1
|
Lin L, Lv Z, Wang M, Kan A, Zou S, Wu B, Guo L, Edirs S, Liu J, Zhu L. Comparative Analysis of Chemical Composition and Antibacterial Activity of Essential Oils from Five Varieties of Lavender Extracted via Supercritical Fluid Extraction. Molecules 2025; 30:217. [PMID: 39860087 PMCID: PMC11767404 DOI: 10.3390/molecules30020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
This study aimed to determine the chemical composition of five Lavender essential oils (LEOs) using the gas chromatography-mass spectroscopy technique and to assess their antibacterial activity against four marine Vibrio species, including Shewanella algae, Shewanella maridflavi, Vibrio harveyi, and Vibrio alginolyticus. Sensitivity tests were performed using the disk diffusion and serial dilution methods. The results showed that all five LEOs exhibited antibacterial activity against the four tested marine Vibrio species. The antibacterial activities of all five LEOs were above moderate sensitivity. The five LEOs from French blue, space blue, eye-catching, and true Lavender showed high sensitivity, particularly against Shewanella maridflavi. The compounds of LEOs from different varieties of Lavender were similar and mainly comprised linalool, linalyl acetate, eucalyptol, and isoborneol. Different varieties of LEOs possessed unique components besides common components, and the percentage of each one was different, which led to different fragrance loads. The major fragrances were lily of the valley, an aromatic compound fragrance, and an herbal fragrance. The antibacterial activity of LEO from eye-catching Lavender was better than that of others, which could provide a reference for its application in the prevention and control of marine Vibrio spp. and the development of antibacterial products.
Collapse
Affiliation(s)
- Lijing Lin
- Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (L.L.); (M.W.)
| | - Zhencheng Lv
- School of life Sciences, Huizhou University, Huizhou 516007, China; (Z.L.); (S.Z.)
| | - Meiyu Wang
- Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (L.L.); (M.W.)
- Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China;
| | - Ankang Kan
- Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China;
| | - Songling Zou
- School of life Sciences, Huizhou University, Huizhou 516007, China; (Z.L.); (S.Z.)
| | - Bin Wu
- Institute of Agro-Production Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (B.W.); (L.G.); (S.E.)
| | - Limin Guo
- Institute of Agro-Production Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (B.W.); (L.G.); (S.E.)
| | - Salamet Edirs
- Institute of Agro-Production Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (B.W.); (L.G.); (S.E.)
| | - Jiameng Liu
- Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (L.L.); (M.W.)
| | - Lin Zhu
- Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (L.L.); (M.W.)
| |
Collapse
|
2
|
Preman NK, Amin N, Sanjeeva SG, Surya S, Kumar B S, Shenoy MM, Shastry RP, Johnson RP. Essential Oil Components Incorporated Emulsion Hydrogels for Eradicating Dermatophytosis Caused by Pathogenic Fungi Trichophyton mentagrophytes and Microsporum canis. Adv Healthc Mater 2024; 13:e2400811. [PMID: 39138998 DOI: 10.1002/adhm.202400811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/01/2024] [Indexed: 08/15/2024]
Abstract
Dermatophytosis is a prevalent fungal infection and public health burden, majorly caused by the attack of zoophilic fungi genera of Trichophyton and Microsporum. Among them, T. mentagrophytes and M. canis are the dominating pathogens that cause dermatophytosis in humans. Though anti-fungal treatments are available, the widespread drug resistance and minimal efficacy of conventional therapies cause recurring infections. In addition, prolonged anti-fungal medications induce several systemic side effects, including hepatotoxicity and leucopenia. The anti-dermatophytic formulation of biocompatible essential oil components (EOCs) is attractive due to their highly potent anti-dermatophytic action. Herein, two EOCs, Eugenol (EU) and Isoeugenol (IU), incorporated emulsion hydrogel (EOCs-EHG) synthesized from hydroxypropylmethyl cellulose and poly(ethylene glycol) methyl ether methacrylate. The cytocompatibility of the hydrogels is confirmed by treating them with fibroblast and keratinocyte cell lines. The EOCs-EHG demonstrated pH and temperature-responsive sustained release of entrapped EOCs and inhibited fungal spore germination. T. mentagrophytes and M. canis biofilms are eradicated at a minimal inhibitory concentration of 2 µg mL-1 each of EU and IU. The in vivo anti-dermatophytic activity of EOCs-EHG is confirmed in dermatophyte-infected Wistar albino rat models. The topical application of EOCs-EHG demonstrated complete infection eradication and facilitated skin regeneration, emphasizing the therapeutic potential of EOCs-EHG against dermatophytosis.
