1
|
Taha M, Tartor YH, Elaziz RMA, Elsohaby I. Genetic diversity and antifungal susceptibilities of environmental Cryptococcus neoformans and Cryptococcus gattii species complexes. IMA Fungus 2024; 15:21. [PMID: 39060926 PMCID: PMC11282759 DOI: 10.1186/s43008-024-00153-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Cryptococcosis is an opportunistic systemic mycosis caused by Cryptococcus neoformans and C. gattii species complexes and is of increasing global importance. Maintaining continued surveillance of the antifungal susceptibility of environmental C. neoformans and C. gattii isolates is desirable for better managing cryptococcosis by identifying resistant isolates and revealing the emergence of intrinsically resistant species. Relevant research data from Egypt are scarce. Thus, this study aimed to report the genetic diversity of C. neoformans and C. gattii species complexes originating from different environmental sources in Egypt, antifungal susceptibility profiles, antifungal combinations, and correlations of susceptibility with genotypes. A total of 400 environmental samples were collected, 220 from birds and 180 from trees. Cryptococcus spp. were found in 58 (14.5%) of the samples, 44 (75.9%) of the isolates were recovered from birds and 14 (24.1%) from trees. These isolates were genotyped using M13 polymerase chain reaction-fingerprinting and URA5 gene restriction fragment length polymorphism analysis. Of the 31 C. neoformans isolates, 24 (77.4%), 6 (19.4%) and one (4.4%) belonged to VNI, VNII, and VNIII genotypes, respectively. The 27 C. gattii isolates belonged to VGI (70.4%), VGII (18.5%), and VGIII (11.1%) genotypes. Non-wild type C. neoformans and C. gattii isolates that may have acquired resistance to azoles, amphotericin B (AMB), and terbinafine (TRB) were observed. C. gattii VGIII was less susceptible to fluconazole (FCZ) and itraconazole (ITZ) than VGI and VGII. C. neoformans isolates showed higher minimum inhibitory concentrations (MICs) to FCZ, ITZ, and voriconazole (VRZ) than those of C. gattii VGI and VGII. Significant (P < 0.001) correlations were found between the MICs of VRZ and ITZ (r = 0.64) in both C. neoformans and C. gattii isolates, FCZ and TRB in C. neoformans isolates, and FCZ and TRB (r = 0.52) in C. gattii isolates.There is no significant differences in the MICs of TRB in combination with FCZ (P = 0.064) or in combination with AMB (P = 0.543) and that of TRB alone against C. gattii genotypes. By calculating the fractional inhibitory concentration (FIC) index, the combination of FCZ + AMB was synergistic against all tested genotypes. These findings expand our knowledge of ecological niches, genetic diversity, and resistance traits of C. neoformans and C. gattii genotypes in Egypt. Further investigations into how they are related to clinical isolates in the region are warranted.
Collapse
Affiliation(s)
- Mohamed Taha
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Yasmine H Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Rana M Abd Elaziz
- Cairo International Airport Veterinary Quarantine, General Organization for Veterinary Services, Ministry of Agriculture, Cairo, Egypt
| | - Ibrahim Elsohaby
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
- Centre for Applied One Health Research and Policy Advice (OHRP), City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
2
|
Barrs VR, Hobi S, Wong A, Sandy J, Shubitz LF, Bęczkowski PM. Invasive fungal infections and oomycoses in cats 2. Antifungal therapy. J Feline Med Surg 2024; 26:1098612X231220047. [PMID: 38189264 PMCID: PMC10949877 DOI: 10.1177/1098612x231220047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
CLINICAL RELEVANCE Invasive fungal infections (IFIs) and oomycoses (hereafter termed invasive fungal-like infections [IFLIs]) are characterised by penetration of tissues by fungal elements. The environment is the most common reservoir of infection. IFIs and IFLIs can be frustrating to treat because long treatment times are usually required and, even after attaining clinical cure, there may be a risk of relapse. Owner compliance with medication administration and recheck examinations can also decline over time. In addition, some antifungal drugs are expensive, have variable interpatient pharmacokinetic properties, can only be administered parenterally and/or have common adverse effects (AEs). Despite these limitations, treatment can be very rewarding, especially when an otherwise progressive and fatal disease is cured. AIM In the second of a two-part article series, the spectrum of activity, mechanisms of action, pharmacokinetic and pharmacodynamic properties, and AEs of antifungal drugs are reviewed, and the treatment and prognosis of specific IFIs/IFLIs - dermatophytic pseudomycetoma, cryptococcosis, sino-orbital aspergillosis, coccidioidomycosis, histoplasmosis, sporotrichosis, phaeohyphomycosis, mucormycosis and oomycosis - are discussed. Part 1 reviewed the diagnostic approach to IFIs and IFLIs. EVIDENCE BASE Information on antifungal drugs is drawn from pharmacokinetic studies in cats. Where such studies have not been performed, data from 'preclinical' animals (non-human studies) and human studies are reviewed. The review also draws on the wider published evidence and the authors' combined expertise in feline medicine, mycology, dermatology, clinical pathology and anatomical pathology. ABBREVIATIONS FOR ANTIFUNGAL DRUGS AMB (amphotericin B); FC (flucytosine); FCZ (fluconazole); ISA (isavuconazole); ITZ (itraconazole); KCZ (ketoconazole); PCZ (posaconazole); TRB (terbinafine); VCZ (voriconazole).
