang Q, Guo Y, Yao L, Chen M, Meng J, Wei J, Hu C, Li H. The MpNAC72/MpERF105-MpMYB10b module regulates anthocyanin biosynthesis in Malus 'Profusion' leaves infected with Gymnosporangium yamadae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1569-1588. [PMID: 38412288 DOI: 10.1111/tpj.16697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/28/2023] [Accepted: 02/07/2024] [Indexed: 02/29/2024]
Abstract
Apple rust is a serious fungal disease affecting Malus plants worldwide. Infection with the rust pathogen Gymnosporangium yamadae induces the accumulation of anthocyanins in Malus to resist rust disease. However, the mechanism of anthocyanin biosynthesis regulation in Malus against apple rust is still unclear. Here, we show that MpERF105 and MpNAC72 are key regulators of anthocyanin biosynthesis via the ethylene-dependent pathway in M. 'Profusion' leaves under rust disease stress. Exogenous ethephon treatment promoted high expression of MpERF105 and MpNAC72 and anthocyanin accumulation in G. yamadae-infected M. 'Profusion' leaves. Overexpression of MpERF105 increased the total anthocyanin content of Malus plant material and acted by positively regulating its target gene, MpMYB10b. MpNAC72 physically interacted with MpERF105 in vitro and in planta, and the two form a protein complex. Coexpression of the two leads to higher transcript levels of MpMYB10b and higher anthocyanin accumulation. In addition, overexpression of MpERF105 or MpNAC72 enhanced the resistance of M. 'Profusion' leaves to apple rust. In conclusion, our results elucidate the mechanism by which MpERF105 and MpNAC72 are induced by ethylene in G. yamadae-infected M. 'Profusion' leaves and promote anthocyanin accumulation by mediating the positive regulation of MpMYB10b expression.
Collapse
Affiliation(s)
- Yu Wang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hong An
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yue Yang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Cheng Yi
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ying Duan
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qian Wang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yannan Guo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lina Yao
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingkun Chen
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiaxin Meng
- Institute of Pomology & Forestry, Beijing Academy of Agriculture & Forestry Sciences, 10093, Beijing, Haidian, China
| | - Jun Wei
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chenyang Hu
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Houhua Li
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
18
|
Li B, Zang Y, Song C, Wang X, Wu X, Wang X, Xi Z. VvERF117 positively regulates grape cold tolerance through direct regulation of the antioxidative gene BAS1. Int J Biol Macromol 2024; 268:131804. [PMID: 38670186 DOI: 10.1016/j.ijbiomac.2024.131804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/07/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Cold stress significantly threatens grape quality, yield, and geographical distribution. Although ethylene-responsive factors (ERFs) are recognized for their pivotal roles in cold stress, the regulatory mechanisms of many ERFs contributing to tolerance remain unclear. In this study, we identified the cold-responsive gene VvERF117 and elucidated its positive regulatory function in cold tolerance. VvERF117 exhibits transcriptional activity and localizes to the nucleus. VvERF117 overexpression improved cold tolerance in transgenic Arabidopsis, grape calli, and grape leaves, whereas VvERF117 silencing increased cold sensitivity in grape calli and leaves. Furthermore, VvERF117 overexpression remarkably upregulated the expression of several stress-related genes. Importantly, BAS1, encoding a 2-Cys peroxidase (POD), was confirmed as a direct target gene of VvERF117. Meanwhile, compared to the wild-type, POD activity and H2O2 content were remarkably increased and decreased in VvERF117-overexpressing grape calli and leaves, respectively. Conversely, VvERF117 silencing displayed the opposite trend in grape calli and leaves under cold stress. These findings indicate that VvERF117 plays a positive role in cold resistance by, at least in part, enhancing antioxidant capacity through regulating the POD-encoding gene VvBAS1, leading to effective mitigation of reactive oxygen species.