Collapse
Affiliation(s)
- Namitha K Preman
- Polymer Nanobiomaterials Research Laboratory, Smart Materials and Devices (SMAD) Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Nikhitha Amin
- Department of Dermatology, Venereology and Leprosy, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Sandesh G Sanjeeva
- Polymer Nanobiomaterials Research Laboratory, Smart Materials and Devices (SMAD) Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Suprith Surya
- Advanced Surgical Skill ENhancement Division (ASSEND), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Sukesh Kumar B
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Manjunath M Shenoy
- Department of Dermatology, Venereology and Leprosy, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Renjith P Johnson
- Polymer Nanobiomaterials Research Laboratory, Smart Materials and Devices (SMAD) Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| |
Collapse
|
3
|
Radwan IT, El-Sherbiny IM, Metwally NH. Synergistic and potential antifungal properties of tailored, one pot multicomponent monoterpenes co-delivered with fluconazole encapsulated nanostructure lipid carrier. Sci Rep 2024; 14:14382. [PMID: 38909063 PMCID: PMC11193721 DOI: 10.1038/s41598-024-63149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Frequent and variant infections are caused by the virtue of opportunistic fungi pathogens. Candidiasis, aspergillosis, and mucormycosis are pathogenic microorganisms that give rise to vast fungal diseases that alternate between moderate to fatal in severity. The use of fluconazole as an antifungal drug was limited due to the acquired resistance in some types of Candida and other fungal species. This study aims to consolidate fluconazole's biological effectiveness against several pathogenic fungi. Six active monoterpenes (MTs) of carvacrol, linalool, geraniol, α-terpinene, citronellal, and nerolidol were selected and encapsulated in nanostructure lipid carrier (NLC) with (NLC-Flu-MTs) and/without (NLC-MTs) fluconazole in one nanoformulation to determine if they will act synergistically or not? The synthesized nanoformulation NLC-Flu-MTs and NLC-MTs exhibited very good particle size of 144.5 nm and 138.6 nm for size and zeta potential values of (- 23.5 mV) and (- 20.3 mV), respectively. Transmission electron microscope investigation confirmed that the synthesized NLCs have regular and spherical shape. The abundance and concentration of the six released monoterpenes were determined, as a novel approach, using GC-MS with very good results and validity. In-vitro antifungal screening was done before and after nano co-delivery against seven pathogenic, and aggressive fungi of Candida tropicalis, Candida krusei, Candida glabrata, Geotrichum Candidum, Candidaalbicans, Aspergillus Niger, and mucor circinelloides. Inhibition Zone diameter (IZD) and the minimum inhibitory concentration (MIC) were measured. Nanoformulations NLC-Flu-MTs and NLC-MTs manifested potential and unique biological susceptibility against all the tested microorganisms with reduced (MIC) values, especially against Candida Tropicalis (MIC = 0.97 µg/ml) which represents 16-fold of the value shown by NLC-MTs (MIC = 15.6 µg/ml) and 64-fold of fluconazole free before nanoformulation (MIC = 62.5 µg/ml). The efficiency of nanomaterials, particularly NLC-Flu-MTs, has become evident in the diminishing value of MIC which affirmed the synergism between fluconazole and the other six monoterpenes.
Collapse
Affiliation(s)
- Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, 11835, Egypt
| | - Ibrahim M El-Sherbiny
- Center for Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza, 12578, Egypt
| | | |
Collapse
|
4
|
Almeida RR, Pinto NAR, Soares IC, Clarindo Ferreira LB, Lima LL, Leitão AA, Guimarães LGDL. Production and physicochemical properties of fungal chitosans with efficacy to inhibit mycelial growth activity of pathogenic fungi. Carbohydr Res 2023; 525:108762. [PMID: 36801499 DOI: 10.1016/j.carres.2023.108762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
In order to enable the applicability of chitosan as an antifungal, soil fungi were isolated and identified, then used in its production. Fungal chitosan has several advantages, including lower toxicity, low cost, and high degree of deacetylation. These characteristics are essential for therapeutic applications. The results indicate high viability of the isolated strains to produce chitosan, obtaining a maximum yield of 40.59 mg chitosan/g of dry biomass. M. pseudolusitanicus L. was reported for the first time for production by chitosan. The chitosan signals were observed by ATR-FTIR and 13C SSNMR. Chitosans showed high degrees of deacetylation (DD), ranging from 68.8% to 88.5%. In comparison with the crustacean chitosan, Rhizopus stolonifer and Cunninghamella elegans presented lower viscometric molar masses (26.23 and 22.18 kDa). At the same time, the molar mass of chitosan Mucor pseudolusitanicus L. showed a value coincident with that assumed as low molar mass (50,000-150,000 g mol-1). Concerning the in vitro antifungal potential against the dermatophyte fungus Microsporum canis (CFP 00098), the fungal chitosans showed satisfactory antifungal activities, inhibiting mycelial growth by up to 62.81%. This study points to the potential of chitosans extracted from fungal cell walls for applications in the inhibition of the growth of (Microsporum canis) human pathogenic dermatophyte.
