1
|
Fernandes LDS, Ogasawara LS, Medina-Alarcón KP, dos Santos KS, de Matos Silva S, de Assis LR, Regasini LO, de Oliveira AG, Mendes Giannini MJS, Scarpa MV, Fusco Almeida AM. Bioprospecting, Synergistic Antifungal and Toxicological Aspects of the Hydroxychalcones and Their Association with Azole Derivates against Candida spp. for Treating Vulvovaginal Candidiasis. Pharmaceutics 2024; 16:843. [PMID: 39065540 PMCID: PMC11279727 DOI: 10.3390/pharmaceutics16070843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Vulvovaginal candidiasis (VVC) remains a prevalent fungal disease, characterized by challenges, such as increased fungal resistance, side effects of current treatments, and the rising prevalence of non-albicans Candida spp. naturally more resistant. This study aimed to propose a novel therapeutic approach by investigating the antifungal properties and toxicity of 2-hydroxychalcone (2-HC) and 3'-hydroxychalcone (3'-HC), both alone and in combination with fluconazole (FCZ) and clotrimazole (CTZ). A lipid carrier (LC) was also developed to deliver these molecules. The study evaluated in vitro anti-Candida activity against five Candida species and assessed cytotoxicity in the C33-A cell line. The safety and therapeutic efficacy of in vivo were tested using an alternative animal model, Galleria mellonella. The results showed antifungal activity of 2-HC and 3'-HC, ranging from 7.8 to 31.2 as fungistatic and 15.6 to 125.0 mg/L as fungicide effect, with cell viability above 80% from a concentration of 9.3 mg/L (2-HC). Synergistic and partially synergistic interactions of these chalcones with FCZ and CTZ demonstrated significant improvement in antifungal activity, with MIC values ranging from 0.06 to 62.5 mg/L. Some combinations reduced cytotoxicity, achieving 100% cell viability in many interactions. Additionally, two LCs with suitable properties for intravaginal application were developed. These formulations demonstrated promising therapeutic efficacy and low toxicity in Galleria mellonella assays. These results suggest the potential of this approach in developing new therapies for VVC.
Collapse
Affiliation(s)
- Lígia de Souza Fernandes
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (A.G.d.O.); (M.V.S.)
| | - Letícia Sayuri Ogasawara
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| | - Kaila Petronila Medina-Alarcón
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| | - Kelvin Sousa dos Santos
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| | - Samanta de Matos Silva
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| | - Letícia Ribeiro de Assis
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), St. Quirino de Andrade, 215, São José do Rio Preto 01049-010, SP, Brazil; (L.R.d.A.); (L.O.R.)
| | - Luís Octavio Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), St. Quirino de Andrade, 215, São José do Rio Preto 01049-010, SP, Brazil; (L.R.d.A.); (L.O.R.)
| | - Anselmo Gomes de Oliveira
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (A.G.d.O.); (M.V.S.)
| | - Maria José Soares Mendes Giannini
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| | - Maria Virginia Scarpa
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (A.G.d.O.); (M.V.S.)