Collapse
Affiliation(s)
- Beibei Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100
| | - Yushuang Zang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100
| | - Changze Song
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100
| | - Xuefei Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100
| | - Xueyan Wu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100
| | - Xianhang Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100.
| | - Zhumei Xi
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100.
| |
Collapse
|
19
|
Gao H, Ma J, Zhao Y, Zhang C, Zhao M, He S, Sun Y, Fang X, Chen X, Ma K, Pang Y, Gu Y, Dongye Y, Wu J, Xu P, Zhang S. The MYB Transcription Factor GmMYB78 Negatively Regulates Phytophthora sojae Resistance in Soybean. Int J Mol Sci 2024; 25:4247. [PMID: 38673832 PMCID: PMC11050205 DOI: 10.3390/ijms25084247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Phytophthora root rot is a devastating disease of soybean caused by Phytophthora sojae. However, the resistance mechanism is not yet clear. Our previous studies have shown that GmAP2 enhances sensitivity to P. sojae in soybean, and GmMYB78 is downregulated in the transcriptome analysis of GmAP2-overexpressing transgenic hairy roots. Here, GmMYB78 was significantly induced by P. sojae in susceptible soybean, and the overexpressing of GmMYB78 enhanced sensitivity to the pathogen, while silencing GmMYB78 enhances resistance to P. sojae, indicating that GmMYB78 is a negative regulator of P. sojae. Moreover, the jasmonic acid (JA) content and JA synthesis gene GmAOS1 was highly upregulated in GmMYB78-silencing roots and highly downregulated in overexpressing ones, suggesting that GmMYB78 could respond to P. sojae through the JA signaling pathway. Furthermore, the expression of several pathogenesis-related genes was significantly lower in GmMYB78-overexpressing roots and higher in GmMYB78-silencing ones. Additionally, we screened and identified the upstream regulator GmbHLH122 and downstream target gene GmbZIP25 of GmMYB78. GmbHLH122 was highly induced by P. sojae and could inhibit GmMYB78 expression in resistant soybean, and GmMYB78 was highly expressed to activate downstream target gene GmbZIP25 transcription in susceptible soybean. In conclusion, our data reveal that GmMYB78 triggers soybean sensitivity to P. sojae by inhibiting the JA signaling pathway and the expression of pathogenesis-related genes or through the effects of the GmbHLH122-GmMYB78-GmbZIP25 cascade pathway.
Collapse
Affiliation(s)
- Hong Gao
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Jia Ma
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Yuxin Zhao
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Chuanzhong Zhang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Ming Zhao
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Shengfu He
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Yan Sun
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Xin Fang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Xiaoyu Chen
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Kexin Ma
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Yanjie Pang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Yachang Gu
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Yaqun Dongye
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Soybean Cultivation of Ministry of Agriculture, Harbin 150030, China;
| | - Pengfei Xu
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Shuzhen Zhang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| |
Collapse
|
20
|
Shen L, Yang S, Zhao E, Xia X, Yang X. StoMYB41 positively regulates the Solanum torvum response to Verticillium dahliae in an ABA dependent manner. Int J Biol Macromol 2024; 263:130072. [PMID: 38346615 DOI: 10.1016/j.ijbiomac.2024.130072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 02/26/2024]
Abstract
MYB transcription factor despite their solid involvement in growth are potent regulator of plant stress response. Herein, we identified a MYB gene named as StoMYB41 in a wild eggplant species Solanum torvum. The expression level of StoMYB41 was higher in root than the tissues including stem, leaf, and seed. It induced significantly by Verticillium dahliae inoculation. StoMYB41 was localized in the nucleus and exhibited transcriptional activation activity. Silencing of StoMYB41 enhanced susceptibility of Solanum torvum against Verticillium dahliae, accompanied by higher disease index. The significant down-regulation of resistance marker gene StoABR1 comparing to the control plants was recorded in the silenced plants. Moreover, transient expression of StoMYB41 could trigger intense hypersensitive reaction mimic cell death, darker DAB and trypan blue staining, higher ion leakage, and induced the expression levels of StoABR1 and NbDEF1 in the leaves of Solanum torvum and Nicotiana benthamiana. Taken together, our data indicate that StoMYB41 acts as a positive regulator in Solanum torvum against Verticillium wilt.
