1
|
Schreiber S, Arndt P, Morton L, Garza AP, Müller P, Neumann K, Mattern H, Dörner M, Bernal J, Vielhaber S, Meuth SG, Dunay IR, Dityatev A, Henneicke S. Immune system activation and cognitive impairment in arterial hypertension. Am J Physiol Cell Physiol 2024; 327:C1577-C1590. [PMID: 39495252 PMCID: PMC11684865 DOI: 10.1152/ajpcell.00219.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Chronic arterial hypertension disrupts the integrity of the cerebral microvasculature, doubling the risk of age-related dementia. Despite sufficient antihypertensive therapy in still a significant proportion of individuals blood pressure lowering alone does not preserve cognitive health. Accumulating evidence highlights the role of inflammatory mechanisms in the pathogenesis of hypertension. In this review, we introduce a temporal framework to explore how early immune system activation and interactions at neurovascular-immune interfaces pave the way to cognitive impairment. The overall paradigm suggests that prohypertensive stimuli induce mechanical stress and systemic inflammatory responses that shift peripheral and meningeal immune effector mechanisms toward a proinflammatory state. Neurovascular-immune interfaces in the brain include a dysfunctional blood-brain barrier, crossed by peripheral immune cells; the perivascular space, in which macrophages respond to cerebrospinal fluid- and blood-derived immune regulators; and the meningeal immune reservoir, particularly T cells. Immune responses at these interfaces bridge peripheral and neurovascular unit inflammation, directly contributing to impaired brain perfusion, clearance of toxic metabolites, and synaptic function. We propose that deep immunophenotyping in biofluids together with advanced neuroimaging could aid in the translational determination of sequential immune and brain endotypes specific to arterial hypertension. This could close knowledge gaps on how and when immune system activation transits into neurovascular dysfunction and cognitive impairment. In the future, targeting specific immune mechanisms could prevent and halt hypertension disease progression before clinical symptoms arise, addressing the need for new interventions against one of the leading threats to cognitive health.
Collapse
Affiliation(s)
- Stefanie Schreiber
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Department of Neurology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Arndt
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
| | - Lorena Morton
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Alejandra P Garza
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Patrick Müller
- Department of Cardiology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Katja Neumann
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hendrik Mattern
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Biomedical Magnetic Resonance, Faculty of Natural Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Marc Dörner
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
- Department of Consultation-Liaison-Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Switzerland
| | - Jose Bernal
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stefan Vielhaber
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sven G Meuth
- Department of Neurology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ildiko R Dunay
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Solveig Henneicke
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
| |
Collapse
|
2
|
Clarke AJ, Brodtmann A, Irish M, Mowszowski L, Radford K, Naismith SL, Mok VC, Kiernan MC, Halliday GM, Ahmed RM. Risk factors for the neurodegenerative dementias in the Western Pacific region. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 50:101051. [PMID: 39399869 PMCID: PMC11471060 DOI: 10.1016/j.lanwpc.2024.101051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/04/2024] [Accepted: 03/12/2024] [Indexed: 10/15/2024]
Abstract
The Western Pacific Region (WPR) is characterized by a group of socioeconomically, culturally, and geopolitically heterogenous countries and represents a microcosm of the global endemic of neurodegeneration. This review will chart the known risk factors for dementia across the WPR. We explore the intersection between the established risk factors for dementia including the biomedical and lifestyle (cardiovascular and metabolic disease, sleep, hearing loss, depression, alcohol, smoking, traumatic brain injury, genetics) and social determinants (social disadvantage, limited education, systemic racism) as well as incorporate neuroimaging data, where available, to predict disease progression in the WPR. In doing so, we highlight core risk factors for dementia in the WPR, as well as geographical epicentres at heightened risk for dementia, to orient future research towards addressing these disparities.