Collapse
Affiliation(s)
- Regiamara Ribeiro Almeida
- Federal University of São João del-Rei, Natural Science Department, CEP 36301160, São João del-Rei, MG, Brazil
| | | | - Isabela Carla Soares
- Federal University of São João del-Rei, Natural Science Department, CEP 36301160, São João del-Rei, MG, Brazil
| | | | - Larissa Lavorato Lima
- Federal University of Juiz de Fora, Chemistry Department, Institute of Exact Sciences, CEP 36036-900, Juiz de Fora, MG, Brazil
| | - Alexandre Amaral Leitão
- Federal University of Juiz de Fora, Chemistry Department, Institute of Exact Sciences, CEP 36036-900, Juiz de Fora, MG, Brazil
| | | |
Collapse
|
5
|
Ladeira G, de Carvalho SYB, Rocha NAP, Soares IC, Cipriano DF, Freitas JCCD, Guimarães LGDL. Grafted chitosan nanogel with 3,4-methylenedioxycinnamic acid: synthesis, characterization and application in the encapsulation of monoterpenes with antifungal properties. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2022.2163643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Giordane Ladeira
- Natural Science Department, Federal University of São João del-Rei, São João del Rei, Minas Gerais, Brazil
| | | | | | - Isabela Carla Soares
- Natural Science Department, Federal University of São João del-Rei, São João del Rei, Minas Gerais, Brazil
| | - Daniel Fernandes Cipriano
- Department of Physics, Laboratory of Carbon and Ceramic Materials, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Jair Carlos Checon de Freitas
- Department of Physics, Laboratory of Carbon and Ceramic Materials, Federal University of Espírito Santo, Vitória, ES, Brazil
| | | |
Collapse
|
6
|
Mączka W, Duda-Madej A, Grabarczyk M, Wińska K. Natural Compounds in the Battle against Microorganisms-Linalool. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206928. [PMID: 36296521 PMCID: PMC9609897 DOI: 10.3390/molecules27206928] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 12/23/2022]
Abstract
The purpose of this article is to present recent studies on the antimicrobial properties of linalool, the mechanism of action on cells and detoxification processes. The current trend of employing compounds present in essential oils to support antibiotic therapy is becoming increasingly popular. Naturally occurring monoterpene constituents of essential oils are undergoing detailed studies to understand their detailed effects on the human body, both independently and in doses correlated with currently used pharmaceuticals. One such compound is linalool, which is commonly found in many herbs and is used to flavor black tea. This compound is an excellent fragrance additive for cosmetics, enhancing the preservative effect of the formulations used in them or acting as an anti-inflammatory on mild skin lesions. Previous studies have shown that it is extremely important due to its broad spectrum of biological activities, i.e., antioxidant, anti-inflammatory, anticancer, cardioprotective and antimicrobial. Among opportunistic hospital strains, it is most active against Gram-negative bacteria. The mechanism of action of linalool against microorganisms is still under intensive investigation. One of the key aspects of linalool research is biotransformation, through which its susceptibility to detoxification processes is determined.
Collapse
Affiliation(s)
- Wanda Mączka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
- Correspondence: (W.M.); (A.D.-M.); (M.G.); (K.W.)
| | - Anna Duda-Madej
- Department of Microbiology, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
- Correspondence: (W.M.); (A.D.-M.); (M.G.); (K.W.)
| | - Małgorzata Grabarczyk
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
- Correspondence: (W.M.); (A.D.-M.); (M.G.); (K.W.)
| | - Katarzyna Wińska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
- Correspondence: (W.M.); (A.D.-M.); (M.G.); (K.W.)
| |
Collapse
|
7
|
Li YN, Zhang SB, Lv YY, Zhai HC, Cai JP, Hu YS. Linalool, the main volatile constituent from Zanthoxylum schinifolium pericarp, prevents growth of Aspergillus flavus in post-harvest grains. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Silva SL, de Oliveira Pereira F, Cordeiro LV, Diniz Neto H, Dos Santos Maia M, da Silva Souza HD, de Athayde-Filho PF, Scotti MT, Scotti L, de Oliveira Lima E. Antifungal activity of 2-Chloro-N-phenylacetamide, docking and molecular dynamics studies against clinical isolates of Candida tropicalis and Candida parapsilosis. J Appl Microbiol 2022; 132:3601-3617. [PMID: 35179275 DOI: 10.1111/jam.15498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
AIMS This study evaluated the antifungal, antibiofilm, and molecular docking of 2-Chloro-N-phenylacetamide against clinical isolates of Candida tropicalis and Candida parapsilosis. METHODS AND RESULTS MIC of the test drugs was determined by microdilution. A1Cl obtained MIC values ranging from 16 and 256 μg/mL. Fluconazole MIC ranging from 16 and 512 μg/mL. MIC of A1Cl showed fungicide activity, emphasizing the solid antifungal potential of this drug. An association study was performed with A1Cl and fluconazole (checkerboard), revealing indifference by decreasing. Thus, we conducted this study using A1Cl isolated. In the micromorphological assay, the test drugs reduced the production of virulence structures compared to the control (concentration-dependent effect). A1Cl inhibited in vitro biofilm formation at all concentrations tested (1/4MIC to 8xMIC) (p<0.05) and reduced mature biofilm biomass (p<0.05) against C. tropicalis and C. parapsilosis. In the ex vivo biofilm susceptibility testing (human nails fragments), A1Cl inhibited biofilm formation and reduced mature biofilm biomass (p<0.05) more than 50% at MIC. Fluconazole had a similar effect at 4xMIC. In silico studies suggest that the mechanism of antifungal activity of A1Cl involves the inhibition of the enzyme dihydrofolate reductase rather than geranylgeranyltransferase-I. CONCLUSIONS The results suggest that A1Cl is a promising antifungal agent. Furthermore, this activity is related to attenuation of expression of virulence factors and antibiofilm effects against C. tropicalis and C. parapsilosis. SIGNIFICANCE AND IMPACT OF THE STUDY Our study provides the first evidence that A1Cl, a novel synthetic drug, has fungicidal effects against C. tropicalis and C. parapsilosis. Furthermore, in vitro and ex vivo biofilms assays have demonstrated the potential antibiofilm of A1Cl. The mechanism of action involves inhibiting the enzyme dihydrofolate reductase, which was supported by in silico analyses. Therefore, this potential can be explored as a therapeutic alternative for onychomycosis and, at the same time, contribute to decreasing the resistance of clinical isolates of C. tropicalis and C. parapsilosis.