Collapse
Affiliation(s)
- Lei Shen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Shixin Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Enpeng Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xin Xia
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xu Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
21
|
Wang YC, Wei Y, Li XY, Zhang HM, Meng X, Duan CQ, Pan QH. Ethylene-responsive VviERF003 modulates glycosylated monoterpenoid synthesis by upregulating VviGT14 in grapes. HORTICULTURE RESEARCH 2024; 11:uhae065. [PMID: 38689696 PMCID: PMC11059816 DOI: 10.1093/hr/uhae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/18/2024] [Indexed: 05/02/2024]
Abstract
Terpenoids are important contributors to the aroma of grapes and wines. Grapes contain terpenoids in both volatile free form and non-volatile glycosidic form, with the latter being more abundant. Glycosylated terpenoids are deemed as latent aromatic potentials for their essential role in adding to the flowery and fruity bouquet of wines. However, the transcriptional regulatory mechanism underlying glycosylated terpenoid biosynthesis remains poorly understood. Our prior study identified an AP2/ERF transcription factor, VviERF003, through DNA pull-down screening using the promoter of terpenoid glycosyltransferase VviGT14 gene. This study demonstrated that both genes were co-expressed and synchronized with the accumulation of glycosylated monoterpenoids during grape maturation. VviERF003 can bind to the VviGT14 promoter and promote its activity according to yeast one-hybrid and dual-luciferase assays. VviERF003 upregulated VviGT14 expression in vivo, leading to increased production of glycosylated monoterpenoids based on the evidence from overexpression or RNA interference in leaves, berry skins, and calli of grapes, as well as tomato fruits. Additionally, VviERF003 and VviGT14 expressions and glycosylated monoterpenoid levels were induced by ethylene in grapes. The findings suggest that VviERF003 is ethylene-responsive and stimulates glycosylated monoterpenoid biosynthesis through upregulating VviGT14 expression.
Collapse
Affiliation(s)
- Ya-Chen Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yi Wei
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiang-Yi Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui-Min Zhang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiao Meng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Qiu-Hong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
22
|
Huang LJ, Yang W, Chen J, Yu P, Wang Y, Li N. Molecular identification and functional characterization of an environmental stress responsive glutaredoxin gene ROXY1 in Quercus glauca. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108367. [PMID: 38237422 DOI: 10.1016/j.plaphy.2024.108367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/03/2023] [Accepted: 01/10/2024] [Indexed: 03/16/2024]
Abstract
Quercus glauca is a valuable natural resource with both economic and ecological values. It is one of the dominant forest tree species widely distributed in Southern China. As a perennial broadleaf plant, Q. glauca inevitably encounters numerous stresses from environment. Glutaredoxins (GRXs) are a kind of small oxidoreductases that play an important role in response to oxidative stress. CC-type GRXs also known as ROXYs are specific to land plants. In this study, we isolated a CC-type GRX gene, QgROXY1, from Q. glauca. Expression of QgROXY1 is induced by a variety of environmental stimuli. QgROXY1 protein localizes to both cytoplasm and nucleus; whereas the nucleus localized QgROXY1 could physically interact with the basic region/leucine zipper motif (bZIP) transcription factor AtTGA2 from Arabidopsis thaliana. Transgenic A. thaliana ectopically expressing QgROXY1 is hypersensitive to exogenously applied salicylic acid. Induction of plant defense gene is significantly impaired in QgROXY1 transgenic plants that results in enhanced susceptibility to infection of Botrytis cinerea pathogen, indicating the evolutionary conserved function among ROXY homologs in weedy and woody plants. This is the first described function for the ROXYs in tree plants. Through this case study, we demonstrated the feasibility and efficacy of molecular technology applied to characterization of gene function in tree species.