Collapse
Affiliation(s)
- Vanessa R Barrs
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China
- Centre for Animal Health and Welfare, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China
| | - Stefan Hobi
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China
| | - Angeline Wong
- Shatin Animal Hospital, Tai Wai, New Territories, Hong Kong, SAR China
| | - Jeanine Sandy
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China
| | - Lisa F Shubitz
- Valley Fever Center for Excellence, The University of Arizona, AZ, USA
| | - Paweł M Bęczkowski
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China
| |
Collapse
|
3
|
Abstract
Background: Cryptococcus neoformans is an encapsulated yeast that can cause fungemia and, in rare instances, lead to endogenous fungal endophthalmitis. No standard of care has been established to treat fungal endophthalmitis when systemic antifungal treatment fails to resolve the intraocular infection. Intravitreal voriconazole has been used for the treatment of fungal endophthalmitis caused by a broad range of fungal pathogens, and a limited number of reports have shown the efficacy of using intravitreal voriconazole for C neoformans endophthalmitis. We report a case of endogenous fungal endophthalmitis caused by C neoformans that was responsive to intravitreal voriconazole. Case Report: A previously healthy 57-year-old male diagnosed with primary neuroendocrine lung tumor developed endogenous endophthalmitis from C neoformans. The endophthalmitis was resistant to intravenous amphotericin B treatment but was responsive to intravenous fluconazole in one eye and was apparently more responsive to intravitreal voriconazole in the other eye. Conclusion: Intravitreal voriconazole should be considered for the treatment of cryptococcal endophthalmitis.
Collapse
|
4
|
Yang H, Xu X, Ran X, Ran Y. Successful Treatment of Refractory Candidal Granuloma by Itraconazole and Terbinafine in Combination with Hyperthermia and Cryotherapy. Dermatol Ther (Heidelb) 2020; 10:847-853. [PMID: 32405702 PMCID: PMC7367946 DOI: 10.1007/s13555-020-00384-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Indexed: 02/05/2023] Open
Abstract
Candidal granuloma is a rare and refractory disease in clinical practice, usually reported in immunocompromised patients. We report a 57-year-old man who presented with candidal granuloma caused by Candida tropicalis. The diagnosis was confirmed according to histopathology and molecular identification. Prolonged duration of initial antifungal therapy did not obtain satisfactory improvement. Finally, the refractory disease was successfully treated by itraconazole and terbinafine in combination with hyperthermia and cryotherapy. The "blackish-red dot" dermoscopic sign of the verrucous granuloma gradually resolved during the treatment.
