1
|
Yang S, Lu K, Shi X, Xu S, Li B, Feng X, Li T, Su W, Wan Y, Cao X, Wang Y. Multifunctional chitosan-based indicator films containing composite pigments stabilized by extracellular and cell wall polysaccharides from Auricularia cornea var. Li. waste for visualization of salmon freshness. Food Chem 2025; 480:143932. [PMID: 40132304 DOI: 10.1016/j.foodchem.2025.143932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/20/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
Smart packaging can indicate the meat freshness through color variations of natural pigments within the films, whose instability have hindered their industrial application. This study developed multifunctional indicator films (CS-ACPS-CB) that possessed ultraviolet resistance, antioxidant properties, and pH sensitivity by incorporating extracellular and cell wall polysaccharides from Auricularia cornea var. Li waste (ACPS) into chitosan (CS) matrix with curcumin/betalain as indicators. Results revealed the extracellular component was acidic heteropolysaccharides, while the cell wall comprised glucose, mannose, xylose, rhamnose and galactaric acid. The electrostatic interactions and hydrogen bonding between cell wall polysaccharides and CS strongly stabilized composite pigments, allowing for controlled release at pH above 8.0. Additionally, CS-ACPS-CB demonstrated color changes corresponding to increases in total volatile basic nitrogen values, effectively signaling the progressive spoilage of salmon. These findings offer an environmentally friendly solution for utilizing Auricularia cornea var. Li waste and a sustainable application for ACPS in smart packaging materials.
Collapse
Affiliation(s)
- Shuanglong Yang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Keshu Lu
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Xueying Shi
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Shuhan Xu
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Binyan Li
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Xin Feng
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Tiejing Li
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Yujun Wan
- Department of Biochemistry, School of Biological Sciences, University of Cambridge, Cambridge CB2 1QW, UK
| | - Xiangyu Cao
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Yuxiao Wang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi Province, China.
| |
Collapse
|
2
|
Zvyagina JY, Safiullin RR, Boginskaya IA, Slipchenko EA, Afanas‘ev KN, Sedova MV, Krylov VB, Yashunsky DV, Argunov DA, Nifantiev NE, Ryzhikov IA, Merzlikin AM, Lagarkov AN. Selective Detection of Fungal and Bacterial Glycans with Galactofuranose (Galf) Residues by Surface-Enhanced Raman Scattering and Machine Learning Methods. Int J Mol Sci 2025; 26:4218. [PMID: 40362455 PMCID: PMC12071545 DOI: 10.3390/ijms26094218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Specific monosaccharide residue, β-D-galactofuranose (Galf) featuring a five-membered ring structure, is found in the glycans of fungi and bacteria, but is normally absent in healthy mammals and humans. In this study, synthetic oligosaccharides mimicking bacterial and fungal glycans were investigated by SERS (Surface-Enhanced Raman Scattering) techniques for the first time to distinguish between different types of glycan chains. SERS spectra of oligosaccharides related to fungal α-(1→2)-mannan, β-(1→3)-glucan, β-(1→6)-glucan, galactomannan of Aspergillus, galactan I of Klebsiella pneumoniae, and diheteroglycan of Enterococcus faecalis were measured. To analyze the spectra, a number of machine learning methods were used that complemented each other: principal component analysis (PCA), confidence interval estimation (CIE), and logistic regression with L1 regularization. Each of the methods has shown own effectiveness in analyzing spectra. Namely, PCA allows the visualization of the divergence of spectra in the principal component space, CIE visualizes the degree of overlap of spectra through confidence interval analysis, and logistic regression allows researchers to build a model for determining the belonging of the analyte to a given class of carbohydrate structures. Additionally, the methods complement each other, allowing the determination of important features representing the main differences in the spectra containing and not containing Galf residue. The developed mathematical models enabled the reliable identification of Galf residues within glycan compositions. Given the high sensitivity of SERS, this spectroscopic technique serves as a promising basis for developing diagnostic test systems aimed at detecting biomarkers of fungal and bacterial infections.
Collapse
Affiliation(s)
- Julia Yu. Zvyagina
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Robert R. Safiullin
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Irina A. Boginskaya
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Ekaterina A. Slipchenko
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Konstantin N. Afanas‘ev
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Marina V. Sedova
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Vadim B. Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry V. Yashunsky
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry A. Argunov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nikolay E. Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ilya A. Ryzhikov
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Alexander M. Merzlikin
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Andrey N. Lagarkov
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| |
Collapse
|
3
|
Novy E, Esposito M, Debourgogne A, Roger C. Reevaluating the Value of (1,3)-β-D-Glucan for the Diagnosis of Intra-Abdominal Candidiasis in Critically Ill Patients: Current Evidence and Future Directions. J Fungi (Basel) 2025; 11:91. [PMID: 39997386 PMCID: PMC11856068 DOI: 10.3390/jof11020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Intra-abdominal candidiasis (IAC) is associated with significant diagnostic and therapeutic challenges in critically ill patients. Traditional fungal cultures are slow, delaying appropriate antifungal treatment. (1,3)-β-D-glucan (BDG), a component of the fungal cell wall, has emerged as a potential biomarker for IAC, but its use in ICU settings is complicated by frequent false-positives results from invasive procedures and underlying conditions. This review examines the diagnostic value of BDG when present in serum and peritoneal fluid. While serum BDG is effective for excluding invasive fungal infections like candidemia, its specificity for IAC remains low in critically ill patients. Recent studies suggest that BDG levels in peritoneal fluid may provide better diagnostic accuracy, distinguishing IAC from bacterial peritonitis with higher specificity. We discuss the advantages, limitations, and practical aspects of BDG testing, emphasizing the potential of peritoneal BDG as a complementary tool. Further research is needed to refine diagnostic thresholds, validate its clinical utility, and establish the role of peritoneal BDG in improving timely, targeted antifungal treatment for IAC.
