1
|
Ali A, Khan M, Alouffi A, Almutairi MM, Paguem A, Chitimia-Dobler L, Pienaar R, de Castro MH, Mans BJ. Description of a new tick species, closely related to Amblyomma javanense (Supino, 1897), associated with Varanus bengalensis (Squamata: Varanidae) in Pakistan. Ticks Tick Borne Dis 2024; 15:102361. [PMID: 38880004 DOI: 10.1016/j.ttbdis.2024.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 06/18/2024]
Abstract
The genus Amblyomma contains the highest percentage of reptile-associated ticks, and comprises approximately nine subgenera. One of these subgenera is Adenopleura, which also encompasses Amblyomma javanense, and its type species Amblyomma compressum. This study describes a new Amblyomma species associated with Bengal monitor lizards (Varanus bengalensis) based on morphology and its mitogenome in Khyber Pakhtunkhwa, Pakistan. Reptiles belonging to different genera were examined for Amblyomma ticks and only the monitor lizard was infested with ticks in the District Bajaur. Collected Amblyomma cf. javanense ticks were analyzed and formally described as a new species. Overall, 57 A. cf. javanense ticks were collected on monitor lizards (4/27) with a 15% prevalence of infestation, 2.1 mean abundance, and 14.3 mean intensity. Ticks comprised males (n = 23, 40%), females (n = 14, 25%) and nymphs (n = 20, 35%), while no larvae were found. BLAST analysis of A. cf. javanense sequences showed the following maximum identities; 98.25% with undetermined Amblyomma species based on 12S rRNA, 96.07% with A. javanense based on 16S rRNA, 99.56% and 90.95% with an Amblyomma sp. and A. javanense, respectively, based on ITS2. Moreover, the mitochondrial genome of A. cf. javanense showed maximum identities of 80.75%, 80.48% and 79.42% with Amblyomma testudinarium, A. javanense, and Amblyomma sp., respectively. The phylogenetic analysis of A. cf. javanense revealed that its 12S rRNA and 16S rRNA are closely related to an Amblyomma sp. and A. javanense, respectively, from Sri Lanka, its ITS2 is closely related to A. javanense from China and an Amblyomma sp. from Sri Lanka, and its mitogenome is closely related to A. javanense and Amblyomma sp. from China. The pairwise distance analysis resulted in divergence of 0-1.71% (12S rRNA), 0-17.5% (16S rRNA), 0-9.1% (ITS2) and 0-20.5% (mitochondrial genome). We also contributed the full-length mitochondrial genome sequence of A. compressum and showed that this species does not share a most recent common ancestor with A. javanense. As the subgenus Adenopleura is paraphyletic, this study could help to understand the systematics and phylogeny of this taxon.
Collapse
Affiliation(s)
- Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| | - Mehran Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia
| | - Mashal M Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Archile Paguem
- Department of Veterinary Medicine, Faculty of Agriculture and Veterinary Medicine, University of Buea, Buea, Cameroon
| | - Lidia Chitimia-Dobler
- Rickettsiology and Virology, Bundeswehr Institute of Microbiology, Munich 80937, Germany; Infection and Pandemic Research, Fraunhofer Institute of Immunology, Penzberg, Germany
| | - Ronel Pienaar
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort, South Africa; Department of Zoology and Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Minique H de Castro
- The Biotechnology Platform, Agricultural Research Council-Biotechnology Platform, Onderstepoort 0110, South Africa
| | - Ben J Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort, South Africa; Department of Zoology and Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa; Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa.
| |
Collapse
|
2
|
Byun HR, Rieu MS, Han SW, Ji SR, Nam HY, Seo S, Choi CY, Linh BK, Thanh HL, Kaewthamasorn M, Sahara A, Galay RL, Wang SL, Erdenechimeg T, Batbayar N, Matsui S, Kawaji N, Moulin A, Yu YT, Avais M, Chae JS. Ixodid ticks from wild and domestic animals in East and Central Asian flyways. Acta Trop 2024; 249:107091. [PMID: 38065376 DOI: 10.1016/j.actatropica.2023.107091] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Tick-borne diseases have a significant impact on human and animal populations, posing an increasing threat to public health, particularly in the context of climate change. Along with the various natural hosts of ticks, birds play a notable role in transmitting ticks and tick-borne pathogens, indicating the importance of monitoring flyways and establishing a cooperative network for comprehensive surveillance and to collect diverse tick samples across various regions. This study aimed to develop an international network for surveillance of disease, collection of sufficient tick samples, and overall identification of the geographical distribution of host and ticks in Asian regions, especially in 11 countries on East Asian and Central Asian flyways. Ticks were collected from wild animals, domestic animals, and vegetation to identify the differences between Ixodid ticks and understand tick distribution. We collected a total 6,624 of ticks from 11 collaborating Asian countries, the Republic of Korea (ROK), Japan, Thailand, Philippines, Indonesia, Cambodia, Vietnam, Taiwan, Hong Kong, Mongolia and Pakistan. We identified 17 host animals and 47 species of both residential and migratory birds. Ticks from birds collected from four countries (ROK, Japan, Hong Kong and Mongolia) belonged to two genera, Haemaphysalis and Ixodes, including Haemaphysalis (H.) longicornis, H. flava, H. concinna, H. hystricis, H. formosensis, Ixodes (I.) nipponensis and I. persulcatus. The potential of migratory birds to cross ecological barriers with ticks and tick-borne diseases indicated the need for further investigations to understand the migration of birds as potential vectors and the new influx of zoonotic diseases along migratory bird flyways. This study suggests the potential risk of spreading tick-borne diseases through birds, thus highlighting the importance of international cooperative networking.