Collapse
Affiliation(s)
- Li-Jun Huang
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Wenhai Yang
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jiali Chen
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Peiyao Yu
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yukun Wang
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ning Li
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
23
|
Ma N, Sun P, Li ZY, Zhang FJ, Wang XF, You CX, Zhang CL, Zhang Z. Plant disease resistance outputs regulated by AP2/ERF transcription factor family. STRESS BIOLOGY 2024; 4:2. [PMID: 38163824 PMCID: PMC10758382 DOI: 10.1007/s44154-023-00140-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Plants have evolved a complex and elaborate signaling network to respond appropriately to the pathogen invasion by regulating expression of defensive genes through certain transcription factors. The APETALA2/ethylene response factor (AP2/ERF) family members have been determined as key regulators in growth, development, and stress responses in plants. Moreover, a growing body of evidence has demonstrated the critical roles of AP2/ERFs in plant disease resistance. In this review, we describe recent advances for the function of AP2/ERFs in defense responses against microbial pathogens. We summarize that AP2/ERFs are involved in plant disease resistance by acting downstream of mitogen activated protein kinase (MAPK) cascades, and regulating expression of genes associated with hormonal signaling pathways, biosynthesis of secondary metabolites, and formation of physical barriers in an MAPK-dependent or -independent manner. The present review provides a multidimensional perspective on the functions of AP2/ERFs in plant disease resistance, which will facilitate the understanding and future investigation on the roles of AP2/ERFs in plant immunity.
Collapse
Affiliation(s)
- Ning Ma
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Ping Sun
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Zhao-Yang Li
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Fu-Jun Zhang
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Xiao-Fei Wang
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Chun-Ling Zhang
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan, 250100, Shandong, China.
| | - Zhenlu Zhang
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China.
| |
Collapse
|
24
|
Liu J, Wang L, Jiang S, Wang Z, Li H, Wang H. Mining of Minor Disease Resistance Genes in V. vinifera Grapes Based on Transcriptome. Int J Mol Sci 2023; 24:15311. [PMID: 37894991 PMCID: PMC10607095 DOI: 10.3390/ijms242015311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Intraspecific recurrent selection in V. vinifera is an effective method for grape breeding with high quality and disease resistance. The core theory of this method is the substitution accumulation of multi-genes with low disease resistance. The discovery of multi-genes for disease resistance in V. vinifera may provide a molecular basis for breeding for disease resistance in V. vinifera. In this study, resistance to downy mildew was identified, and genetic analysis was carried out in the intraspecific crossing population of V. vinifera (Ecolly × Dunkelfelder) to screen immune, highly resistant and disease-resistant plant samples; transcriptome sequencing and differential expression analysis were performed using high-throughput sequencing. The results showed that there were 546 differential genes (194 up-regulated and 352 down-regulated) in the immune group compared to the highly resistant group, and 199 differential genes (50 up-regulated and 149 down-regulated) in the highly resistant group compared to the resistant group, there were 103 differential genes (54 up-regulated and 49 down-regulated) in the immune group compared to the resistant group. KEGG analysis of differentially expressed genes in the immune versus high-resistance group. The pathway is mainly concentrated in phenylpropanoid biosynthesis, starch and sucrose metabolism, MAPK signaling pathway-plant, carotenoid biosyn-thesis and isoquinoline alkaloid biosynthesis. The differential gene functions of immune and resistant, high-resistant and resistant combinations were mainly enriched in plant-pathogen interaction pathway. Through the analysis of disease resistance-related genes in each pathway, the potential minor resistance genes in V. vinifera were mined, and the accumulation of minor resistance genes was analyzed from the molecular level.