Collapse
Affiliation(s)
- Shellygton Lima Silva
- Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa, Brazil
| | - Fillipe de Oliveira Pereira
- Biochemistry Laboratory, Academic Unit of Health, Education and Health Center, Federal University of Campina Grande, Cuité, Brazil
| | - Laisa Vilar Cordeiro
- Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa, Brazil
| | - Hermes Diniz Neto
- Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa, Brazil
| | - Mayara Dos Santos Maia
- Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa, Brazil
| | - Helivado Diogenes da Silva Souza
- Bioenergy and Organic Synthesis Research Laboratory, Department of Chemistry, University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Petrônio F de Athayde-Filho
- Bioenergy and Organic Synthesis Research Laboratory, Department of Chemistry, University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa, Brazil
| | - Edeltrudes de Oliveira Lima
- Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa, Brazil
| |
Collapse
|
9
|
Asghar S, Khan IU, Salman S, Khalid SH, Ashfaq R, Vandamme TF. Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms. Adv Drug Deliv Rev 2021; 179:114019. [PMID: 34699940 DOI: 10.1016/j.addr.2021.114019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/03/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Since antiquity, the survival of human civilization has always been threatened by the microbial infections. An alarming surge in the resistant microbial strains against the conventional drugs is quite evident in the preceding years. Furthermore, failure of currently available regimens of antibiotics has been highlighted by the emerging threat of biofilms in the community and hospital settings. Biofilms are complex dynamic composites rich in extracellular polysaccharides and DNA, supporting plethora of symbiotic microbial life forms, that can grow on both living and non-living surfaces. These enforced structures are impervious to the drugs and lead to spread of recurrent and non-treatable infections. There is a strong realization among the scientists and healthcare providers to work out alternative strategies to combat the issue of drug resistance and biofilms. Plants are a traditional but rich source of effective antimicrobials with wider spectrum due to presence of multiple constituents in perfect synergy. Other than the biocompatibility and the safety profile, these phytochemicals have been repeatedly proven to overcome the non-responsiveness of resistant microbes and films via multiple pathways such as blocking the efflux pumps, better penetration across the cell membranes or biofilms, and anti-adhesive properties. However, the unfavorable physicochemical attributes and stability issues of these phytochemicals have hampered their commercialization. These issues of the phytochemicals can be solved by designing suitably constructed nanoscaled structures. Nanosized systems can not only improve the physicochemical features of the encapsulated payloads but can also enhance their pharmacokinetic and therapeutic profile. This review encompasses why and how various types of phytochemicals and their nanosized preparations counter the microbial resistance and the biofouling. We believe that phytochemical in tandem with nanotechnological innovations can be employed to defeat the microbial resistance and biofilms. This review will help in better understanding of the challenges associated with developing such platforms and their future prospects.
Collapse
|
10
|
An Q, Ren JN, Li X, Fan G, Qu SS, Song Y, Li Y, Pan SY. Recent updates on bioactive properties of linalool. Food Funct 2021; 12:10370-10389. [PMID: 34611674 DOI: 10.1039/d1fo02120f] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Natural products, including essential oils and their components, have been used for their bioactivities. Linalool (2,6-dimethyl-2,7-octadien-6-ol) is an aromatic monoterpene alcohol that is widely found in essential oils and is broadly used in perfumes, cosmetics, household cleaners and food additives. This review covers the sources, physicochemical properties, application, synthesis and bioactivities of linalool. The present study focuses on the bioactive properties of linalool, including anticancer, antimicrobial, neuroprotective, anxiolytic, antidepressant, anti-stress, hepatoprotective, renal protective, and lung protective activity and the underlying mechanisms. Besides this, the therapeutic potential of linalool and the prospect of encapsulating linalool are also discussed. Linalool can induce apoptosis of cancer cells via oxidative stress, and at the same time protects normal cells. Linalool exerts antimicrobial effects through disruption of cell membranes. The protective effects of linalool to the liver, kidney and lung are owing to its anti-inflammatory activity. On account of its protective effects and low toxicity, linalool can be used as an adjuvant of anticancer drugs or antibiotics. Therefore, linalool has a great potential to be applied as a natural and safe alternative therapeutic.
Collapse
Affiliation(s)
- Qi An
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Jing-Nan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Xiao Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Sha-Sha Qu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yue Song
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yang Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Si-Yi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
11
|
Rajput M, Bithel N, Vijayakumar S. Antimicrobial, antibiofilm, antioxidant, anticancer, and phytochemical composition of the seed extract of Pongamia pinnata. Arch Microbiol 2021; 203:4005-4024. [PMID: 34037822 DOI: 10.1007/s00203-021-02365-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Ethyl acetate seed extract of Pongamia pinnata displayed the highest antimicrobial potential against all test pathogens and Staphylococcus epidermidis was reported as the most sensitive strain with MIC/MBC 1.56/3.12 mg ml-1. It inhibited S. epidermidis biofilm 97.43% at MIC and LM as well as FE-SEM micrographs displayed extensive disintegration in biofilm. It showed the highest TPC (1.23 ± 0.04 g GAE g-1), TFC (0.95 ± 0.05 g CE g-1), and antioxidant activity with IC50 18.47 ± 0.33 μg ml-1. MTT assay displayed concentration-dependent strong cytotoxicity on K562 cells on the treatment of ethyl acetate extract with an IC50 value of 84.41 μg ml-1. On the other hand, it showed minute cytotoxicity on normal PBMCs with an IC50 value of 410.14 μg ml-1. GC-MS analysis revealed that Hexadecanoic acid (35.97%); 2-(1,3-Benzodioxol-5-yl)furo[2,3-h]chromen-4-one (Pongaglabrone) (22.82%); 2,2-Dimethylindane-1,3-dione- (13.05%) were the three major components in ethyl acetate extract. The present investigation showcases ethyl acetate extract as a potent antimicrobial, antibiofilm, antioxidant, and anticancer agent that opens a new avenue for its phytochemicals as a therapeutic agent.