Collapse
Affiliation(s)
- Emmanuel Novy
- Department of Anesthesiology, Critical Care and Perioperative Medicine, Surgical Intensive Care Unit, CHRU-Nancy, F-54000 Nancy, France;
- Université de Lorraine, SIMPA, F-54000 Nancy, France;
| | - Mathieu Esposito
- Department of Anesthesiology, Critical Care and Perioperative Medicine, Surgical Intensive Care Unit, CHRU-Nancy, F-54000 Nancy, France;
| | - Anne Debourgogne
- Université de Lorraine, SIMPA, F-54000 Nancy, France;
- Mycology and Parasitology Laboratory, CHRU-Nancy, F-54000 Nancy, France
| | - Claire Roger
- UR-UM103 IMAGINE, Univ Montpellier, Division of Anesthesia and Critical Care, Pain and Emergency Medicine, Nîmes University Hospital, F-30029 Montpellier, France;
| |
Collapse
|
4
|
Yao H, Liu S, Liu T, Ren D, Yang Q, Zhou Z, Mao J. Screening of marine sediment-derived microorganisms and their bioactive metabolites: a review. World J Microbiol Biotechnol 2023; 39:172. [PMID: 37115432 DOI: 10.1007/s11274-023-03621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Marine sediments are one of the largest habitats on Earth, and their unique ecology, such as high salinity, high pressure, and hypoxia, may activate certain silent genes in marine microbes, resulting in microbes, enzymes, active products, and specific metabolic pathways that can adapt to these specific ecological environments. Marine sediment-derived microorganisms and their bioactive metabolites are of great significance and have potential commercial development prospects for food, pharmaceutical, chemical industries, agriculture, environmental protection and human nutrition and health. In recent years, although there have been numerous scientific reports surrounding marine sediment-derived microorganisms and their bioactive metabolites, a comprehensive review of their research progress is lacking. This paper presents the development and renewal of traditional culture-dependent and omics analysis techniques and their application to the screening of marine sediment-derived microorganisms producing bioactive substances. It also highlights recent research advances in the last five years surrounding the types, functional properties and potential applications of bioactive metabolites produced by marine sediment-derived microorganisms. These bioactive metabolites mainly include antibiotics, enzymes, enzyme inhibitors, sugars, proteins, peptides, and some other small molecule metabolites. In addition, the review ends with concluding remarks on the challenges and future directions for marine sediment-derived microorganisms and their bioactive metabolites. The review report not only helps to deepen the understanding of marine sediment-derived microorganisms and their bioactive metabolites, but also provides some useful information for the exploitation and utilization of marine microbial resources and the mining of new compounds with potential functional properties.
Collapse
Affiliation(s)
- Hongli Yao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Department of Biology and Food Engineering, Bozhou University, Bozhou, 236800, Anhui, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Tiantian Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China.
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China.
| |
Collapse
|
5
|
Satala D, Gonzalez-Gonzalez M, Smolarz M, Surowiec M, Kulig K, Wronowska E, Zawrotniak M, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. The Role of Candida albicans Virulence Factors in the Formation of Multispecies Biofilms With Bacterial Periodontal Pathogens. Front Cell Infect Microbiol 2022; 11:765942. [PMID: 35071033 PMCID: PMC8766842 DOI: 10.3389/fcimb.2021.765942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022] Open
Abstract
Periodontal disease depends on the presence of different microorganisms in the oral cavity that during the colonization of periodontal tissues form a multispecies biofilm community, thus allowing them to survive under adverse conditions or facilitate further colonization of host tissues. Not only numerous bacterial species participate in the development of biofilm complex structure but also fungi, especially Candida albicans, that often commensally inhabits the oral cavity. C. albicans employs an extensive armory of various virulence factors supporting its coexistence with bacteria resulting in successful host colonization and propagation of infection. In this article, we highlight various aspects of individual fungal virulence factors that may facilitate the collaboration with the associated bacterial representatives of the early colonizers of the oral cavity, the bridging species, and the late colonizers directly involved in the development of periodontitis, including the “red complex” species. In particular, we discuss the involvement of candidal cell surface proteins—typical fungal adhesins as well as originally cytosolic “moonlighting” proteins that perform a new function on the cell surface and are also present within the biofilm structures. Another group of virulence factors considered includes secreted aspartic proteases (Sap) and other secreted hydrolytic enzymes. The specific structure of the candidal cell wall, dynamically changing during morphological transitions of the fungus that favor the biofilm formation, is equally important and discussed. The non-protein biofilm-composing factors also show dynamic variability upon the contact with bacteria, and their biosynthesis processes could be involved in the stability of mixed biofilms. Biofilm-associated changes in the microbe communication system using different quorum sensing molecules of both fungal and bacterial cells are also emphasized in this review. All discussed virulence factors involved in the formation of mixed biofilm pose new challenges and influence the successful design of new diagnostic methods and the application of appropriate therapies in periodontal diseases.