Collapse
Affiliation(s)
- Heli Yang
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxi Xu
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Brilhante RSN, Silva JAT, Araújo GDS, Pereira VS, Gotay WJP, Oliveira JSD, Guedes GMDM, Pereira-Neto WA, Castelo-Branco DDSCM, Cordeiro RDA, Sidrim JJC, Rocha MFG. Darunavir inhibits Cryptococcus neoformans/ Cryptococcus gattii species complex growth and increases the susceptibility of biofilms to antifungal drugs. J Med Microbiol 2020; 69:830-837. [PMID: 32459616 DOI: 10.1099/jmm.0.001194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Cryptococcus species are pathogens commonly associated with cases of meningoencephalitis in individuals who are immunosuppressed due to AIDS.Aim. The aim was to evaluate the effects of the antiretroviral darunavir alone or associated with fluconazole, 5-flucytosine and amphotericin B against planktonic cells and biofilms of Cryptococcus species.Methodology. Susceptibility testing of darunavir and the common antifungals against 12 members of the Cryptococcus neoformans/Cryptococcus gattii species complex was evaluated by broth microdilution. The interaction between darunavir and antifungals against planktonic cells was tested by a checkerboard assay. The effects of darunavir against biofilm metabolic activity and biomass were evaluated by the XTT reduction assay and crystal violet staining, respectively.Results. Darunavir combined with amphotericin B showed a synergistic interaction against planktonic cells. No antagonistic interaction was observed between darunavir and the antifungals used. All Cryptococcus species strains were strong biofilm producers. Darunavir alone reduced biofilm metabolic activity and biomass when added during and after biofilm formation (P<0.05). The combination of darunavir with antifungals caused a significant reduction in biofilm metabolic activity and biomass when compared to darunavir alone (P<0.05).Conclusion. Darunavir presents antifungal activity against planktonic cells of Cryptococcus species and synergism with amphotericin B. In addition, darunavir led to reduced biofilm formation and showed activity against mature biofilms of Cryptococcus species. Activity of the antifungals against mature biofilms was enhanced in the presence of darunavir.
Collapse
Affiliation(s)
- Raimunda Sâmia Nogueira Brilhante
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - José Alexandre Telmos Silva
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Géssica Dos Santos Araújo
- Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará. Av. Dr. Silas Munguba, 1700, Campus do Itaperi, CEP: 60714-903, Fortaleza, Ceará, Brazil
| | - Vandbergue Santos Pereira
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Wilker Jose Perez Gotay
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Jonathas Sales de Oliveira
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Glaucia Morgana de Melo Guedes
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Waldemiro Aquino Pereira-Neto
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Rossana de Aguiar Cordeiro
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| |
Collapse
|
6
|
Rocha LFD, Pippi B, Fuentefria AM, Mezzari A. Synergistic effect of ibuprofen with itraconazole and fluconazole against Cryptococcus neoformans. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000318599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Bruna Pippi
- Universidade Federal do Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
7
|
de Castro Spadari C, da Silva de Bastiani FWM, Pisani PBB, de Azevedo Melo AS, Ishida K. Efficacy of voriconazole in vitro and in invertebrate model of cryptococcosis. Arch Microbiol 2019; 202:773-784. [PMID: 31832690 DOI: 10.1007/s00203-019-01789-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/11/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022]
Abstract
Cryptococcosis is a common opportunistic infection in patients with advanced HIV infection and may also affect immunocompetent patients. The available antifungal agents are few and other options are needed for the cryptococcosis treatment. In this work, we first analyzed the virulence of twelve C. neoformans and C. gattii strains assessing capsule thickness, biofilms formation, and survival and morbidity in the invertebrate model of Galleria mellonella and then we evaluated the antifungal activity of voriconazole (VRC) in vitro and in vivo also using G. mellonella. Our results showed that all Cryptococcus spp. isolates were able to produce capsule and biofilms, and were virulent using G. mellonella model. The VRC has inhibitory activity on planktonic cells with MIC values ranging from 0.03 to 0.25 μg/mL on Cryptococcus spp.; and these isolates were more tolerant to fluconazole (ranging from 0.25 to 16 μg/mL), the triazol agent often recommended alone or in combination with amphotericin B in the cryptococcosis therapy. In contrast, mature biofilms were less susceptible to the VRC treatment. The VRC (10 or 20 mg/kg) treatment of infected G. mellonella larvae significantly increased the larval survival when compared to the untreated group for the both Cryptococcus species and significantly decreased the fungal burden and dissemination in the larval tissue. Our findings corroborate with the literature data, supporting the potential use of VRC as an alternative for cryptococcosis treatment. Here, we emphasize the use of G. mellonella larval model as an alternative animal model for studies of antifungal efficacy on mycosis, including cryptococcosis.