Collapse
Affiliation(s)
- Antonia J. Clarke
- Department of Neurosciences, Monash University, Melbourne, VIC 3004 Australia
| | - Amy Brodtmann
- Department of Neurosciences, Monash University, Melbourne, VIC 3004 Australia
| | - Muireann Irish
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050 Australia
| | - Loren Mowszowski
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050 Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Kylie Radford
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
- The University of New South Wales, Sydney, NSW 2031 Australia
| | - Sharon L. Naismith
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050 Australia
| | | | - Matthew C. Kiernan
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050 Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Glenda M. Halliday
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050 Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2050 Australia
| | - Rebekah M. Ahmed
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050 Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
3
|
Wahl D, Clayton ZS. Peripheral vascular dysfunction and the aging brain. Aging (Albany NY) 2024; 16:9280-9302. [PMID: 38805248 PMCID: PMC11164523 DOI: 10.18632/aging.205877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024]
Abstract
Aging is the greatest non-modifiable risk factor for most diseases, including cardiovascular diseases (CVD), which remain the leading cause of mortality worldwide. Robust evidence indicates that CVD are a strong determinant for reduced brain health and all-cause dementia with advancing age. CVD are also closely linked with peripheral and cerebral vascular dysfunction, common contributors to the development and progression of all types of dementia, that are largely driven by excessive levels of oxidative stress (e.g., reactive oxygen species [ROS]). Emerging evidence suggests that several fundamental aging mechanisms (e.g., "hallmarks" of aging), including chronic low-grade inflammation, mitochondrial dysfunction, cellular senescence and deregulated nutrient sensing contribute to excessive ROS production and are common to both peripheral and cerebral vascular dysfunction. Therefore, targeting these mechanisms to reduce ROS-related oxidative stress and improve peripheral and/or cerebral vascular function may be a promising strategy to reduce dementia risk with aging. Investigating how certain lifestyle strategies (e.g., aerobic exercise and diet modulation) and/or select pharmacological agents (natural and synthetic) intersect with aging "hallmarks" to promote peripheral and/or cerebral vascular health represent a viable option for reducing dementia risk with aging. Therefore, the primary purpose of this review is to explore mechanistic links among peripheral vascular dysfunction, cerebral vascular dysfunction, and reduced brain health with aging. Such insight and assessments of non-invasive measures of peripheral and cerebral vascular health with aging might provide a new approach for assessing dementia risk in older adults.
Collapse
Affiliation(s)
- Devin Wahl
- Department of Health and Exercise Science and Center for Healthy Aging, Colorado State University, Fort Collins, CO 80523, USA
| | - Zachary S. Clayton
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Geriatric Medicine, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Kalaria RN, Akinyemi RO, Paddick SM, Ihara M. Current perspectives on prevention of vascular cognitive impairment and promotion of vascular brain health. Expert Rev Neurother 2024; 24:25-44. [PMID: 37916306 PMCID: PMC10872925 DOI: 10.1080/14737175.2023.2273393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
INTRODUCTION The true global burden of vascular cognitive impairment (VCI) is unknown. Reducing risk factors for stroke and cardiovascular disease would inevitably curtail VCI. AREAS COVERED The authors review current diagnosis, epidemiology, and risk factors for VCI. VCI increases in older age and by inheritance of known genetic traits. They emphasize modifiable risk factors identified by the 2020 Lancet Dementia Commission. The most profound risks for VCI also include lower education, cardiometabolic factors, and compromised cognitive reserve. Finally, they discuss pharmacological and non-pharmacological interventions. EXPERT OPINION By virtue of the high frequencies of stroke and cardiovascular disease the global prevalence of VCI is expectedly higher than prevalent neurodegenerative disorders causing dementia. Since ~ 90% of the global burden of stroke can be attributed to modifiable risk factors, a formidable opportunity arises to reduce the burden of not only stroke but VCI outcomes including progression from mild to the major in form of vascular dementia. Strict control of vascular risk factors and secondary prevention of cerebrovascular disease via pharmacological interventions will impact on burden of VCI. Non-pharmacological measures by adopting healthy diets and encouraging physical and cognitive activities and urging multidomain approaches are important for prevention of VCI and preservation of vascular brain health.