Collapse
Affiliation(s)
- Hye-Ryung Byun
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Mi-Sun Rieu
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sun-Woo Han
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seong-Ryeong Ji
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyun-Young Nam
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seulgi Seo
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang-Yong Choi
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Bui Khanh Linh
- Vietnam National University of Agriculture, Trau Quy, Gia Lam, Ha Noi, Vietnam
| | - Hien Le Thanh
- Department of Infectious Diseases and Veterinary Public Health, Faculty of Animal Science and Veterinary Medicine, Nong Lam University Ho Chi Minh, Vietnam
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ana Sahara
- Department of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Remil L Galay
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Shang-Lin Wang
- Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, No.1 Sec.4, Roosevelt Rd., Taipei 10617, Taiwan
| | | | - Nyambayar Batbayar
- Wildlife Science and Conservation Center of Mongolia, Ulaanbaatar 14210, Mongolia
| | - Shin Matsui
- School of Biological Sciences, Tokai University, Hokkaido 005-8601, Japan
| | - Noritomo Kawaji
- Hokkaido Research Center, Forestry and Forest Products Research Institute, Sapporo 062-8516, Japan
| | - Anna Moulin
- The Hong Kong Bird Watching Society, Kowloon, Hong Kong
| | - Yat-Tung Yu
- The Hong Kong Bird Watching Society, Kowloon, Hong Kong
| | - Muhammad Avais
- Department of Veterinary Medicine, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Chong SQY, Yeo D, Aidil NI, Ong JLY, Chan AHJ, Fernandez CJ, Lim BTM, Khoo MDY, Wong AMS, Chang SF, Yap HH. Detection of a novel Babesia sp. in Amblyomma javanense, an ectoparasite of Sunda pangolins. Parasit Vectors 2023; 16:432. [PMID: 37993967 PMCID: PMC10664631 DOI: 10.1186/s13071-023-06040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Babesia is a protozoal, tick-borne parasite that can cause life-threatening disease in humans, wildlife and domestic animals worldwide. However, in Southeast Asia, little is known about the prevalence and diversity of Babesia species present in wildlife and the tick vectors responsible for its transmission. Recently, a novel Babesia species was reported in confiscated Sunda pangolins (Manis javanica) in Thailand. To investigate the presence of this parasite in Singapore, we conducted a molecular survey of Babesia spp. in free-roaming Sunda pangolins and their main ectoparasite, the Amblyomma javanense tick. METHODS Ticks and tissue samples were opportunistically collected from live and dead Sunda pangolins and screened using a PCR assay targeting the 18S rRNA gene of Babesia spp. DNA barcoding of the cytochrome oxidase subunit I (COI) mitochondrial gene was used to confirm the species of ticks that were Babesia positive. RESULTS A total of 296 ticks and 40 tissue samples were obtained from 21 Sunda pangolins throughout the 1-year study period. Babesia DNA was detected in five A. javanense ticks (minimum infection rate = 1.7%) and in nine different pangolins (52.9%) located across the country. Phylogenetic analysis revealed that the Babesia 18S sequences obtained from these samples grouped into a single monophyletic clade together with those derived from Sunda pangolins in Thailand and that this evolutionarily distinct species is basal to the Babesia sensu stricto clade, which encompasses a range of Babesia species that infect both domestic and wildlife vertebrate hosts. CONCLUSIONS This is the first report documenting the detection of a Babesia species in A. javanense ticks, the main ectoparasite of Sunda pangolins. While our results showed that A. javanense can carry this novel Babesia sp., additional confirmatory studies are required to demonstrate vector competency. Further studies are also necessary to investigate the role of other transmission pathways given the low infection rate of ticks in relation to the high infection rate of Sunda pangolins. Although it appears that this novel Babesia sp. is of little to no pathogenicity to Sunda pangolins, its potential to cause disease in other animals or humans cannot be ruled out.