Collapse
Affiliation(s)
- Cristina de Castro Spadari
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374, ICB II, Lab 150, São Paulo, SP, 05508-000, Brazil
| | - Fernanda Walt Mendes da Silva de Bastiani
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374, ICB II, Lab 150, São Paulo, SP, 05508-000, Brazil
| | - Pietro Bruno Bautista Pisani
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374, ICB II, Lab 150, São Paulo, SP, 05508-000, Brazil
| | | | - Kelly Ishida
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374, ICB II, Lab 150, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
8
|
Singulani JDL, Galeane MC, Ramos MD, Gomes PC, Dos Santos CT, de Souza BM, Palma MS, Fusco Almeida AM, Mendes Giannini MJS. Antifungal Activity, Toxicity, and Membranolytic Action of a Mastoparan Analog Peptide. Front Cell Infect Microbiol 2019; 9:419. [PMID: 31867293 PMCID: PMC6908851 DOI: 10.3389/fcimb.2019.00419] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/25/2019] [Indexed: 11/13/2022] Open
Abstract
Invasive fungal infections, such as cryptococcosis and paracoccidioidomycosis are associated with significant rates of morbidity and mortality. Cryptococcosis, caused by Cryptococcus neoformans, is distributed worldwide and has received much attention as a common complication in patients with HIV. Invasive fungal infections are usually treated with a combination of amphotericin B and azoles. In addition, 5-fluorocytosine (5-FC) is applied in cryptococcosis, specifically to treat central nervous system infection. However, host toxicity, high cost, emerging number of resistant strains, and difficulty in developing new selective antifungals pose challenges. The need for new antifungals has therefore prompted a screen for inhibitory peptides, which have multiple mechanisms of action. The honeycomb moth Galleria mellonella has been widely used as a model system for evaluating efficacy of antifungal agents. In this study, a peptide analog from the mastoparan class of wasps (MK58911) was tested against Cryptococcus spp. and Paracoccidioides spp. In addition, peptide toxicity tests on lung fibroblasts (MRC5) and glioblastoma cells (U87) were performed. Subsequent tests related to drug interaction and mechanism of action were also performed, and efficacy and toxicity of the peptide were evaluated in vivo using the G. mellonella model. Our results reveal promising activity of the peptide, with an MIC in the range of 7.8-31.2 μg/mL, and low toxicity in MRC and U87 cells (IC50 > 500 μg/mL). Taken together, these results demonstrate that MK58911 is highly toxic in fungal cells, but not mammalian cells (SI > 16). The mechanism of toxicity involved disruption of the plasma membrane, leading to death of the fungus mainly by necrosis. In addition, no interaction with the drugs amphotericin B and fluconazole was found either in vitro or in vivo. Finally, the peptide showed no toxic effects on G. mellonella, and significantly enhanced survival rates of larvae infected with C. neoformans. Although not statistically significant, treatment of larvae with all doses of MK58911 showed a similar trend in decreasing the fungal burden of larvae. These effects were independent of any immunomodulatory activity. Overall, these results present a peptide with potential for use as a new antifungal drug to treat systemic mycoses.
Collapse
Affiliation(s)
- Junya de Lacorte Singulani
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Mariana Cristina Galeane
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Marina Dorisse Ramos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Paulo César Gomes
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Claudia Tavares Dos Santos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Bibiana Monson de Souza
- Department of Biology, Center for the Study of Social Insects, Institute of Biosciences, São Paulo State University-UNESP, Rio Claro, Brazil
| | - Mario Sergio Palma
- Department of Biology, Center for the Study of Social Insects, Institute of Biosciences, São Paulo State University-UNESP, Rio Claro, Brazil
| | - Ana Marisa Fusco Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | | |
Collapse
|
9
|
Gupta AK, Versteeg SG, Shear NH. Common drug-drug interactions in antifungal treatments for superficial fungal infections. Expert Opin Drug Metab Toxicol 2018; 14:387-398. [DOI: 10.1080/17425255.2018.1461834] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aditya K. Gupta
- Department of Medicine, University of Toronto School of Medicine, Toronto, Canada
- Mediprobe Research Inc., London, Canada
| | | | - Neil H. Shear
- Department of Medicine (Dermatology, Clinical Pharmacology and Toxicology) and Department of Pharmacology, Sunnybrook and Women’s College Health Science Centre and the University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Firacative C, Lizarazo J, Illnait-Zaragozí MT, Castañeda E. The status of cryptococcosis in Latin America. Mem Inst Oswaldo Cruz 2018; 113:e170554. [PMID: 29641639 PMCID: PMC5888000 DOI: 10.1590/0074-02760170554] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/06/2018] [Indexed: 12/23/2022] Open
Abstract
Cryptococcosis is a life-threatening fungal infection caused by the encapsulated
yeasts Cryptococcus neoformans and C. gattii,
acquired from the environment. In Latin America, as occurring
worldwide, C. neoformans causes more than 90% of the cases of
cryptococcosis, affecting predominantly patients with HIV, while C.
