1
|
Wang B, Zhou A, Pan Q, Li Y, Xi Z, He K, Li D, Li B, Liu Y, Liu Y, Xia Q. Adenosinergic metabolism pathway: an emerging target for improving outcomes of solid organ transplantation. Transl Res 2024; 263:93-101. [PMID: 37678756 DOI: 10.1016/j.trsl.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/25/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Extracellular nucleotides are widely recognized as crucial modulators of immune responses in peripheral tissues. Adenosine triphosphate (ATP) and adenosine are key components of extracellular nucleotides, the balance of which contributes to immune homeostasis. Under tissue injury, ATP exerts its pro-inflammatory function, while the adenosinergic pathway rapidly degrades ATP to immunosuppressive adenosine, thus inhibiting excessive and uncontrolled inflammatory responses. Previous reviews have explored the immunoregulatory role of extracellular adenosine in various pathological conditions, especially inflammation and malignancy. However, current knowledge regarding adenosine and adenosinergic metabolism in the context of solid organ transplantation remains fragmented. In this review, we summarize the latest information on adenosine metabolism and the mechanisms by which it suppresses the effector function of immune cells, as well as highlight the protective role of adenosine in all stages of solid organ transplantation, including reducing ischemia reperfusion injury during organ procurement, alleviating rejection, and promoting graft regeneration after transplantation. Finally, we discuss the potential for future clinical translation of adenosinergic pathway in solid organ transplantation.
Collapse
Affiliation(s)
- Bingran Wang
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Aiwei Zhou
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Qi Pan
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Yanran Li
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Zhifeng Xi
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Kang He
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Dan Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongbo Liu
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Yuan Liu
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China.
| | - Qiang Xia
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
2
|
Sharaby I, Alksas A, Abou El-Ghar M, Eldeeb M, Ghazal M, Gondim D, El-Baz A. Biomarkers for Kidney-Transplant Rejection: A Short Review Study. Biomedicines 2023; 11:2437. [PMID: 37760879 PMCID: PMC10525551 DOI: 10.3390/biomedicines11092437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/30/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Kidney transplantation is the preferred treatment for end-stage renal failure, but the limited availability of donors and the risk of immune rejection pose significant challenges. Early detection of acute renal rejection is a critical step to increasing the lifespan of the transplanted kidney. Investigating the clinical, genetic, and histopathological markers correlated to acute renal rejection, as well as finding noninvasive markers for early detection, is urgently needed. It is also crucial to identify which markers are associated with different types of acute renal rejection to manage treatment effectively. This short review summarizes recent studies that investigated various markers, including genomics, histopathology, and clinical markers, to differentiate between different types of acute kidney rejection. Our review identifies the markers that can aid in the early detection of acute renal rejection, potentially leading to better treatment and prognosis for renal-transplant patients.
Collapse
Affiliation(s)
- Israa Sharaby
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA (A.A.)
| | - Ahmed Alksas
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA (A.A.)
| | - Mohamed Abou El-Ghar
- Radiology Department, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt; (M.A.E.-G.); (M.E.)
| | - Mona Eldeeb
- Radiology Department, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt; (M.A.E.-G.); (M.E.)
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates;
| | - Dibson Gondim
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA (A.A.)
| |
Collapse
|
3
|
Rahimifard K, Shahbazi M, Oliaei F, Akbari R, Tarighi M, Mohammadnia-Afrouzi M. Increased frequency of CD39 +CD73 + regulatory T cells and Deltex-1 gene expression level in kidney transplant recipients with excellent long-term graft function. Transpl Immunol 2023; 78:101823. [PMID: 36921728 DOI: 10.1016/j.trim.2023.101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND The ability of regulatory T cells (Tregs) to limit inflammatory responses has been demonstrated. However, different subpopulations of this cell have varying abilities to suppress alloreactive immune responses. The primary goal of this study was to assess the frequency of CD4+FOXP3+CD39+CD73+ Tregs and Deltex-1 gene expression on long-term renal transplant function. METHODS A total of 49 subjects were divided into 3 groups: (i) the excellent long-term graft function (ELTGF) group, (ii) the chronic graft dysfunction (CGD) group, and (iii) the healthy control (HC) group. Following sample collection, peripheral blood mononuclear cells (PBMCs) were isolated, and the Deltex-1 gene expression level and the frequency of CD4+FOXP3+CD39+CD73+ Tregs were evaluated. RESULTS The ELTGF group had more CD4+FOXP3+ Tregs than the CGD group, but the difference was not statistically significant (P = 0.07). However, the frequency of CD4+FOXP3+CD39+CD73+ Tregs and the ratio of these cells to total CD4+ lymphocytes significantly increased in the ELTGF group than in the CGD group (P = 0.04 and P = 0.02 respectively). In addition, the expression level of the Deltex-1 gene was significantly lower in the CGD group than in the other 2 groups (P = 0.01 and P = 0.04 respectively). CONCLUSIONS Given the increased frequency of CD4+FOXP3+CD39+CD73+ Tregs and the expression level of the Deltex-1 gene in the ELTGF group, it appears that these factors probably improved function and long-term survival of the transplanted organ through the suppression of alloreactive responses and reduction of inflammation. In other words, one of the immunological mechanisms involved in the CGD group may be a deficiency in Tregs.