Collapse
Affiliation(s)
- Minakshi Rajput
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249404, Uttarakhand, India.
| | - Navneet Bithel
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249404, Uttarakhand, India
| | - Sekar Vijayakumar
- Marine College, Shandong University, Weihai, 264209, People's Republic of China
| |
Collapse
|
12
|
Michalczyk A, Ostrowska P. Essential oils and their components in combating fungal pathogens of animal and human skin. J Mycol Med 2021; 31:101118. [PMID: 33548912 DOI: 10.1016/j.mycmed.2021.101118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/29/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The most common problems of modern medicine include fungal infections of the skin and its appendages caused by dermatomycetes, yeast-like fungi and moulds. Due to toxicity of pharmacological fungicides and promotion of ecology, natural substances with high antifungal properties are sought. Essential oils and their components show potential in this regard. MATERIAL AND METHOD Fourteen commercial essential oils were tested for antifungal activity. The study were carried out by agar dilution method against the following fungal species: Microsporum gypseum, Microsporum canis, Trichophyton mentagrophytes, Trichophyton violaceum, Aspergillus niger, Scopulariopsis brevicaulis and (IZ 1) dog skin isolate. The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) values were determined for all tested oils and individual components of oils with the highest activity against the tested fungi. GC-MS analysis was performed for the most active oils. RESULTS Cinnamon, thyme, clove, geranium and manuka oils were most active against the test fungi. The MIC values in the tested oils were in the range of 0.5->10μg/μl and the MFC amounted to 1.25->10μg/μl. Activity of individual components against the tested fungi strains was selective and clearly higher against dermatomycetes fungi and IZ 1 isolate. The strongest effect on dermatomycetes fungi was of cinnamaldehyde, thymol and carvacrol-with the values of 0.039-1.25μg/μl (MIC) and 0.078-1.25μg/μl (MFC). In turn, the highest activity against IZ 1 isolate was of cinnamaldehyde, eugenol, carvacrol, geraniol and thymol. Their MIC and MFC was 0.313-1.25μg/μl. CONCLUSION The results prove the applicability of selected oils and their components as alternatives to synthetic agents in combating fungal dermatoses in animals and humans.
Collapse
Affiliation(s)
- Alicja Michalczyk
- The Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, Department of Chemical Technology and Biotechnology, Annopol 6, 03-236 Warsaw, Poland.
| | - Paulina Ostrowska
- The Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, Department of Chemical Technology and Biotechnology, Annopol 6, 03-236 Warsaw, Poland
| |
Collapse
|
13
|
Upadhyay N, Singh VK, Dwivedy AK, Chaudhari AK, Dubey NK. Assessment of nanoencapsulated Cananga odorata essential oil in chitosan nanopolymer as a green approach to boost the antifungal, antioxidant and in situ efficacy. Int J Biol Macromol 2021; 171:480-490. [PMID: 33428956 DOI: 10.1016/j.ijbiomac.2021.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 01/18/2023]
Abstract
In this study, a comparative efficacy of Cananga odorata EO (CoEO) and its nanoencapsulated formulation into chitosan nanoemulsion (CoEO-CsNe) against a toxigenic strain of Aspergillus flavus (AF-M-K5) were investigated for the first time in order to determine its efficacy in preservation of stored food from fungal, aflatoxin B1 (AFB1) contamination and lipid peroxidation. GC and GC-MS analysis of CoEO revealed the presence of linalool (24.56%) and benzyl acetate (22.43%) as the major components. CoEO was encapsulated into chitosan nanoemulsion (CsNe) through ionic-gelation technique and characterized by High Resolution-Scanning Electron Microscopy (HR-SEM), Fourier Transform Infrared spectroscopy (FTIR), and X-Ray Diffraction (XRD) analysis. The CoEO-CsNe during in vitro investigation against A. flavus completely inhibited the growth and AFB1 production at 1.0 μL/mL and 0.75 μL/mL, respectively. Additionally, CoEO-CsNe showed improved antioxidant activity against DPPH• and ABTS•+ with IC50 value 0.93 and 0.72 μL/mL, respectively. Further, CoEO-CsNe suppressed fungal growth, AFB1 secretion and lipid peroxidation in Arachis hypogea L. during in situ investigation without causing any adverse effect on seed germination. Overall results demonstrated that the CoEO-CsNe has potential of being utilized as a suitable plant based antifungal agent to improve the shelf-life of stored food against AFB1 and lipid peroxidation mediated biodeterioration.