| | - Ana Marisa Fusco Almeida
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| |
Collapse
|
2
|
Jothi R, Hong ST, Enkhtsatsral M, Pandian SK, Gowrishankar S. ROS mediated anticandidal efficacy of 3-Bromopyruvate prevents vulvovaginal candidiasis in mice model. PLoS One 2023; 18:e0295922. [PMID: 38153954 PMCID: PMC10754460 DOI: 10.1371/journal.pone.0295922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023] Open
Abstract
Candidal infections, particularly vulvovaginal candidiasis (VVC), necessitate effective therapeutic interventions in clinical settings owing to their intricate clinical nature and elusive understanding of their etiological mechanisms. Given the challenges in developing effective antifungal therapies, the strategy of repurposing existing pharmaceuticals has emerged as a promising approach to combat drug-resistant fungi. In this regard, the current study investigates molecular insights on the anti-candidal efficacy of a well-proven anticancer small molecule -3-bromopyruvate (3BP) against three clinically significant VVC causing Candida species viz., C. albicans, C. tropicalis and C. glabrata. Furthermore, the study validates 3BP's therapeutic application by developing it as a vaginal cream for the treatment of VVC. 3BP exhibited phenomenal antifungal efficacy (killing >99%) with minimum inhibitory concentrations (MIC) and minimum fungicidal concentrations (MFC) of 256 μg/mL against all tested Candida spp. Time killing kinetics experiment revealed 20 min as the minimum time required for 3BP at 2XMIC to achieve complete-killing (99.9%) in all Candida strains. Moreover, the ergosterol or sorbitol experiment explicated that the antifungal activity of 3BP does not stem from targeting the cell wall or the membrane component ergosterol. Instead, 3BP was observed to instigate a sequence of pre-apoptotic cascade events, such as phosphatidylserine (PS) externalization, nuclear condensation and ROS accumulations, as evidenced by PI, DAPI and DCFH-DA staining methods. Furthermore, 3BP demonstrated a remarkable efficacy in eradicating mature biofilms of Candida spp., achieving a maximum eradication level of 90%. Toxicity/safety profiling in both in vitro erythrocyte lysis and in vivo Galleria mellonella survival assay authenticated the non-toxic nature of 3BP up to 512 μg/mL. Finally, a vaginal cream formulated with 3BP was found to be effective in VVC-induced female mice model, as it significantly decreasing fungal load and protecting vaginal mucosa. Concomitantly, the present study serves as a clear demonstration of antifungal mechanistic action of anticancer drug -3BP, against Candida species. This finding holds significant potential for mitigating candidal infections, particularly VVC, within healthcare environments.
Collapse
Affiliation(s)
- Ravi Jothi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Munkhtur Enkhtsatsral
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, South Korea
| | | | | |
Collapse
|
3
|
Sivani BM, Azzeh M, Patnaik R, Pantea Stoian A, Rizzo M, Banerjee Y. Reconnoitering the Therapeutic Role of Curcumin in Disease Prevention and Treatment: Lessons Learnt and Future Directions. Metabolites 2022; 12:metabo12070639. [PMID: 35888763 PMCID: PMC9320502 DOI: 10.3390/metabo12070639] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Turmeric is a plant with a very long history of medicinal use across different cultures. Curcumin is the active part of turmeric, which has exhibited various beneficial physiological and pharmacological effects. This review aims to critically appraise the corpus of literature associated with the above pharmacological properties of curcumin, with a specific focus on antioxidant, anti-inflammatory, anticancer and antimicrobial properties. We have also reviewed the different extraction strategies currently in practice, highlighting the strengths and drawbacks of each technique. Further, our review also summarizes the clinical trials that have been conducted with curcumin, which will allow the reader to get a quick insight into the disease/patient population of interest with the outcome that was investigated. Lastly, we have also highlighted the research areas that need to be further scrutinized to better grasp curcumin’s beneficial physiological and medicinal properties, which can then be translated to facilitate the design of better bioactive therapeutic leads.
Collapse
Affiliation(s)
- Bala Mohan Sivani
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Mahmoud Azzeh
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Rajashree Patnaik
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania;
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, 90128 Palermo, Italy;
| | - Yajnavalka Banerjee
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
- Centre for Medical Education, University of Dundee, Dundee DD1 4HN, UK
- Correspondence: or ; Tel.: +971-527-873-636
| |
Collapse
|
4
|
Abstract
Moisturizers are one of the most widely used preparations in cosmetics and have been extensively used to soften the skin for consumers. Moisturizers work effectively in combating dry skin which may cause pain, tightness, itch, stinging, and/or tingling. The aim of this review is to evaluate published studies on the history, ingredients, preparation processes, characteristics, uses, and applications of moisturizers. Moisturizers bridge the gap between medicine and consumer goods by being used to make the skin more beautiful and healthy. In the future, in moisturizer therapy, the capacity to adapt specific agents to specific dermatological demands will be crucial. Cosmetically, moisturizers make the skin smooth by the mechanism of increasing the water content in the stratum corneum, hence exerting its most vital action, which is moisturizing action and maintaining a normal skin pH.