gattii generally affects otherwise healthy individuals. In this
region, cryptococcal meningitis is the most common presentation, with
amphotericin B and fluconazole being the antifungal drugs of choice. Avian
droppings are the predominant environmental reservoir of C.
neoformans, while C. gattii is associated with
several arboreal species. Importantly, C. gattii has a high
prevalence in Latin America and has been proposed to be the likely origin of
some C. gattii populations in North America. Thus, in the
recent years, significant progress has been made with the study of the basic
biology and laboratory identification of cryptococcal strains, in understanding
their ecology, population genetics, host-pathogen interactions, and the clinical
epidemiology of this important mycosis in Latin America.
Collapse
Affiliation(s)
- Carolina Firacative
- Westmead Hospital, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Jairo Lizarazo
- Internal Medicine Department, Hospital Universitario Erasmo Meoz, Universidad de Pamplona, Cúcuta, Colombia
| | - María Teresa Illnait-Zaragozí
- Diagnosis and Reference Centre, Bacteriology-Mycology Department Research, Tropical Medicine Institute Pedro Kourí, Havana, Cuba
| | | | | |
Collapse
|
11
|
Abstract
Cryptococcus is among the most common invasive fungal pathogens globally and is one of the leading causes of acquired immunodeficiency virus-related deaths. Cryptococcus neoformans and Cryptococcus gattii are the most clinically relevant species and account for most cryptococcal disease. Pulmonary manifestations can range from mild symptoms to life-threatening infection. Treatment is tailored based on the severity of pulmonary infection, the presence of disseminated or central nervous system disease, and patient immune status. Amphotericin B and flucytosine followed by fluconazole remain the standard agents for the treatment of severe cryptococcal infection.
Collapse
Affiliation(s)
- Kate Skolnik
- Division of Respirology, Department of Internal Medicine, Rockyview General Hospital, University of Calgary, Respirology Offices, 7007 14th Street Southwest, Calgary, Alberta T2V 1P9, Canada
| | - Shaunna Huston
- Department of Physiology and Pharmacology, Health Research Innovation Centre, University of Calgary, Room 4AA08, 3330 Hospital Drive Northwest, Calgary, Alberta T2N 4N1, Canada
| | - Christopher H Mody
- Department of Microbiology and Infectious Diseases, Health Research Innovation Centre, University of Calgary, Room 4AA14, 3330 Hospital Drive Northwest, Calgary, Alberta T2N 4N1, Canada; Department of Internal Medicine, Health Research Innovation Centre, University of Calgary, Room 4AA14, 3330 Hospital Drive Northwest, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
12
|
Santos JRA, Ribeiro NQ, Bastos RW, Holanda RA, Silva LC, Queiroz ER, Santos DA. High-dose fluconazole in combination with amphotericin B is more efficient than monotherapy in murine model of cryptococcosis. Sci Rep 2017; 7:4661. [PMID: 28680034 PMCID: PMC5498649 DOI: 10.1038/s41598-017-04588-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/17/2017] [Indexed: 12/26/2022] Open
Abstract
Cryptococcus spp., the causative agents of cryptococcosis, are responsible for deaths of hundreds of thousands of people every year worldwide. The drawbacks of available therapeutic options are aggravated by the increased resistance of yeast to the drugs, resulting in inefficient therapy. Also, the antifungal 5FC is not available in many countries. Therefore, a combination of antifungal drugs may be an interesting option, but in vitro and theoretical data point to the possible antagonism between the main antifungals used to treat cryptococcosis, i.e., fluconazole (FLC), and amphotericin B (AMB). Therefore, in vivo studies are necessary to test the above hypothesis. In this study, the efficacy of FLC and AMB at controlling C. gattii infection was evaluated in a murine model of cryptococcosis caused by C. gattii. The infected mice were treated with FLC + AMB combinations and showed a significant improvement in survival as well as reduced morbidity, reduced lung fungal burden, and the absence of yeast in the brain when FLC was used at higher doses, according to the Tukey test and principal component analysis. Altogether, these results indicate that combinatorial optimization of antifungal therapy can be an option for effective control of cryptococcosis.