Collapse
Affiliation(s)
- Kimiya Rahimifard
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Shahbazi
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farshid Oliaei
- Kidney Transplantation Center, Shahid Beheshti Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Roghayeh Akbari
- Kidney Transplantation Center, Shahid Beheshti Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Mona Tarighi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mousa Mohammadnia-Afrouzi
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
4
|
Mai HL, Degauque N, Lorent M, Rimbert M, Renaudin K, Danger R, Kerleau C, Tilly G, Vivet A, Le Bot S, Delbos F, Walencik A, Giral M, Brouard S. Kidney allograft rejection is associated with an imbalance of B cells, regulatory T cells and differentiated CD28-CD8+ T cells: analysis of a cohort of 1095 graft biopsies. Front Immunol 2023; 14:1151127. [PMID: 37168864 PMCID: PMC10164960 DOI: 10.3389/fimmu.2023.1151127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction The human immune system contains cells with either effector/memory or regulatory functions. Besides the well-established CD4+CD25hiCD127lo regulatory T cells (Tregs), we and others have shown that B cells can also have regulatory functions since their frequency and number are increased in kidney graft tolerance and B cell depletion as induction therapy may lead to acute rejection. On the other hand, we have shown that CD28-CD8+ T cells represent a subpopulation with potent effector/memory functions. In the current study, we tested the hypothesis that kidney allograft rejection may be linked to an imbalance of effector/memory and regulatory immune cells. Methods Based on a large cohort of more than 1000 kidney graft biopsies with concomitant peripheral blood lymphocyte phenotyping, we investigated the association between kidney graft rejection and the percentage and absolute number of circulating B cells, Tregs, as well as the ratio of B cells to CD28-CD8+ T cells and the ratio of CD28-CD8+ T cells to Tregs. Kidney graft biopsies were interpreted according to the Banff classification and divided into 5 biopsies groups: 1) normal/subnormal, 2) interstitial fibrosis and tubular atrophy grade 2/3 (IFTA), 3) antibody-mediated rejection (ABMR), 4) T cell mediated-rejection (TCMR), and 5) borderline rejection. We compared group 1 with the other groups as well as with a combined group 3, 4, and 5 (rejection of all types) using multivariable linear mixed models. Results and discussion We found that compared to normal/subnormal biopsies, rejection of all types was marginally associated with a decrease in the percentage of circulating B cells (p=0.06) and significantly associated with an increase in the ratio of CD28-CD8+ T cells to Tregs (p=0.01). Moreover, ABMR, TCMR (p=0.007), and rejection of all types (p=0.0003) were significantly associated with a decrease in the ratio of B cells to CD28-CD8+ T cells compared to normal/subnormal biopsies. Taken together, our results show that kidney allograft rejection is associated with an imbalance between immune cells with effector/memory functions and those with regulatory properties.