Collapse
Affiliation(s)
- Stacy Q Y Chong
- Animal and Veterinary Service, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens, Singapore, 259569, Singapore.
| | - Darren Yeo
- Animal and Veterinary Service, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Nur Insyirah Aidil
- Animal and Veterinary Service, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Jasmine L Y Ong
- Animal and Veterinary Service, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Amy H J Chan
- Animal and Veterinary Service, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Charlene Judith Fernandez
- Animal and Veterinary Service, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Bryan T M Lim
- Wildlife Management, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Max D Y Khoo
- Wildlife Management, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Anna M S Wong
- Wildlife Management, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Siow Foong Chang
- Animal and Veterinary Service, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Him Hoo Yap
- Animal and Veterinary Service, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens, Singapore, 259569, Singapore
| |
Collapse
|
4
|
Cao ML, Nie Y, Fu YT, Li R, Yi XL, Xiong J, Liu GH. Characterization of the complete mitochondrial genomes of five hard ticks and phylogenetic implications. Parasitol Res 2023:10.1007/s00436-023-07891-7. [PMID: 37329345 DOI: 10.1007/s00436-023-07891-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/27/2023] [Indexed: 06/19/2023]
Abstract
Ticks are blood-sucking ectoparasites with significant medical and veterinary importance, capable of transmitting bacteria, protozoa, fungi, and viruses that cause a variety of human and animal diseases worldwide. In the present study, we sequenced the complete mitochondrial (mt) genomes of five hard tick species and analyzed features of their gene contents and genome organizations. The complete mt genomes of Haemaphysalis verticalis, H. flava, H. longicornis, Rhipicephalus sanguineus and Hyalomma asiaticum were 14855 bp, 14689 bp, 14693 bp, 14715 bp and 14722 bp in size, respectively. Their gene contents and arrangements are the same as those of most species of metastriate Ixodida, but distinct from species of genus Ixodes. Phylogenetic analyses using concatenated amino acid sequences of 13 protein-coding genes with two different computational algorithms (Bayesian inference and maximum likelihood) revealed the monophylies of the genera Rhipicephalus, Ixodes and Amblyomma, however, rejected the monophyly of the genus Haemaphysalis. To our knowledge, this is the first report of the complete mt genome of H. verticalis. These datasets provide useful mtDNA markers for further studies of the identification and classification of hard ticks.
Collapse
Affiliation(s)
- Mei-Ling Cao
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan, 410128, Changsha, China
| | - Yu Nie
- College of Biotechnology, Hunan University of Environment and Biology, Hengyang, 421001, Hunan, China
| | - Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan, 410128, Changsha, China
| | - Rong Li
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan, 410128, Changsha, China
| | - Xi-Long Yi
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan, 410128, Changsha, China
| | - Jun Xiong
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan, 410128, Changsha, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan, 410128, Changsha, China.
| |
Collapse
|
5
|
Li LY, Deng YP, Zhang Y, Wu Y, Fu YT, Liu GH, Liu JH. Characterization of the complete mitochondrial genome of Culex vishnui (Diptera: Culicidae), one of the major vectors of Japanese encephalitis virus. Parasitol Res 2023; 122:1403-1414. [PMID: 37072585 DOI: 10.1007/s00436-023-07840-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/05/2023] [Indexed: 04/20/2023]
Abstract
Culex mosquitoes (Diptera: Culicidae) can transmit a variety of arthropod-borne viruses (arboviruses), causing human and animal diseases. Cx. vishnui, Cx. pseudovishnui, and Cx. tritaeniorhynchus are three representative species in Culex vishnui subgroup, which are widely distributed in southeast Asia, and they have been proved as the main vectors transmitting Japanese encephalitis virus (JEV) that could cause human infectious mosquito-borne disease across Asia. However, the epidemiology, biology, and even molecular information of those mosquitos remain poorly understood, and only the mitochondrial genome (mitogenome) of Cx. tritaeniorhynchus has been reported in these species. In the present study, we sequenced and annotated the complete mitogenome sequence of Cx. vishnui which was 15,587 bp in length, comprising 37 genes. Comparisons of nucleotide and amino acid sequences between Cx. vishnui and Cx. tritaeniorhynchus revealed that most genes within Culex vishnui subgroup were conserved, except atp8, nad1, atp6, and nad6, with differences of 0.4 (rrnS) - 15.1% (tRNAs) and 0 (nad4L) - 9.4% (atp8), respectively, interestingly suggesting the genes nad4L and rrnS were the most conserved but atp8 gene was the least. The results based on nucleotide diversity also supported a relatively uniform distribution of the intraspecific differences in Cx. vishnui and Cx. tritaeniorhynchus with only one highly pronounced peak of divergence centered at the control region. Phylogenetic analyses using concatenated amino acid sequences of 13 protein-coding genes supported the previous taxonomic classification of the family Culicidae and the monophyly of tribes Aedini, Culicini, Mansoniini, and Sabethini. The present study revealed detailed information on the subgroup Culex vishnui, reanalyzed the relationships within the family Culicidae, provided better markers to identify and distinguish Culex species, and offered more markers for studying the molecular epidemiology, population genetics, and molecular phylogenetics of Cx. vishnui.