Collapse
Affiliation(s)
- Junli Liu
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
| | - Liang Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
| | - Shan Jiang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
| | - Zhilei Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
| | - Hua Li
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
- China Wine Industry Technology Institute, Yinchuan 750021, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang 712100, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Xianyang 712100, China
| | - Hua Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
- China Wine Industry Technology Institute, Yinchuan 750021, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang 712100, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Xianyang 712100, China
| |
Collapse
|
25
|
Chen T, Cao H, Wang M, Qi M, Sun Y, Song Y, Yang Q, Meng D, Lian N. Integrated transcriptome and physiological analysis revealed core transcription factors that promote flavonoid biosynthesis in apricot in response to pathogenic fungal infection. PLANTA 2023; 258:64. [PMID: 37555984 DOI: 10.1007/s00425-023-04197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/27/2023] [Indexed: 08/10/2023]
Abstract
MAIN CONCLUSION Integrated transcriptome and physiological analysis of apricot leaves after Fusarium solani treatment. In addition, we identified core transcription factors and flavonoid-related synthase genes which may function in apricot disease resistance. Apricot (Prunus armeniaca) is an important economic fruit species, whose yield and quality of fruit are limited owing to its susceptibility to diseases. However, the molecular mechanisms underlying the response of P. armeniaca to diseases is still unknown. In this study, we used physiology and transcriptome analysis to characterize responses of P. armeniaca subjected to Fusarium solani. The results showed increasing malondialdehyde (MDA) content, enhanced peroxidase (POD) and catalase (CAT) activity during F. solani infestation. A large number of differentially expressed genes (DEGs), which included 4281 upregulated DEGs and 3305 downregulated DEGs, were detected in P. armeniaca leaves exposed to F. solani infestation. Changes in expression of transcription factors (TFs), including bHLH, AP2/ERF, and WRKY indicated their role in triggering pathogen-responsive genes in P. armeniaca. During the P. armeniaca response to F. solani infestation, the content of total flavonoid was changed, and we identified enzyme genes associated with flavonoid biosynthesis. Ectopic overexpression of PabHLH15 and PabHLH102 in Nicotiana benthamiana conferred elevated resistance to Fspa_1. Moreover, PabHLH15 and PabHLH102 positively interact with the promoter of flavonoid biosynthesis-related genes. A regulatory network of TFs regulating enzyme genes related to flavonoid synthesis affecting apricot disease resistance was constructed. These results reveal the potential underlying mechanisms of the F. solani response of P. armeniaca, which would help improve the disease resistance of P. armeniaca and may cultivate high-quality disease-resistant varieties in the future.
Collapse
Affiliation(s)
- Ting Chen
- Beijing Forestry University, Beijing, 100083, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, 518000, China
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Hongyan Cao
- Beijing Forestry University, Beijing, 100083, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, 518000, China
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Mengying Wang
- Beijing Forestry University, Beijing, 100083, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, 518000, China
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Meng Qi
- Beijing Forestry University, Beijing, 100083, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, 518000, China
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | | | - Yangbo Song
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - Qing Yang
- Beijing Forestry University, Beijing, 100083, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, 518000, China
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Dong Meng
- Beijing Forestry University, Beijing, 100083, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, 518000, China
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Na Lian
- Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
26
|
Liu Y, Liu Q, Li X, Zhang Z, Ai S, Liu C, Ma F, Li C. MdERF114 enhances the resistance of apple roots to Fusarium solani by regulating the transcription of MdPRX63. PLANT PHYSIOLOGY 2023; 192:2015-2029. [PMID: 36721923 PMCID: PMC10315273 DOI: 10.1093/plphys/kiad057] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
As the main fungal etiologic agent of apple (Malus domestica) replant disease (ARD), Fusarium solani seriously damages apple roots. Ethylene response factors (ERFs) play an important role in plant resistance to biotic stress. Here, we show that MdERF114 is expressed during F. solani infections and positively regulates the resistance of apple roots to F. solani. Yeast one-hybrid, dual-luciferase, electrophoretic mobility shift assays and determinations of lignin content indicated that MdERF114 directly binds the GCC-box of the MdPEROXIDASE63 (MdPRX63) promoter and activates its expression, resulting in lignin deposition in apple roots and increased resistance to F. solani. We identified a WRKY family transcription factor, MdWRKY75, that binds to the W-box of the MdERF114 promoter. Overexpression of MdWRKY75 enhanced resistance of apple roots to F. solani. MdMYB8 interacted with MdERF114 to enhance resistance to F. solani by promoting the binding of MdERF114 to the MdPRX63 promoter. In summary, our findings reveal that the MdWRKY75-MdERF114-MdMYB8-MdPRX63 module is required for apple resistance to F. solani and the application of this mechanism by Agrobacterium rhizogenes-mediated root transformation provides a promising strategy to prevent ARD.