Collapse
Affiliation(s)
- Hoa Le Mai
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Nicolas Degauque
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Marine Lorent
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Marie Rimbert
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
- Laboratoire d’Immunologie, Centre d’ImmunoMonitorage Nantes-Atlantique (CIMNA), CHU Nantes, Nantes, France
| | - Karine Renaudin
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
- Service d’Anatomie et Cytologie Pathologiques, CHU Nantes, Nantes, France
| | - Richard Danger
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Clarisse Kerleau
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Gaelle Tilly
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Anaïs Vivet
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Sabine Le Bot
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
- Service de Néphrologie et Immunologie Clinique, CHU Nantes, Nantes, France
| | | | | | - Magali Giral
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
- Service de Néphrologie et Immunologie Clinique, CHU Nantes, Nantes, France
- Fondation Centaure (RTRS), Nantes, France
- *Correspondence: Magali Giral, ; Sophie Brouard,
| | - Sophie Brouard
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
- Fondation Centaure (RTRS), Nantes, France
- *Correspondence: Magali Giral, ; Sophie Brouard,
| |
Collapse
|
5
|
Dwyer KM. Burnstock oration - purinergic signalling in kidney transplantation. Purinergic Signal 2022; 18:387-393. [PMID: 35471483 PMCID: PMC9832191 DOI: 10.1007/s11302-022-09865-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/06/2022] [Indexed: 01/14/2023] Open
Abstract
Kidney transplantation is the preferred treatment for individuals with kidney failure offering improved quality and quantity of life. Despite significant advancements in short term graft survival, longer term survival rates have not improved greatly mediated in large by chronic antibody mediated rejection. Strategies to reduce the donor kidney antigenic load may translate to improved transplant survival. CD39 on the vascular endothelium and on circulating cells, in particular regulatory T cells (Treg), is upregulated in response to hypoxic stimuli and plays a critical role in regulating the immune response removing proinflammatory ATP and generating anti-inflammatory adenosine. Herein, the role of CD39 in reducing ischaemia-reperfusion injury (IRI) and on Treg within the context of kidney transplantation is reviewed.
Collapse
Affiliation(s)
- Karen M. Dwyer
- grid.1021.20000 0001 0526 7079School of Medicine, Deakin University, Geelong, 3220 Australia
| |
Collapse
|
6
|
Cheung J, Zahorowska B, Suranyi M, Wong JKW, Diep J, Spicer ST, Verma ND, Hodgkinson SJ, Hall BM. CD4 +CD25 + T regulatory cells in renal transplantation. Front Immunol 2022; 13:1017683. [PMID: 36426347 PMCID: PMC9681496 DOI: 10.3389/fimmu.2022.1017683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/13/2022] [Indexed: 09/14/2023] Open
Abstract
The immune response to an allograft activates lymphocytes with the capacity to cause rejection. Activation of CD4+CD25+Foxp3+T regulatory cells (Treg) can down-regulate allograft rejection and can induce immune tolerance to the allograft. Treg represent <10% of peripheral CD4+T cells and do not markedly increase in tolerant hosts. CD4+CD25+Foxp3+T cells include both resting and activated Treg that can be distinguished by several markers, many of which are also expressed by effector T cells. More detailed characterization of Treg to identify increased activated antigen-specific Treg may allow reduction of non-specific immunosuppression. Natural thymus derived resting Treg (tTreg) are CD4+CD25+Foxp3+T cells and only partially inhibit alloantigen presenting cell activation of effector cells. Cytokines produced by activated effector cells activate these tTreg to more potent alloantigen-activated Treg that may promote a state of operational tolerance. Activated Treg can be distinguished by several molecules they are induced to express, or whose expression they have suppressed. These include CD45RA/RO, cytokine receptors, chemokine receptors that alter pathways of migration and transcription factors, cytokines and suppression mediating molecules. As the total Treg population does not increase in operational tolerance, it is the activated Treg which may be the most informative to monitor. Here we review the methods used to monitor peripheral Treg, the effect of immunosuppressive regimens on Treg, and correlations with clinical outcomes such as graft survival and rejection. Experimental therapies involving ex vivo Treg expansion and administration in renal transplantation are not reviewed.