Collapse
Affiliation(s)
- Le-Yan Li
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Yuan-Ping Deng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Yu Zhang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Hunan Province, Changsha, 410128, China
| | - Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Jin-Hui Liu
- Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, 410128, Hunan Province, China.
| |
Collapse
|
6
|
Shi YN, Li LM, Zhou JB, Hua Y, Zeng ZL, Yu YP, Liu P, Yuan ZG, Chen JP. Detection of a novel Pestivirus strain in Java ticks (Amblyomma javanense) and the hosts Malayan pangolin (Manis javanica) and Chinese pangolin (Manis pentadactyla). Front Microbiol 2022; 13:988730. [PMID: 36118205 PMCID: PMC9479695 DOI: 10.3389/fmicb.2022.988730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Pangolins are endangered animals and are listed in the CITES Appendix I of the Convention International Trade Endangered Species of Wild Fauna and Flora as well as being the national first-level protected wild animal in China. Based on a few reports on pangolins infected with pestiviruses of the Flaviviridae family, Pestivirus infections in pangolins have attracted increasing attention. Pangolin pestivirus is a pathogen that may cause diseases such as acute diarrhea and acute hemorrhagic syndrome. To better understand the epidemiology and genomic characterization of pestiviruses carried by pangolins, we detected pestiviruses in dead Malayan pangolin using metavirome sequencing technology and obtained a Pestivirus sequence of 12,333 nucleotides (named Guangdong pangolin Pestivirus, GDPV). Phylogenetic tree analysis based on the entire coding sequence, NS3 gene or RdRp gene sequences, showed that GDPV was closely related to previously reported pangolin-derived Pestivirus and clustered into a separate branch. Molecular epidemiological investigation revealed that 15 Pestivirus-positive tissues from two pangolins individuals with a positivity rate of 5.56%, and six Amblyomma javanense carried pestiviruses with a positivity rate of 19.35%. Moreover, the RdRp gene of the Pestivirus carried by A. javanense showed a high similarity to that carried by pangolins (93–100%), indicating A. javanense is likely to represent the vector of Pestivirus transmission. This study expands the diversity of viruses carried by pangolins and provides an important reference value for interrupting the transmission route of the virus and protecting the health of pangolins.
Collapse
Affiliation(s)
- Yuan-Ni Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Lin-Miao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Jia-Bin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yan Hua
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, Guangdong, China
| | - Zhi-Liao Zeng
- Shenzhen Management Bureau of Natural Reserve, Shenzhen, Guangdong, China
| | - Ye-Pin Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Ping Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Zi-Guo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- *Correspondence: Zi-Guo Yuan,
| | - Jin-Ping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- Jin-Ping Chen,
| |
Collapse
|
7
|
Zhao Q, Abuzeid AMI, He L, Zhuang T, Li X, Liu J, Zhu S, Chen X, Li G. The mitochondrial genome sequence analysis of Ophidascaris baylisi from the Burmese python (Python molurus bivittatus). Parasitol Int 2021; 85:102434. [PMID: 34375752 DOI: 10.1016/j.parint.2021.102434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Ophidascaris species are parasitic roundworms that inhabit the python gut, resulting in severe granulomatous lesions or even death. However, the classification and nomenclature of these roundworms are still controversial. Our study aims to identify a snake roundworm from the Burmese python (Python molurus bivittatus) and analyze the mitochondrial genome. We identified this roundworm as Ophidascaris baylisi based on the morphology and cytochrome c oxidase subunit I (cox1) sequence. Ophidascaris baylisi complete mitochondrial genome was 14,784 bp in length, consisting of two non-coding regions and 36 mitochondrial genes (12 protein-coding genes, 22 tRNA genes, and two rRNA genes). The protein-coding genes used TTG, ATG, ATT, or TTA as start codons and TAG, TAA, or T as stop codons. All tRNA genes showed a TV-loop structure, except trnS1AGN and trnS2UCN revealed a D-loop structure. The mitochondrial large ribosomal subunit 16S (rrnL) and small ribosomal subunit 12S (rrnS) were 956 bp and 700 bp long, respectively. Phylogenetic analysis based on O. baylisi mitochondrial protein-coding genes demonstrated that O. baylisi clustered with the family Ascarididae members and was most closely related to Ophidascaris wangi. These results may enhance the nematode mitochondrial genome database and provide valuable molecular markers for further research on the taxonomy, phylogeny, and genetic relationships of Ophidascaris nematodes.