Collapse
Affiliation(s)
- Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Miriam Gonzalez-Gonzalez
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland.,Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Magdalena Smolarz
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Magdalena Surowiec
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamila Kulig
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
6
|
An invasive infection caused by the thermophilic mold Talaromyces thermophilus. Infection 2021; 49:1347-1353. [PMID: 34195950 PMCID: PMC8613165 DOI: 10.1007/s15010-021-01648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/22/2021] [Indexed: 11/06/2022]
Abstract
Background Increasing incidence of invasive infections caused by rare fungi was observed over the recent years. Case Here, we describe the first reported case of an infection caused by the thermophilic mold Talaromyces thermophilus. Cultivation and, hence, identification of this fastidious organism is challenging since standard incubation conditions are not sufficient. Retrospective analysis of patient samples and in vitro experiments demonstrated that testing for fungal antigens, i.e., the cell wall components galactomannan and β-1,3-d-glucan, is a promising tool.
Collapse
|
7
|
Favreau B, Yeni O, Ollivier S, Boustie J, Dévéhat FL, Guégan JP, Fanuel M, Rogniaux H, Brédy R, Compagnon I, Ropartz D, Legentil L, Ferrières V. Synthesis of an Exhaustive Library of Naturally Occurring Gal f-Man p and Gal p-Man p Disaccharides. Toward Fingerprinting According to Ring Size by Advanced Mass Spectrometry-Based IM-MS and IRMPD. J Org Chem 2021; 86:6390-6405. [PMID: 33877829 DOI: 10.1021/acs.joc.1c00250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nature offers a huge diversity of glycosidic derivatives. Among numerous structural modulations, the nature of the ring size of hexosides may induce significant differences on both biological and physicochemical properties of the glycoconjugate of interest. On this assumption, we expect that small disaccharides bearing either a furanosyl entity or a pyranosyl residue would give a specific signature, even in the gas phase. On the basis of the scope of mass spectrometry, two analytical techniques to register those signatures were considered, i.e., the ion mobility (IM) and the infrared multiple photon dissociation (IRMPD), in order to build up cross-linked databases. d-Galactose occurs in natural products in both tautomeric forms and presents all possible regioisomers when linked to d-mannose. Consequently, the four reducing Galf-Manp disaccharides as well as the four Galp-Manp counterparts were first synthesized according to a highly convergent approach, and IM-MS and IRMPD-MS data were second collected. Both techniques used afforded signatures, specific to the nature of the connectivity between the two glycosyl entities.
Collapse
Affiliation(s)
- Bénédicte Favreau
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Oznur Yeni
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Simon Ollivier
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Joël Boustie
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Françoise Le Dévéhat
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Jean-Paul Guégan
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Mathieu Fanuel
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Hélène Rogniaux
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Richard Brédy
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Isabelle Compagnon
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - David Ropartz
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Laurent Legentil
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Vincent Ferrières
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| |
Collapse
|
8
|
Specificity Influences in (1→3)-β-d-Glucan-Supported Diagnosis of Invasive Fungal Disease. J Fungi (Basel) 2020; 7:jof7010014. [PMID: 33383818 PMCID: PMC7824349 DOI: 10.3390/jof7010014] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
(1→3)-β-glucan (BDG) testing as an adjunct in the diagnosis of invasive fungal disease (IFD) has been in use for nearly three decades. While BDG has a very high negative predictive value in this setting, diagnostic false positives may occur, limiting specificity and positive predictive value. Although results may be diagnostically false positive, they are analytically correct, due to the presence of BDG in the circulation. This review surveys the non-IFD causes of elevated circulating BDG. These are in the main, iatrogenic patient contamination through the use of BDG-containing medical devices and parenterally-delivered materials as well as translocation of intestinal luminal BDG due to mucosal barrier injury. Additionally, infection with Nocardia sp. may also contribute to elevated circulating BDG. Knowledge of the factors which may contribute to such non-IFD-related test results can improve the planning and interpretation of BDG assays and permit investigational strategies, such as serial sampling and BDG clearance evaluation, to assess the likelihood of contamination and improve patient care.
Collapse
|