Collapse
Affiliation(s)
- Jason Cheung
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
| | | | - Michael Suranyi
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | | | - Jason Diep
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Stephen T. Spicer
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Nirupama D. Verma
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Suzanne J. Hodgkinson
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Bruce M. Hall
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| |
Collapse
|
7
|
Klaeske K, Lehmann S, Palitzsch R, Büttner P, Barten MJ, Jawad K, Eifert S, Saeed D, Borger MA, Dieterlen MT. Everolimus-Induced Immune Effects after Heart Transplantation: A Possible Tool for Clinicians to Monitor Patients at Risk for Transplant Rejection. Life (Basel) 2021; 11:1373. [PMID: 34947904 PMCID: PMC8703808 DOI: 10.3390/life11121373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Patients treated with an inhibitor of the mechanistic target of rapamycin (mTORI) in a calcineurin inhibitor (CNI)-free immunosuppressive regimen after heart transplantation (HTx) show a higher risk for transplant rejection. We developed an immunological monitoring tool that may improve the identification of mTORI-treated patients at risk for rejection. METHODS Circulating dendritic cells (DCs) and regulatory T cells (Tregs) were analysed in 19 mTORI- and 20 CNI-treated HTx patients by flow cytometry. Principal component and cluster analysis were used to identify patients at risk for transplant rejection. RESULTS The percentages of total Tregs (p = 0.02) and CD39+ Tregs (p = 0.05) were higher in mTORI-treated patients than in CNI-treated patients. The principal component analysis revealed that BDCA1+, BDCA2+ and BDCA4+ DCs as well as total Tregs could distinguish between non-rejecting and rejecting mTORI-treated patients. Most mTORI-treated rejectors showed higher levels of BDCA2+ and BDCA4+ plasmacytoid DCs and lower levels of BDCA1+ myeloid DCs and Tregs than mTORI non-rejectors. CONCLUSION An mTORI-based immunosuppressive regimen induced a sufficient, tolerance-promoting reaction in Tregs, but an insufficient, adverse effect in DCs. On the basis of patient-specific immunological profiles, we established a flow cytometry-based monitoring tool that may be helpful in identifying patients at risk for rejection.
Collapse
Affiliation(s)
- Kristin Klaeske
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Strümpellstraße 39, 04289 Leipzig, Germany; (K.K.); (S.L.); (R.P.); (K.J.); (S.E.); (D.S.); (M.A.B.)
| | - Sven Lehmann
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Strümpellstraße 39, 04289 Leipzig, Germany; (K.K.); (S.L.); (R.P.); (K.J.); (S.E.); (D.S.); (M.A.B.)
| | - Robert Palitzsch
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Strümpellstraße 39, 04289 Leipzig, Germany; (K.K.); (S.L.); (R.P.); (K.J.); (S.E.); (D.S.); (M.A.B.)
| | - Petra Büttner
- Heart Center Leipzig, Department of Internal Medicine and Cardiology, University of Leipzig, Strümpellstraße 39, 04289 Leipzig, Germany;
| | - Markus J. Barten
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Martinistraße 52, 20246 Hamburg, Germany;
| | - Khalil Jawad
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Strümpellstraße 39, 04289 Leipzig, Germany; (K.K.); (S.L.); (R.P.); (K.J.); (S.E.); (D.S.); (M.A.B.)
| | - Sandra Eifert
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Strümpellstraße 39, 04289 Leipzig, Germany; (K.K.); (S.L.); (R.P.); (K.J.); (S.E.); (D.S.); (M.A.B.)
| | - Diyar Saeed
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Strümpellstraße 39, 04289 Leipzig, Germany; (K.K.); (S.L.); (R.P.); (K.J.); (S.E.); (D.S.); (M.A.B.)
| | - Michael A. Borger
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Strümpellstraße 39, 04289 Leipzig, Germany; (K.K.); (S.L.); (R.P.); (K.J.); (S.E.); (D.S.); (M.A.B.)
| | - Maja-Theresa Dieterlen
- Heart Center, Department of Cardiac Surgery, HELIOS Clinic, University Hospital Leipzig, Strümpellstraße 39, 04289 Leipzig, Germany; (K.K.); (S.L.); (R.P.); (K.J.); (S.E.); (D.S.); (M.A.B.)