Collapse
|
5
|
de Oliveira Neto AS, Souza ILA, Amorim MES, de Freitas Souza T, Rocha VN, do Couto RO, Fabri RL, de Freitas Araújo MG. Antifungal efficacy of atorvastatin-containing emulgel in the treatment of oral and vulvovaginal candidiasis. Med Mycol 2020; 59:476-485. [PMID: 32823281 DOI: 10.1093/mmy/myaa071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/29/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
Drug repositioning has been an important ally in the search for new antifungal drugs. Statins are drugs that act to prevent sterol synthesis in both humans and fungi and for this reason they are promissory candidates to be repositioned to treat mycoses. In this study we evaluated the antifungal activity of atorvastatin by in vitro tests to determine the minimum inhibitory concentration against azole resistant Candida albicans and its mechanisms of action. Moreover, the efficacy of both atorvastatin-loaded oral and vaginal emulgels (0.75%, 1.5% and 3% w/w) was evaluated by means of in vivo experimental models of oral and vulvovaginal candidiasis, respectively. The results showed that atorvastatin minimal inhibitory concentration against C. albicans was 31.25 μg/ml. In oral candidiasis experiments, the group treated with oral emulgel containing 3.0% atorvastatin showcased total reduction in fungal load after nine days of treatment. Intravaginal delivery atorvastatin emulgel showed considerable effectiveness at the concentration of 3% (65% of fungal burden reduction) after nine days of treatment. From these findings, it is possible to assert that atorvastatin may be promising for drug repositioning towards the treatment of these opportunistic mycoses.
Collapse
Affiliation(s)
- Ari Soares de Oliveira Neto
- Laboratory of Pharmacology, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Israel Lucas Antunes Souza
- Laboratory of Pharmacology, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Maria Eliza Samuel Amorim
- Laboratory of Pharmaceutical Development, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Thalita de Freitas Souza
- Bioactive Natural Products Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Campus, Juiz de Fora, MG, Brazil
| | - Vinicius Novaes Rocha
- Department of Veterinary Medicine, Faculty of Medicine, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Rene Oliveira do Couto
- Laboratory of Pharmaceutical Development, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Rodrigo Luiz Fabri
- Bioactive Natural Products Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Campus, Juiz de Fora, MG, Brazil
| | | |
Collapse
|
6
|
Campos LM, de Oliveira Lemos AS, da Cruz LF, de Freitas Araújo MG, de Mello Botti GCR, Júnior JLR, Rocha VN, Denadai ÂML, da Silva TP, Tavares GD, Scio E, Fabri RL, Pinto PF. Development and in vivo evaluation of chitosan-gel containing Mitracarpus frigidus methanolic extract for vulvovaginal candidiasis treatment. Biomed Pharmacother 2020; 130:110609. [PMID: 34321177 DOI: 10.1016/j.biopha.2020.110609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/22/2020] [Accepted: 08/02/2020] [Indexed: 02/08/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) is characterized by inflammatory changes in the vaginal mucosa caused by abnormal colonization of Candida species. Traditional topical therapies using reference antifungal drugs usually present several issues and limitations for VVC treatment. Thus, the interest in new vaginal formulations, mainly those based on compounds from natural origin, has been growing over the last years. Methanolic extract from the plant species Mitracarpus frigidus (Willd. Ex Reem Schult.) K. Schum (MFM) has presented potential antifungal activity against C. albicans vaginal infection. Here, we aimed to develop and characterize a gynecological gel formulation based on chitosan containing MFM and to evaluate its anti-C. albicans effectiveness in the treatment of VVC. First, MFM was incorporated into a gel formulation based on chitosan in three final concentrations: 2.5 %, 5.0 %, and 10.0 %. Next, these gel formulations were subjected to stationary and oscillatory rheological tests. Finally, the gel was tested in an experimental VVC model. The rheological tests indicated pseudoplastic fluids, becoming more viscous and elastic with the increase of the extract concentration, indicating intermolecular interactions. Our in vivo analyses demonstrated a great reduction of vulvovaginal fungal burden and infection accompanied with the reduction of mucosal inflammation after MFM chitosan-gel treatment. The present findings open perspectives for the further use of the MFM-chitosan-gel formulation as a therapeutic alternative for VVC treatment.