Collapse
Affiliation(s)
- Raj N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Rufus O Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Stella-Maria Paddick
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Centre, Osaka, Japan
| |
Collapse
|
5
|
Stone J, Mitrofanis J, Johnstone DM, Robinson SR. The Catastrophe of Intracerebral Hemorrhage Drives the Capillary-Hemorrhage Dementias, Including Alzheimer's Disease. J Alzheimers Dis 2024; 97:1069-1081. [PMID: 38217606 DOI: 10.3233/jad-231202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
This review advances an understanding of several dementias, based on four premises. One is that capillary hemorrhage is prominent in the pathogenesis of the dementias considered (dementia pugilistica, chronic traumatic encephalopathy, traumatic brain damage, Alzheimer's disease). The second premise is that hemorrhage introduces four neurotoxic factors into brain tissue: hypoxia of the tissue that has lost its blood supply, hemoglobin and its breakdown products, excitotoxic levels of glutamate, and opportunistic pathogens that can infect brain cells and induce a cytotoxic immune response. The third premise is that where organisms evolve molecules that are toxic to itself, like the neurotoxicity ascribed to hemoglobin, amyloid- (A), and glutamate, there must be some role for the molecule that gives the organism a selection advantage. The fourth is the known survival-advantage roles of hemoglobin (oxygen transport), of A (neurotrophic, synaptotrophic, detoxification of heme, protective against pathogens) and of glutamate (a major neurotransmitter). From these premises, we propose 1) that the brain has evolved a multi-factor response to intracerebral hemorrhage, which includes the expression of several protective molecules, including haptoglobin, hemopexin and A; and 2) that it is logical, given these premises, to posit that the four neurotoxic factors set out above, which are introduced into the brain by hemorrhage, drive the progression of the capillary-hemorrhage dementias. In this view, A expressed at the loci of neuronal death in these dementias functions not as a toxin but as a first responder, mitigating the toxicity of hemoglobin and the infection of the brain by opportunistic pathogens.
Collapse
Affiliation(s)
- Jonathan Stone
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - John Mitrofanis
- Université Grenoble Alpes, Fonds de Dotation, Clinatec, Grenoble, France
- Institute of Ophthalmology, University College London, London, UK
| | - Daniel M Johnstone
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Stephen R Robinson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Australia
| |
Collapse
|
6
|
Robinson AC, Bin Rizwan T, Davidson YS, Minshull J, Tinkler P, Payton A, Mann DMA, Roncaroli F. Self-Reported Late-Life Hypertension Is Associated with a Healthy Cognitive Status and Reduced Alzheimer's Disease Pathology Burden. J Alzheimers Dis 2024; 98:1457-1466. [PMID: 38552117 DOI: 10.3233/jad-231429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Background While mid-life hypertension represents a risk factor for the development of Alzheimer's disease (AD), the risk after the age of 65 is less certain. Establishing relationships between late life hypertension and the pathological changes of AD could be crucial in understanding the relevance of blood pressure as a risk factor for this disorder. Objective We investigated associations between self-reported late-life hypertension, cognitive status and AD pathology at death. The impact of antihypertensive medication was also examined. Methods Using the Cornell Medical Index questionnaire, we ascertained whether participants had ever reported hypertension. We also noted use of antihypertensive medication. The donated brains of 108 individuals were assessed for AD pathology using consensus guidelines. Statistical analysis aimed to elucidate relationships between hypertension and AD pathology. Results We found no associations between self-reported hypertension and cognitive impairment at death. However, those with hypertension were significantly more likely to exhibit lower levels of AD pathology as measured by Thal phase, Braak stage, CERAD score, and NIA-AA criteria-even after controlling for sex, level of education and presence of APOEɛ4 allele(s). No significant associations could be found when examining use of antihypertensive medications. Conclusions Our findings suggest that late-life hypertension is associated with less severe AD pathology. We postulate that AD pathology may be promoted by reduced cerebral blood flow.
Collapse
Affiliation(s)
- Andrew C Robinson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, The University of Manchester, Salford Royal Hospital, Salford, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Tawfique Bin Rizwan
- Faculty of Biology, Medicine and Health, School of Medical Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Yvonne S Davidson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - James Minshull
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Phillip Tinkler
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Antony Payton
- Faculty of Biology, Medicine and Health, School of Health Sciences, Division of Informatics, Imaging and Data Sciences, The University of Manchester, Manchester, UK
| | - David M A Mann
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Federico Roncaroli
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, The University of Manchester, Salford Royal Hospital, Salford, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| |
Collapse
|