| |
Collapse
|
8
|
Sampani E, Vagiotas L, Daikidou DV, Nikolaidou V, Xochelli A, Kasimatis E, Lioulios G, Dimitriadis C, Fylaktou A, Papagianni A, Stangou M. End stage renal disease has an early and continuous detrimental effect on regulatory T cells. Nephrology (Carlton) 2021; 27:281-287. [PMID: 34781412 DOI: 10.1111/nep.13996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022]
Abstract
End stage renal disease (ESRD) is followed by disturbed adaptive immunity, together with alterations in T cell subsets, including CD4+CD25+FoxP3+ cells (Tregs). In the present study, we assessed the effect of haemodialysis (HD) on the Treg population. CD3+CD4+, CD3+CD8+ and CD4+CD25+FoxP3+ cells were estimated by flow cytometry in 142 ESRD patients (45 ESRD-preHD, 97 on HD) and 30 healthy controls (HC). Patients on HD were classified into three groups according to time on dialysis (HD vintage - HDV): A < 2 years, B: 2-5 years and C: >5 years on HD. The mean age of patients on HD (M/F 53/44) was 54.8 ± 14 years and the median HDV 58 (78) months. We observed a significant progressive reduction in the percentage and count of lymphocytes (p < .001, p < .001, respectively), CD3+CD4+ (p = .003 and, p < .001, respectively) and Tregs (p = .001 and, p < .001, respectively), between HC, ESRD-preHD and HD patients. HDV had a significant inverse correlation with total lymphocyte, CD3+CD4+ and Treg cell counts (p = .001, p < .001, p < .001, respectively) and, the percentage of lymphocytes and CD3+CD4+ cells (p = .005, p = .01, respectively). Furthermore, we stratified patients on HD into three groups according to HDV: A < 2 years, B: 2-5 years and C: >5 years on HD. Total lymphocytes and Tregs were significantly different among the three vintage groups (Kruskal-Wallis H test, p < .001, p < .001 respectively). CD3+CD4+ and CD3+CD8+ cells were also significantly affected (p < .001 and p = .001, respectively), after at least 2 years of HD. Tregs show prompt and significant reduction at the pre-dialysis stage, and continue to decrease gradually even after long-term HD, in a context of total lymphocyte reduction.
Collapse
Affiliation(s)
- Erasmia Sampani
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lampis Vagiotas
- Department of Transplant Surgery, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra-Vasilia Daikidou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki Nikolaidou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration Hospital, Thessaloniki, Greece
| | - Aliki Xochelli
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration Hospital, Thessaloniki, Greece
| | - Efstratios Kasimatis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Lioulios
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysostomos Dimitriadis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration Hospital, Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Stangou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
9
|
Immunoregulation induced by autologous serum collected after acute exercise in obese men: a randomized cross-over trial. Sci Rep 2020; 10:21735. [PMID: 33303928 PMCID: PMC7729871 DOI: 10.1038/s41598-020-78750-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, we evaluated the effects of autologous serum collected after two types of exercise on the in vitro inflammatory profile and T cell phenotype of resting peripheral blood mononuclear cells (PBMCs) in obese men. Serum samples and PBMCs were obtained from eight obese men who performed two exercise bouts—high intensity interval exercise (HIIE) and exhaustive exercise session to voluntary fatigue—in a randomized cross-over trial. Pre-exercise PBMCs were incubated with 50% autologous serum (collected before and after each exercise bout) for 4 h. In vitro experiments revealed that post-HIIE serum reduced the histone H4 acetylation status and NF-κB content of PBMCs and suppressed the production of both TNF-α and IL-6 by PBMCs, while increasing IL-10 production. Post-exhaustive exercise serum induced histone H4 hyperacetylation and mitochondrial depolarization in lymphocytes and increased TNF-α production. In vitro post-HIIE serum incubation resulted in an increase in the frequencies of CD4 + CTLA-4 + and CD4 + CD25+ T cells expressing CD39 and CD73. Post-exhaustive exercise serum decreased the frequency of CD4 + CD25 + CD73+ T cells but increased CD4 + CD25-CD39 + T cell frequency. Both post-exercise serums increased the proportions of CD4 + PD-1 + and CD8 + PD-1+ T cells. Blood serum factors released during exercise altered the immune response and T cell phenotype. The type of exercise impacted the immunomodulatory activity of the post-exercise serum on PBMCs.