Collapse
Affiliation(s)
- Lara Melo Campos
- Bioactive Natural Products Laboratory and Protein Structure and Function Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Campus, Juiz de Fora, MG, Brazil
| | - Ari Sérgio de Oliveira Lemos
- Bioactive Natural Products Laboratory and Protein Structure and Function Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Campus, Juiz de Fora, MG, Brazil
| | - Luisa Ferreira da Cruz
- Laboratory of Pharmacology, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, MG, Brazil
| | | | | | - Janildo Ludolf Reis Júnior
- Department of Veterinary Medicine, Faculty of Medicine, Federal University of Juiz de Fora, Campus, Juiz de Fora, MG, Brazil
| | - Vinícius Novaes Rocha
- Department of Veterinary Medicine, Faculty of Medicine, Federal University of Juiz de Fora, Campus, Juiz de Fora, MG, Brazil
| | - Ângelo Márcio Leite Denadai
- Department of Pharmacy, Institute of Life Sciences, Federal University of Juiz de Fora, Campus Governador Valadares, Governor Valadares, MG, Brazil
| | - Thiago Pereira da Silva
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Campus, Juiz de Fora, MG, Brazil
| | - Guilherme Diniz Tavares
- Laboratory of Nanostructured Systems Development, Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Campus, Juiz de Fora, MG, Brazil
| | - Elita Scio
- Bioactive Natural Products Laboratory and Protein Structure and Function Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Campus, Juiz de Fora, MG, Brazil
| | - Rodrigo Luiz Fabri
- Bioactive Natural Products Laboratory and Protein Structure and Function Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Campus, Juiz de Fora, MG, Brazil.
| | - Priscila Faria Pinto
- Bioactive Natural Products Laboratory and Protein Structure and Function Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Campus, Juiz de Fora, MG, Brazil
| |
Collapse
|
7
|
Rigo GV, Tasca T. Vaginitis: Review on Drug Resistance. Curr Drug Targets 2020; 21:1672-1686. [PMID: 32753007 DOI: 10.2174/1389450121666200804112340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Female genital tract infections have a high incidence among different age groups and represent an important impact on public health. Among them, vaginitis refers to inflammation of the vulva and/or vagina due to the presence of pathogens that cause trichomoniasis, bacterial vaginosis, and vulvovaginal candidiasis. Several discomforts are associated with these infections, as well as pregnancy complications and the facilitation of HIV transmission and acquisition. The increasing resistance of microorganisms to drugs used in therapy is remarkable, since women report the recurrence of these infections and associated comorbidities. Different resistant mechanisms already described for the drugs used in the therapy against Trichomonas vaginalis, Candida spp., and Gardnerella vaginalis, as well as aspects related to pathogenesis and treatment, are discussed in this review. This study aims to contribute to drug design, avoiding therapy ineffectiveness due to drug resistance. Effective alternative therapies to treat vaginitis will reduce the recurrence of infections and, consequently, the high costs generated in the health system, improving women's well-being.
Collapse
Affiliation(s)
- Graziela Vargas Rigo
- Research Group on Trichomonas, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiana Tasca
- Research Group on Trichomonas, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Abouali N, Moghimipour E, Mahmoudabadi AZ, Namjouyan F, Abbaspoor Z. The effect of curcumin-based and clotrimazole vaginal cream in the treatment of vulvovaginal candidiasis. J Family Med Prim Care 2019; 8:3920-3924. [PMID: 31879636 PMCID: PMC6924253 DOI: 10.4103/jfmpc.jfmpc_584_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/21/2019] [Accepted: 10/02/2019] [Indexed: 12/03/2022] Open
Abstract
Background: Vulvovaginal candidiasis (VVC) is the second most common infection of the lower female genital among women passing through their productive age. Furthermore, Candida albicans is the most common VVC agents followed by, non-albicans Candida species. Nowadays, extensive studies are being conducted on alternative therapies and the use of herbal medicines. Objectives: The present study was conducted to compare the effect of curcumin and clotrimazole vaginal cream in the treatment of VVC. Methods: The present randomized controlled trial study was performed on 94 women passing through their productive age after their being diagnosed with VVC. The subjects were randomly divided into two groups, with one receiving curcumin-based vaginal 10% cream and the other receiving clotrimazole vaginal 1% cream. The treatment period was 1 week and a full 5 g applicator was used every night. Required follow-up was implemented 4–7 days after the end of treatment. Results: The results showed no significant differences between the two groups in terms of vaginal discharge, itching, vulvovaginal irritation, and vulvovaginal erythema (P > 0.05); however, the number of negative cultures in the group receiving curcumin was significantly lower in comparison with the other group, which received clotrimazole (P = 0.002). Conclusion: It seems that although curcumin could be effective in the treatment of clinical symptoms of VVC, it, quite similar to clotrimazole vaginal cream, did not affect vaginal culture.