Collapse
Affiliation(s)
- Qi Zhao
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Asmaa M I Abuzeid
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Long He
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Tingting Zhuang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Xiu Li
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Jumei Liu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Shilan Zhu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Xiaoyu Chen
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Guoqing Li
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China.
| |
Collapse
|
8
|
Comparative Analysis of Mitogenomes among Five Species of Filchnerella (Orthoptera: Acridoidea: Pamphagidae) and Their Phylogenetic and Taxonomic Implications. INSECTS 2021; 12:insects12070605. [PMID: 34357265 PMCID: PMC8307104 DOI: 10.3390/insects12070605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
Mitogenomes have been widely used for exploring phylogenetic analysis and taxonomic diagnosis. In this study, the complete mitogenomes of five species of Filchnerella were sequenced, annotated and analyzed. Then, combined with other seven mitogenomes of Filchnerella and four of Pamphagidae, the phylogenetic relationships were reconstructed by maximum likelihood (ML) and Bayesian (BI) methods based on PCGs+rRNAs. The sizes of the five complete mitogenomes are Filchnerella sunanensis 15,656 bp, Filchnerella amplivertica 15,657 bp, Filchnerella nigritibia 15,661 bp, Filchnerella pamphagoides 15,661 bp and Filchnerella dingxiensis 15,666 bp. The nucleotide composition of mitogenomes is biased toward A+T. All tRNAs could be folded into the typical clover-leaf structure, except that tRNA Ser (AGN) lacked a dihydrouridine (DHU) arm. The phylogenetic relationships of Filchnerella species based on mitogenome data revealed a general pattern of wing evolution from long wing to increasingly shortened wing.
Collapse
|
9
|
Uribe JE, Nava S, Murphy KR, Tarragona EL, Castro LR. Characterization of the complete mitochondrial genome of Amblyomma ovale, comparative analyses and phylogenetic considerations. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 81:421-439. [PMID: 32564254 DOI: 10.1007/s10493-020-00512-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
In this study, we sequenced two complete mitochondrial genomes of Amblyomma ovale, a tick of public health importance. Sequencing two distinct individuals, the resulting mitochondrial genomes were 14,756 and 14,760 bp in length and maintained the same gene order previously reported in Amblyomma. These were combined with RNA-seq derived mitochondrial sequences from three additional species, Amblyomma aureolatum, Amblyomma maculatum, and Amblyomma moreliae, to carry out mitogenome comparative and evolutionary analyses against all previously published tick mitochondrial genomes. We described a derivative genome rearrangement that isolates Ixodes from the remaining Ixodidae and consists of both a reverse translocation as well as an event of Tandem Duplication Random Loss. Genetic distance analyses indicated that cox2, nd1, nd5, and 16S are good candidates for future population studies in A. ovale. The phylogenetic analyses corroborated the utility of complete mitochondrial genomes as phylogenetic markers within the group. This study further supplements the genome information available for Amblyomma and facilitates future evolutionary and population genetic studies within the genus.
Collapse
Affiliation(s)
- Juan E Uribe
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/ José Gutiérrez Abascal 2, 28006, Madrid, Spain.
- Department of Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th St. & Constitutional Ave. NW, Washington, DC, 20560, USA.
| | - Santiago Nava
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Consejo Nacional de Investigaciones Científicas y Técnicas, CC 22, Rafaela, CP 2300, Santa Fe, Argentina
| | - Katherine R Murphy
- Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Evelina L Tarragona
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Consejo Nacional de Investigaciones Científicas y Técnicas, CC 22, Rafaela, CP 2300, Santa Fe, Argentina
| | - Lyda R Castro
- Grupo de Investigación Evolución, Sistemática y Ecología Molecular (GIESEMOL), Universidad del Magdalena, Santa Marta, Magdalena, Colombia
| |
Collapse
|