Collapse
|
10
|
Conversion of extracellular ATP into adenosine: a master switch in renal health and disease. Nat Rev Nephrol 2020; 16:509-524. [PMID: 32641760 DOI: 10.1038/s41581-020-0304-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2020] [Indexed: 12/22/2022]
Abstract
ATP and its ultimate degradation product adenosine are potent extracellular signalling molecules that elicit a variety of pathophysiological functions in the kidney through the activation of P2 and P1 purinergic receptors, respectively. Extracellular purines can modulate immune responses, balancing inflammatory processes and immunosuppression; indeed, alterations in extracellular nucleotide and adenosine signalling determine outcomes of inflammation and healing processes. The functional activities of ectonucleotidases such as CD39 and CD73, which hydrolyse pro-inflammatory ATP to generate immunosuppressive adenosine, are therefore pivotal in acute inflammation. Protracted inflammation may result in aberrant adenosinergic signalling, which serves to sustain inflammasome activation and worsen fibrotic reactions. Alterations in the expression of ectonucleotidases on various immune cells, such as regulatory T cells and macrophages, as well as components of the renal vasculature, control purinergic receptor-mediated effects on target tissues within the kidney. The role of CD39 as a rheostat that can have an impact on purinergic signalling in both acute and chronic inflammation is increasingly supported by the literature, as detailed in this Review. Better understanding of these purinergic processes and development of novel drugs targeting these pathways could lead to effective therapies for the management of acute and chronic kidney disease.
Collapse
|
11
|
Dorneles GP, dos Passos AA, Romão PR, Peres A. New Insights about Regulatory T Cells Distribution and Function with Exercise: The Role of Immunometabolism. Curr Pharm Des 2020; 26:979-990. [DOI: 10.2174/1381612826666200305125210] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/08/2020] [Indexed: 02/08/2023]
Abstract
A lack of physical activity is linked to the development of many chronic diseases through a chronic
low-grade inflammation state. It is now well accepted that the immune system plays a central role in the development
of several chronic diseases, including insulin resistance, type 2 diabetes, atherosclerosis, heart failure and
certain types of cancer. Exercise elicits a strong anti-inflammatory response independently of weight loss and can
be a useful non-pharmacologic strategy to counteract the low-grade inflammation. The CD4+CD25+CD127-
FoxP3+ Regulatory T (Treg) cells are a unique subset of helper T-cells, which regulate immune response and
establish self-tolerance through the secretion of immunoregulatory cytokines, such as IL-10 and TGF-β, and the
suppression of the function and activity of many immune effector cells (including monocytes/macrophages, dendritic
cells, CD4+ and CD8+ T cells, and Natural Killers). The metabolic phenotype of Tregs are regulated by the
transcription factor Foxp3, providing flexibility in fuel choice, but a preference for higher fatty acid oxidation. In
this review, we focus on the mechanisms by which exercise - both acute and chronic - exerts its antiinflammatory
effects through Treg cells mobilization. Furthermore, we discuss the implications of immunometabolic
changes during exercise for the modulation of Treg phenotype and its immunosuppressive function. This
narrative review focuses on the current knowledge regarding the role of Treg cells in the context of acute and
chronic exercise using data from observational and experimental studies. Emerging evidence suggests that the
immunomodulatory effects of exercise are mediated by the ability of exercise to adjust and improve Tregs number
and function.
Collapse
Affiliation(s)
- Gilson P. Dorneles
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre - RS, Brazil
| | - Aline A.Z. dos Passos
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre - RS, Brazil
| | - Pedro R.T. Romão
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre - RS, Brazil
| | - Alessandra Peres
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre - RS, Brazil
| |
Collapse
|
12
|
Jin X, Lin T, Yang G, Cai H, Tang B, Liao X, Li H, Chen X, Gong L, Xu H, Sun Y, Tan P, Yin J, Ma H, Ai J, Wang K, Wei Q, Yang L, Li H. Use of Tregs as a cell-based therapy via CD39 for benign prostate hyperplasia with inflammation. J Cell Mol Med 2020; 24:5082-5096. [PMID: 32191396 PMCID: PMC7205803 DOI: 10.1111/jcmm.15137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/25/2019] [Accepted: 02/16/2020] [Indexed: 02/05/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) occurs most commonly among older men, often accompanied by chronic tissue inflammation. Although its aetiology remains unclear, autoimmune dysregulation may contribute to BPH. Regulatory T cells (Tregs) prevent autoimmune responses and maintain immune homeostasis. In this study, we aimed to investigate Tregs frequency, phenotype, and function in BPH patients and to evaluate adoptive transfer Tregs for immunotherapy in mice with BPH via CD39. Prostate specimens and peripheral blood from BPH patients were used to investigate Treg subsets, phenotype and Treg‐associated cytokine production. Sorted CD39+/− Tregs from healthy mice were adoptively transferred into mice before or after testosterone propionate administration. The Tregs percentage in peripheral blood from BPH patients was attenuated, exhibiting low Foxp3 and CD39 expression with low levels of serum IL‐10, IL‐35 and TGF‐β. Immunohistochemistry revealed Foxp3+ cells were significantly diminished in BPH prostate with severe inflammatory. Although the Tregs subset was comprised of more effector/memory Tregs, CD39 was still down‐regulated on effector/memory Tregs in BPH patients. Before or after testosterone propionate administration, no alterations of BPH symptoms were observed due to CD39‐ Tregs in mice, however, CD39+Tregs existed more potency than Tregs to regulate prostatic hyperplasia and inhibit inflammation by decreasing IL‐1β and PSA secretion, and increasing IL‐10 and TGF‐β secretion. Furthermore, adoptive transfer with functional Tregs not only improved prostate hyperplasia but also regulated muscle cell proliferation in bladder. Adoptive transfer with Tregs may provide a novel method for the prevention and treatment of BPH clinically.