Collapse
Affiliation(s)
- Neha Upadhyay
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
14
|
de Medeiros CAC, Pinto ÂDV, de Oliveira JC, Silva GS, Arrua JMM, Lima IO, Pereira FDO. Evaluating the Antifungal Activity of α-Bisabolol in Association with NaCl on Fusarium oxysporum in Maize Grains. Curr Microbiol 2021; 78:604-610. [PMID: 33388939 DOI: 10.1007/s00284-020-02313-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/28/2020] [Indexed: 11/30/2022]
Abstract
Fusarium infections result in reduced maize grain (Zea mays L.) yields and notable impacts on human and animal health. Research involving natural products to control fungi in food is a promising alternative. Combinations of α-bisabolol (AB) and sodium chloride (NaCl) may suggest the use of lower effective concentrations of the drugs. This study aimed to evaluate the antifungal potential of AB associated with NaCl against Fusarium oxysporum strains isolated from maize. Minimum inhibitory concentrations (MICs) values of AB and NaCl were determined by microdilution, and an association study was performed (checkerboard). Effects on fungal mycelial growth (poisoned substrate technique) and a maize grain contamination model were analyzed. AB presented MIC values ranging from 128 and 1024 μg/mL; NaCl inhibited fungal growth at 16,384 μg/mL. The AB/NaCl association study revealed synergism by decreasing inhibitory concentrations by eight times. In corn kernels, AB and NaCl, whether isolated (at MIC) or in association (at sub-inhibitory concentrations), significantly inhibited in vitro mycelial growth (P < 0.05). Further analysis of liquid from a canned maize sample also revealed the fungistatic effects of the compounds associations (P < 0.05). The results confirm the antifungal potential of AB, whether isolated or in association with NaCl to control F. oxysporum in maize.
Collapse
Affiliation(s)
- César A C de Medeiros
- Natural and Bioactive Synthetic Products, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Ânderson de V Pinto
- Biochemistry Laboratory, Academic Health Unit, Education and Health Center, Federal University of Campina Grande, Olho D`Água da Bica, Cuité, Paraíba, 58175-000, Brazil
| | - Josenildo C de Oliveira
- Biochemistry Laboratory, Academic Health Unit, Education and Health Center, Federal University of Campina Grande, Olho D`Água da Bica, Cuité, Paraíba, 58175-000, Brazil
| | - Gezaíldo S Silva
- Food Science and Technology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Juliana M M Arrua
- Biotechnology Laboratory, Multidisciplinary Center for Technological Investigations, Directorate General for Scientific and Technological Research, National University of Asunción, San Lorenzo, Paraguay
| | - Igara O Lima
- Natural Sciences and Biotechnology, Education and Health Center, Federal University of Campina Grande, Cuité, Paraíba, Brazil
| | - Fillipe de O Pereira
- Biochemistry Laboratory, Academic Health Unit, Education and Health Center, Federal University of Campina Grande, Olho D`Água da Bica, Cuité, Paraíba, 58175-000, Brazil.
| |
Collapse
|
15
|
de Carvalho SYB, Almeida RR, Pinto NAR, de Mayrinck C, Vieira SS, Haddad JF, Leitão AA, Guimarães LGDL. Encapsulation of essential oils using cinnamic acid grafted chitosan nanogel: Preparation, characterization and antifungal activity. Int J Biol Macromol 2020; 166:902-912. [PMID: 33147435 DOI: 10.1016/j.ijbiomac.2020.10.247] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022]
Abstract
Chemical modifications in the chitosan structure may result in obtaining a new material with improved chemical properties, such as an ability to encapsulate lipophilic compounds. This study aimed to synthesize cinnamic acid grafted chitosan nanogel to encapsulate the essential oils of Syzygium aromaticum and Cinnamomum ssp., in order to develop a material to be applied in the control of dermatophytosis caused by the fungus Microsporum canis. The cinnamic acid graft in chitosan was verified by the Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Solid State Nuclear Magnetic Resonance of the 13C Nucleus (13C SSNMR) and Thermal analysis coupled to mass spectrometry (TG-MS) techniques. The nanogel obtained showed affinity for the essential oils of S. aromaticum and Cinnamomum, with encapsulation efficiencies equal to 74% and 89%, respectively. When in an aqueous medium the nanogel with the encapsulated essential oils was able to form stable nanoparticles with average sizes of 176.0 ± 54.3 nm and 263.0 ± 81.4 nm. The cinnamic acid grafted chitosan nanogel showed antifungal activity in vitro against M. canis, inhibiting up to 53.96% of its mycelial growth. Complete inhibition of mycelial growth was achieved by the nanogel with encapsulated essential oils. The results found in this work demonstrated the development of a material with potential application in the control of dermatophytosis caused by the fungus M. canis.
Collapse
Affiliation(s)
| | | | | | | | | | - Juliana Fischer Haddad
- Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora, Brazil
| | - Alexandre Amaral Leitão
- Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora, Brazil
| | | |
Collapse
|
16
|
Sage Species Case Study on a Spontaneous Mediterranean Plant to Control Phytopathogenic Fungi and Bacteria. FORESTS 2020. [DOI: 10.3390/f11060704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sage species belong to the family of Labiatae/Lamiaceae and are diffused worldwide. More than 900 species of sage have been identified, and many of them are used for different purposes, i.e., culinary uses, traditional medicines and natural remedies and cosmetic applications. Another use of sage is the application of non-distilled sage extracts and essential oils to control phytopathogenic bacteria and fungi, for a sustainable, environmentally friendly agriculture. Biocidal propriety of non-distilled extracts and essential oils of sage are w documented. Antimicrobial effects of these sage extracts/essential oils depend on both sage species and bacteria and fungi species to control. In general, it is possible to choose some specific extracts/essential oils to control specific phytopathogenic bacteria or fungi. In this context, the use of nanotechnology techniques applied to essential oil from salvia could represent a future direction for improving the performance of eco-compatible and sustainable plant defence and represents a great challenge for the future.