Collapse
Affiliation(s)
- Yusong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Qianwei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Xuewen Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Zhijun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Shukang Ai
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Cheng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | | | - Chao Li
- Author for correspondence: ; (F.M.); (C.L.)
| |
Collapse
|
27
|
Ferrandino A, Pagliarani C, Pérez-Álvarez EP. Secondary metabolites in grapevine: crosstalk of transcriptional, metabolic and hormonal signals controlling stress defence responses in berries and vegetative organs. FRONTIERS IN PLANT SCIENCE 2023; 14:1124298. [PMID: 37404528 PMCID: PMC10315584 DOI: 10.3389/fpls.2023.1124298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/26/2023] [Indexed: 07/06/2023]
Abstract
Abiotic stresses, such as temperature, heat waves, water limitation, solar radiation and the increase in atmospheric CO2 concentration, significantly influence the accumulation of secondary metabolites in grapevine berries at different developmental stages, and in vegetative organs. Transcriptional reprogramming, miRNAs, epigenetic marks and hormonal crosstalk regulate the secondary metabolism of berries, mainly the accumulation of phenylpropanoids and of volatile organic compounds (VOCs). Currently, the biological mechanisms that control the plastic response of grapevine cultivars to environmental stress or that occur during berry ripening have been extensively studied in many worlds viticultural areas, in different cultivars and in vines grown under various agronomic managements. A novel frontier in the study of these mechanisms is the involvement of miRNAs whose target transcripts encode enzymes of the flavonoid biosynthetic pathway. Some miRNA-mediated regulatory cascades, post-transcriptionally control key MYB transcription factors, showing, for example, a role in influencing the anthocyanin accumulation in response to UV-B light during berry ripening. DNA methylation profiles partially affect the berry transcriptome plasticity of different grapevine cultivars, contributing to the modulation of berry qualitative traits. Numerous hormones (such as abscisic and jasmomic acids, strigolactones, gibberellins, auxins, cytokynins and ethylene) are involved in triggering the vine response to abiotic and biotic stress factors. Through specific signaling cascades, hormones mediate the accumulation of antioxidants that contribute to the quality of the berry and that intervene in the grapevine defense processes, highlighting that the grapevine response to stressors can be similar in different grapevine organs. The expression of genes responsible for hormone biosynthesis is largely modulated by stress conditions, thus resulting in the numeourous interactions between grapevine and the surrounding environment.
Collapse
Affiliation(s)
- Alessandra Ferrandino
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Grugliasco, Italy
| | - Chiara Pagliarani
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Torino, Italy
| | - Eva Pilar Pérez-Álvarez
- Grupo VIENAP. Finca La Grajera, Instituto de Ciencias de la Vid y del Vino (ICVV), Logroño, La Rioja, Spain
| |
Collapse
|
28
|
Qin H, Cui X, Shu X, Zhang J. The transcription factor VaNAC72-regulated expression of the VaCP17 gene from Chinese wild Vitis amurensis enhances cold tolerance in transgenic grape (V. vinifera). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107768. [PMID: 37247556 DOI: 10.1016/j.plaphy.2023.107768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Papain-like cysteine proteases (PLCP) play diverse roles in plant biology. In our previous studies, a VaCP17 gene from the cold-tolerant Vitis amurensis accession 'Shuangyou' was isolated and its role in cold tolerance was preliminarily verified in Arabidopsis. Here, we confirmed the function of VaCP17 in cold tolerance by stably overexpressing VaCP17 in the cold-sensitive Vitis vinifera cultivar 'Thompson Seedless' and transiently silencing VaCP17 in 'Shuangyou' leaves. The results showed that overexpression of VaCP17 improved the cold tolerance in 'Thompson Seedless' as manifested by reduced electrolyte leakage and malondialdehyde accumulation, chlorophyll homeostasis, increased antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) activitiy, and rapid up-regulation of stress-related genes (VvKIN2, VvRD29B, and VvNCED1) compared with wild-type line. Conversely, RNA interfere-mediated knockdown of VaCP17 in 'Shuangyou' leaves resulted in opposite physiological and biochemical responses and exacerbated leaves wilting compared with control. Subsequently, by yeast one-hybrid, dual-luciferase assays, and transient overexpression of VaNAC72 in 'Shuangyou' leaves, a VaCP17-interacting protein VaNAC72 was confirmed to promote the expression of VaCP17 under cold stress, which depends on abscisic acid, methyl jasmonate, and salicylic acid signaling. By yeast two-hybrids, bimolecular fluorescence complementation and luciferase complementation assays, it was found that VaNAC72 could form homodimers or heterodimers with VaCBF2. Furthermore, co-expression analysis confirmed that VaNAC72 works synergistically with VaCBF2 or VaCP17 to up-regulate the expression of VaCP17. In conclusion, the study revealed that the VaNAC72-VaCP17 module positively regulated cold tolerance in grapevine, and this knowledge is useful for further revealing the cold-tolerance mechanism of V. amurensis and grape molecular breeding.