Collapse
Affiliation(s)
- Nilufar Abouali
- Department of Midwifery, Reproductive Health Promotion Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Eskandar Moghimipour
- Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Zarei Mahmoudabadi
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Foroogh Namjouyan
- Pharmacognosy, Marine Pharmaceutical Research Center, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Abbaspoor
- Department of Midwifery, Reproductive Health Promotion Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Zhang M, Zhuang B, Du G, Han G, Jin Y. Curcumin solid dispersion-loaded in situ hydrogels for local treatment of injured vaginal bacterial infection and improvement of vaginal wound healing. J Pharm Pharmacol 2019; 71:1044-1054. [PMID: 30887519 DOI: 10.1111/jphp.13088] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/17/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Injured vaginal infection is detrimental to women. A curcumin hydrogel was studied for local treatment of injured vaginal infection. METHODS Curcumin solid dispersions (CSDs) were prepared from polyvinyl pyrrolidone and characterized by differential scanning calorimetry and an X-ray diffraction method. An in situ hydrogel CSD hydrogel (CSDG) was prepared with CSD/poloxamers and characterized. In vitro curcumin release and antibacterial effects of CSDs, CSDGs and curcumin were compared. The therapeutic effect of the CSDGs and Lincomycin/Lidocaine Gel was explored after intravaginal administration on the injured rat vaginal infection models. KEY FINDINGS Curcumin was amorphous in CSDs where curcumin rapidly released in simulated vaginal fluids. However, CSDGs showed sustained release. CSDGs quickly formed gels in the vagina. CSDGs showed high in vivo anti-Escherichia coli or Staphylococcus aureus effect though weak in vitro effect. The recovery of vaginal microenvironment and improvement of intravaginal Lactobacillus growth may be the major reason. Furthermore, CSDGs remarkably improved vaginal wound healing by alleviating inflammation and restoring vaginal epidermal tissues compared with the Lincomycin/Lidocaine Gel. CONCLUSION CSDGs are a promising topical formulation for local treatment of vaginal bacterial infection and improvement of vaginal wound healing.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bo Zhuang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Gangjun Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Guang Han
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Yiguang Jin
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
10
|
Praditya D, Kirchhoff L, Brüning J, Rachmawati H, Steinmann J, Steinmann E. Anti-infective Properties of the Golden Spice Curcumin. Front Microbiol 2019; 10:912. [PMID: 31130924 PMCID: PMC6509173 DOI: 10.3389/fmicb.2019.00912] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/10/2019] [Indexed: 01/02/2023] Open
Abstract
The search for novel anti-infectives is one of the most important challenges in natural product research, as diseases caused by bacteria, viruses, and fungi are influencing the human society all over the world. Natural compounds are a continuing source of novel anti-infectives. Accordingly, curcumin, has been used for centuries in Asian traditional medicine to treat various disorders. Numerous studies have shown that curcumin possesses a wide spectrum of biological and pharmacological properties, acting, for example, as anti-inflammatory, anti-angiogenic and anti-neoplastic, while no toxicity is associated with the compound. Recently, curcumin’s antiviral and antibacterial activity was investigated, and it was shown to act against various important human pathogens like the influenza virus, hepatitis C virus, HIV and strains of Staphylococcus, Streptococcus, and Pseudomonas. Despite the potency, curcumin has not yet been approved as a therapeutic antiviral agent. This review summarizes the current knowledge and future perspectives of the antiviral, antibacterial, and antifungal effects of curcumin.
Collapse
Affiliation(s)
- Dimas Praditya
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany.,Institute of Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and The Helmholtz Centre for Infection Research, Hanover, Germany.,Research Center for Biotechnology, Indonesian Institute of Science, Cibinong, Indonesia
| | - Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Janina Brüning
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Heni Rachmawati
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia.,Research Center for Nanosciences and Nanotechnology, Bandung Institute of Technology, Bandung, Indonesia
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|