Collapse
|
17
|
Zhang D, Fu Y, Yang J, Li XN, San MM, Oo TN, Wang Y, Yang X. Triterpenoids and Their Glycosides from Glinus Oppositifolius with Antifungal Activities against Microsporum Gypseum and Trichophyton Rubrum. Molecules 2019; 24:E2206. [PMID: 31212847 PMCID: PMC6631934 DOI: 10.3390/molecules24122206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 11/16/2022] Open
Abstract
Four new triterpenoids, 3β,12β,16β,21β,22-pentahydroxyhopane (1), 12β,16β,21β,22-tetrahydroxyhopan-3-one (2), 3-oxo-olean-12-ene-28,30-dioic acid (3), and 3β-hydroxyoleana-11,13(18)-diene-28,30-dioic acid 30-methyl ester (4); 21 new triterpenoid saponins, glinusopposides A-U (5-25); and 12 known compounds (26-37) were isolated from the whole plants of Glinus oppositifolius. The structures of the new compounds were elucidated based on the analysis of one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) and mass spectrometry (MS) data. All compounds from the plants were measured for antifungal activities against Microsporum gypseum and Trichophyton rubrum. Glinusopposide B (6), glinusopposide Q (21), glinusopposide T (24), and glinusopposide U (25) showed strong inhibitory activities against M. gypseum (MIC50 7.1, 6.7, 6.8, and 11.1 μM, respectively) and T. rubrum (MIC50 14.3, 13.4, 11.9, and 13.0 μM, respectively). For those active compounds with an oleanane skeleton, glycosylation (21-26) or oxidation (3) of 3-OH was helpful in increasing the activity; replacement of the 30-methyl group (29) by a carboxymethyl group (26) enhanced the activity; the presence of 11,13(18) double bonds (20) decreased the activity.
Collapse
Affiliation(s)
- Dongdong Zhang
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar.
- Key Laboratory of Economic Plants and Biotechnology and Yunnan Key Laboratory for Wild Plant Resources, State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Yao Fu
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar.
- Key Laboratory of Economic Plants and Biotechnology and Yunnan Key Laboratory for Wild Plant Resources, State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Jun Yang
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar.
- Key Laboratory of Economic Plants and Biotechnology and Yunnan Key Laboratory for Wild Plant Resources, State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Xiao-Nian Li
- Key Laboratory of Economic Plants and Biotechnology and Yunnan Key Laboratory for Wild Plant Resources, State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Myint Myint San
- Forest Research Institute, Yezin, Nay Pyi Taw 05282, Myanmar.
| | - Thaung Naing Oo
- Forest Research Institute, Yezin, Nay Pyi Taw 05282, Myanmar.
| | - Yuehu Wang
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar.
- Key Laboratory of Economic Plants and Biotechnology and Yunnan Key Laboratory for Wild Plant Resources, State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Xuefei Yang
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar.
- Key Laboratory of Economic Plants and Biotechnology and Yunnan Key Laboratory for Wild Plant Resources, State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
18
|
Chen S, Zheng T, Ye C, Huannixi W, Yakefu Z, Meng Y, Peng X, Tian Z, Wang J, Ma Y, Yang Y, Ma Z, Zuo Z. Algicidal properties of extracts from Cinnamomum camphora fresh leaves and their main compounds. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:594-603. [PMID: 30077157 DOI: 10.1016/j.ecoenv.2018.07.115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/17/2018] [Accepted: 07/28/2018] [Indexed: 05/23/2023]
Abstract
Plant allelochemicals are considered as the source of effective, economic and friendly-environmental algaecides. To uncover the anti-algal activities of Cinnamomum camphora fresh leaves and their main algicidal agents, we investigated the inhibitory effects of water and methanol extracts from C. camphora fresh leaves on Microcystis aeruginosa and Chlamydomonas reinhardtii cell growth, analyzed the composition of the water and methanol extracts, and determined the main compounds in extracts on the growth of the two algae and their anti-algal mechanism from photosynthetic abilities. Water and methanol extracts from C. camphora fresh leaves can inhibit M. aeruginosa and C. reinhardtii cell growth, and methanol extracts showed stronger inhibitory effects, due to their more compounds and higher molar concentration. There were 23 compounds in the water extracts, mainly including terpenoids, esters, alcohols, and ketones. Compared to the water extracts, 9 new compounds were detected in the methanol extracts, and the molar concentration of total compounds in methanol extracts increased by 1.3 folds. Camphor, α-terpineol and linalool were 3 main compounds in the water and methanol extracts. Their mixture (1: 3: 6) and individual compound showed remarkable inhibition on M. aeruginosa and C. reinhardtii cell growth. The degradation of photosynthetic pigments and the reduction of maximum quantum yield of photosystem II (PSII) photochemistry, coefficient of photochemical quenching as well as apparent electron transport rate in C. reinhardtii cells aggravated gradually with increasing the concentration of the mixture and individual compound, while the non-photochemical dissipation of absorbed light energy increased gradually, which led to the decline of photosynthetic abilities. This indicated that camphor, α-terpineol and linalool were 3 main algicidal agents in C. camphora fresh leaf extracts, and they inhibited algal growth by inducing photosynthetic pigment degradation and declining PSII efficiency. Therefore, C. camphora fresh leaf extracts and their main components have potential utilization values as algaecides.