Collapse
Affiliation(s)
- Julliana Ribeiro Alves Santos
- Mestrado em Biologia Parasitária - Universidade CEUMA (UNICEUMA), São Luís, Maranhão, Brazil. .,Mestrado em Meio Ambiente - Universidade CEUMA (UNICEUMA), São Luís, Maranhão, Brazil.
| | - Noelly Queiroz Ribeiro
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Wesley Bastos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Letícia Chagas Silva
- Mestrado em Meio Ambiente - Universidade CEUMA (UNICEUMA), São Luís, Maranhão, Brazil
| | - Estela Rezende Queiroz
- Departamento de Química, Universidade Federal de Lavras (UFLA), Campus 17 Universitário, Lavras- MG, Brazil
| | - Daniel Assis Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
13
|
Jandú JJ, Costa MC, Santos JRA, Andrade FM, Magalhães TF, Silva MV, Castro MCAB, Coelho LCBB, Gomes AG, Paixão TA, Santos DA, Correia MTS. Treatment with pCramoll Alone and in Combination with Fluconazole Provides Therapeutic Benefits in C. gattii Infected Mice. Front Cell Infect Microbiol 2017; 7:211. [PMID: 28596945 PMCID: PMC5442327 DOI: 10.3389/fcimb.2017.00211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 05/09/2017] [Indexed: 01/17/2023] Open
Abstract
Cryptococcus gattii is one of the main causative agents of cryptococcosis in immunocompetent individuals. Treatment of the infection is based on the use of antimycotics, however, the toxicity of these drugs and the increase of drug-resistant strains have driven the search for more effective and less toxic therapies for cryptococcosis. pCramoll are isolectins purified from seeds of Cratylia mollis, a native forage plant from Brazil, which has become a versatile tool for biomedical application. We evaluated the effect of pCramoll alone and in combination with fluconazole for the treatment of mice infected with C. gatti. pCramoll alone or in combination with fluconazole increased the survival, reduced the morbidity and improved mice behavior i.e., neuropsychiatric state, motor behavior, autonomic function, muscle tone and strength and reflex/sensory function. These results were associated with (i) decreased pulmonary and cerebral fungal burden and (ii) increased inflammatory infiltrate and modulatory of IFNγ, IL-6, IL-10, and IL-17A cytokines in mice treated with pCramoll. Indeed, bone marrow-derived macrophages pulsed with pCramoll had increased ability to engulf C. gattii, with an enhanced production of reactive oxygen species and decrease of intracellular fungal proliferation. These findings point toward the use of pCramoll in combination with fluconazole as a viable, alternative therapy for cryptococcosis management.
Collapse
Affiliation(s)
- Jannyson J Jandú
- Departamento de Bioquímica, Universidade Federal de PernambucoRecife, Brazil
| | - Marliete C Costa
- Departamento de Microbiologia, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | | | - Fernanda M Andrade
- Departamento de Bioquímica, Universidade Federal de PernambucoRecife, Brazil
| | - Thais F Magalhães
- Departamento de Microbiologia, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Márcia V Silva
- Departamento de Bioquímica, Universidade Federal de PernambucoRecife, Brazil
| | - Maria C A B Castro
- Núcleo de Enfermagem, Universidade Federal de PernambucoVitória de Santo Antão, Brazil.,Laboratório de Imunogenética, Centro de Pesquisas Aggeu MagalhãesRecife, Brazil
| | - Luanna C B B Coelho
- Departamento de Bioquímica, Universidade Federal de PernambucoRecife, Brazil
| | - Aline G Gomes
- Departamento de Patologia Geral, Instituto Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Tatiane A Paixão
- Departamento de Patologia Geral, Instituto Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Daniel A Santos
- Departamento de Microbiologia, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Maria T S Correia
- Departamento de Bioquímica, Universidade Federal de PernambucoRecife, Brazil
| |
Collapse
|