Collapse
Affiliation(s)
- Haoxiang Qin
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaoyue Cui
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xin Shu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
29
|
Li Y, Ma X, Xiao LD, Yu YN, Yan HL, Gong ZH. CaWRKY50 Acts as a Negative Regulator in Response to Colletotrichum scovillei Infection in Pepper. PLANTS (BASEL, SWITZERLAND) 2023; 12:1962. [PMID: 37653879 PMCID: PMC10221478 DOI: 10.3390/plants12101962] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 09/02/2023]
Abstract
Chili anthracnose is one of the most common and destructive fungal pathogens that affects the yield and quality of pepper. Although WRKY proteins play crucial roles in pepper resistance to a variety of pathogens, the mechanism of their resistance to anthracnose is still unknown. In this study, we found that CaWRKY50 expression was obviously induced by Colletotrichum scovillei infection and salicylic acid (SA) treatments. CaWRKY50-silencing enhanced pepper resistance to C. scovillei, while transient overexpression of CaWRKY50 in pepper increased susceptibility to C. scovillei. We further found that overexpression of CaWRKY50 in tomatoes significantly decreased resistance to C. scovillei by SA and reactive oxygen species (ROS) signaling pathways. Moreover, CaWRKY50 suppressed the expression of two SA-related genes, CaEDS1 (enhanced disease susceptibility 1) and CaSAMT1 (salicylate carboxymethyltransferase 1), by directly binding to the W-box motif in their promoters. Additionally, we demonstrated that CaWRKY50 interacts with CaWRKY42 and CaMIEL1 in the nucleus. Thus, our findings revealed that CaWRKY50 plays a negative role in pepper resistance to C. scovillei through the SA-mediated signaling pathway and the antioxidant defense system. These results provide a theoretical foundation for molecular breeding of pepper varieties resistant to anthracnose.
Collapse
Affiliation(s)
- Yang Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Y.L.); (X.M.); (Y.-N.Y.)
| | - Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Y.L.); (X.M.); (Y.-N.Y.)
| | - Luo-Dan Xiao
- Yibin Research Institute of Tea Industry, Yibin 644000, China;
| | - Ya-Nan Yu
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Y.L.); (X.M.); (Y.-N.Y.)
| | - Hui-Ling Yan
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Y.L.); (X.M.); (Y.-N.Y.)
| |
Collapse
|
30
|
Li Y, Zuo X, Ji N, Zhang J, Wang K, Jin P, Zheng Y. PpMYB1 and PpNPR1 interact to enhance the resistance of peach fruit to Rhizopus stolonifer infection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107682. [PMID: 37060868 DOI: 10.1016/j.plaphy.2023.107682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
MYB transcription factors play important role in stress-resistance of plants. Nevertheless, the function of MYB TFs in peach Rhizopus rot remains poorly understood. Herein, Pichia guilliermondii treatment activated resistance against Rhizopus stolonifer, as illustrated by reductions in the incidence rate and severity of Rhizopus rot disease, increased enzyme activities and gene expression of chitinase (CHI) and β-1,3-glucanase (GLU), and enhancement of energy production by inducing the activities and expression of H+-ATPase and Ca2+-ATPase, succinate dehydrogenase (SDH), and cytochrome c oxidase (CCO). Moreover, an R1-type MYB, PpMYB1, from peach fruit was induced during R. stolonifer infection and in response to P. guilliermondii treatment. PpMYB1 activated the transcription of PpCHI-EP3 and PpGLU-like genes and the energy metabolism-related gene PpH+-ATPase1 by directly targeting the MBS element. Importantly, PpMYB1 interacted with PpNPR1 to form a heterodimer, which was conducive to enhancing the activation of target gene transcription. Collectively, our findings suggest that PpMYB1 cooperates with PpNPR1 to positively regulate disease resistance by activating the disease defense system and energy metabolism in peaches.