Collapse
Affiliation(s)
- Silan Chen
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Tiefeng Zheng
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Chaolin Ye
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Wulan Huannixi
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Zumulati Yakefu
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yiyu Meng
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Xin Peng
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Zhengfeng Tian
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Junhao Wang
- Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Yuandan Ma
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Youyou Yang
- Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Zhongqing Ma
- Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Zhaojiang Zuo
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China.
| |
Collapse
|
19
|
Leal Pinto SM, Herrera Sandoval LV, Vargas LY. In vitro susceptibility of Microsporum
spp. and mammalian cells to Eugenia caryophyllus
essential oil, eugenol and semisynthetic derivatives. Mycoses 2018; 62:41-50. [DOI: 10.1111/myc.12844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/12/2018] [Accepted: 08/21/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Sandra Milena Leal Pinto
- Programa de investigación en enfermedades infecciosas; Facultad de Ciencias de la Salud; Universidad de Santander; Bucaramanga Colombia
| | - Laura Viviana Herrera Sandoval
- Departamento de Ciencias Básicas; Grupo de investigación Sistema Estomatognático y morfofisiología; Universidad Santo Tomás; Bucaramanga Colombia
| | - Leonor Yamile Vargas
- Facultad de Química Ambiental; Grupo de Investigaciones Ambientales para el Desarrollo Sostenible; Universidad Santo Tomás; Bucaramanga Colombia
| |
Collapse
|
20
|
Nuutinen T. Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus. Eur J Med Chem 2018; 157:198-228. [PMID: 30096653 DOI: 10.1016/j.ejmech.2018.07.076] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
Cannabaceae plants Cannabis sativa L. and Humulus lupulus L. are rich in terpenes - both are typically comprised of terpenes as up to 3-5% of the dry-mass of the female inflorescence. Terpenes of cannabis and hops are typically simple mono- and sesquiterpenes derived from two and three isoprene units, respectively. Some terpenes are relatively well known for their potential in biomedicine and have been used in traditional medicine for centuries, while others are yet to be studied in detail. The current, comprehensive review presents terpenes found in cannabis and hops. Terpenes' medicinal properties are supported by numerous in vitro, animal and clinical trials and show anti-inflammatory, antioxidant, analgesic, anticonvulsive, antidepressant, anxiolytic, anticancer, antitumor, neuroprotective, anti-mutagenic, anti-allergic, antibiotic and anti-diabetic attributes, among others. Because of the very low toxicity, these terpenes are already widely used as food additives and in cosmetic products. Thus, they have been proven safe and well-tolerated.
Collapse
Affiliation(s)
- Tarmo Nuutinen
- Department of Environmental and Biological Sciences, Univerisity of Eastern Finland (UEF), Finland; Department of Physics and Mathematics, UEF, Finland.
| |
Collapse
|
21
|
Yakefu Z, Huannixi W, Ye C, Zheng T, Chen S, Peng X, Tian Z, Wang J, Yang Y, Ma Z, Zuo Z. Inhibitory effects of extracts from Cinnamomum camphora fallen leaves on algae. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:2545-2554. [PMID: 29944120 DOI: 10.2166/wst.2018.199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Natural allelochemicals are considered as a source of algaecides. To uncover the anti-algal activity of Cinnamomum camphora fallen leaves and promote their usage as algaecides, the composition of their water and methanol extracts was analyzed, and the inhibitory effects of extracts on the growth of Microcystis aeruginosa and Chlamydomonas reinhardtii, and chlorophyll (Chl) content and photosynthetic abilities in C. reinhardtii were investigated. Twenty-five compounds were detected in the water extracts, mainly including terpenoids, esters, alcohols, and ketones. Compared to water extracts, there were more compounds and higher concentration in methanol extracts. Both water and methanol extracts inhibited the growth of the two algae, and 15 mg·ml-1 methanol extracts killed the algal cells after 48 h. The levels of Chl a and Chl b, as well as maximum quantum yield of photosystem II photochemistry (Fv/Fm) in C. reinhardtii cells reduced gradually with increasing the concentration of extracts, while the maximum quantum yield of non-photochemical de-excitation (φDO) increased gradually. At the same concentration, methanol extracts showed stronger inhibitory effects than water extracts, due to their higher number of compounds and higher concentration. Therefore, C. camphora fallen leaves have a potential value as an algaecide.
Collapse
Affiliation(s)
- Zumulati Yakefu
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| | - Wulan Huannixi
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| | - Chaolin Ye
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| | - Tiefeng Zheng
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| | - Silan Chen
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| | - Xin Peng
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| | - Zhengfeng Tian
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| | - Junhao Wang
- Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Youyou Yang
- Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Zhongqing Ma
- Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Zhaojiang Zuo
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China E-mail:
| |
Collapse
|