Collapse
Affiliation(s)
- Yanfei Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaoxia Zuo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Nana Ji
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jinglin Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Kaituo Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
31
|
Su K, Zhao W, Lin H, Jiang C, Zhao Y, Guo Y. Candidate gene discovery of Botrytis cinerea resistance in grapevine based on QTL mapping and RNA-seq. FRONTIERS IN PLANT SCIENCE 2023; 14:1127206. [PMID: 36824203 PMCID: PMC9941706 DOI: 10.3389/fpls.2023.1127206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Grape gray mold disease (Botrytis cinerea) is widespread during grape production especially in Vitis vinifera and causes enormous losses to the grape industry. In nature, the grapevine cultivar 'Beta ' (Vitis riparia × Vitis labrusca) showed high resistance to grape gray mold. Until now, the candidate genes and their mechanism of gray mold resistance were poorly understood. In this study, we firstly conducted quantitative trait locus (QTL) mapping for grape gray mold resistance based on two hybrid offspring populations that showed wide separation in gray mold resistance. Notably, two stable QTL related to gray mold resistance were detected and located on linkage groups LG2 and LG7. The phenotypic variance ranged from 6.86% to 13.70% on LG2 and 4.40% to 11.40% on LG7. Combined with RNA sequencing (RNA-seq), one structural gene VlEDR2 (Vitvi02g00982) and three transcription factors VlERF039 (Vitvi00g00859), VlNAC047 (Vitvi08g01843), and VlWRKY51 (Vitvi07g01847) that may be involved in VlEDR2 expression and grape gray mold resistance were selected. This discovery of candidate gray mold resistance genes will provide an important theoretical reference for grape gray mold resistance mechanisms, research, and gray mold-resistant grape cultivar breeding in the future.
Collapse
Affiliation(s)
- Kai Su
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Wei Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Changyue Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yuhui Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
| |
Collapse
|
32
|
Wu Y, Li X, Zhang J, Zhao H, Tan S, Xu W, Pan J, Yang F, Pi E. ERF subfamily transcription factors and their function in plant responses to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1042084. [PMID: 36531407 PMCID: PMC9748296 DOI: 10.3389/fpls.2022.1042084] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/09/2022] [Indexed: 06/09/2023]
Abstract
Ethylene Responsive Factor (ERF) subfamily comprise the largest number of proteins in the plant AP2/ERF superfamily, and have been most extensively studied on the biological functions. Members of this subfamily have been proven to regulate plant resistances to various abiotic stresses, such as drought, salinity, chilling and some other adversities. Under these stresses, ERFs are usually activated by mitogen-activated protein kinase induced phosphorylation or escape from ubiquitin-ligase enzymes, and then form complex with nucleic proteins before binding to cis-element in promoter regions of stress responsive genes. In this review, we will discuss the phylogenetic relationships among the ERF subfamily proteins, summarize molecular mechanism how the transcriptional activity of ERFs been regulated and how ERFs of different subgroup regulate the transcription of stress responsive genes, such as high-affinity K+ transporter gene PalHKT1;2, reactive oxygen species related genes LcLTP, LcPrx, and LcRP, flavonoids synthesis related genes FtF3H and LhMYBSPLATTER, etc. Though increasing researches demonstrate that ERFs are involved in various abiotic stresses, very few interact proteins and target genes of them have been comprehensively annotated. Hence, future research prospects are described on the mechanisms of how stress signals been transited to ERFs and how ERFs regulate the transcriptional expression of stress responsive genes.
Collapse
|