Collapse
Affiliation(s)
- Xi Jin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Tianhai Lin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Guang Yang
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huawei Cai
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyang Liao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Li
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lina Gong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hang Xu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Sun
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Tan
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianqiong Yin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongwen Ma
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Kunjie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Dorneles GP, Silva I, Boeira MC, Valentini D, Fonseca SG, Dal Lago P, Peres A, Romão PRT. Cardiorespiratory fitness modulates the proportions of monocytes and T helper subsets in lean and obese men. Scand J Med Sci Sports 2019; 29:1755-1765. [DOI: 10.1111/sms.13506] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/30/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Gilson P. Dorneles
- Laboratory of Cellular and Molecular Immunology Universidade Federal de Ciências da Saúde de Porto Alegre Porto Alegre Brazil
- Graduate Program in Health Sciences Universidade Federal de Ciências da Saúde de Porto Alegre Porto Alegre Brazil
| | - Igor Silva
- Laboratory of Cellular and Molecular Immunology Universidade Federal de Ciências da Saúde de Porto Alegre Porto Alegre Brazil
| | - Maria Carolina Boeira
- Laboratory of Cellular and Molecular Immunology Universidade Federal de Ciências da Saúde de Porto Alegre Porto Alegre Brazil
- Research Center Methodist University Center IPA Porto Alegre Brazil
| | - Diandra Valentini
- Laboratory of Cellular and Molecular Immunology Universidade Federal de Ciências da Saúde de Porto Alegre Porto Alegre Brazil
| | | | - Pedro Dal Lago
- Graduate Program in Rehabilitation Sciences Universidade Federal de Ciências da Saúde de Porto Alegre Porto Alegre Brazil
| | - Alessandra Peres
- Laboratory of Cellular and Molecular Immunology Universidade Federal de Ciências da Saúde de Porto Alegre Porto Alegre Brazil
- Research Center Methodist University Center IPA Porto Alegre Brazil
- Graduate Program in Rehabilitation Sciences Universidade Federal de Ciências da Saúde de Porto Alegre Porto Alegre Brazil
| | - Pedro R. T. Romão
- Laboratory of Cellular and Molecular Immunology Universidade Federal de Ciências da Saúde de Porto Alegre Porto Alegre Brazil
- Graduate Program in Health Sciences Universidade Federal de Ciências da Saúde de Porto Alegre Porto Alegre Brazil
- Graduate Program in Biosciences Universidade Federal de Ciências da Saúde de Porto Alegre Porto Alegre Brazil
| |
Collapse
|
14
|
Physical fitness modulates the expression of CD39 and CD73 on CD4
+
CD25
−
and CD4
+
CD25
+
T cells following high intensity interval exercise. J Cell Biochem 2019; 120:10726-10736. [DOI: 10.1002/jcb.28364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022]
|
15
|
Landwehr-Kenzel S, Zobel A, Hoffmann H, Landwehr N, Schmueck-Henneresse M, Schachtner T, Roemhild A, Reinke P. Ex vivo expanded natural regulatory T cells from patients with end-stage renal disease or kidney transplantation are useful for autologous cell therapy. Kidney Int 2018; 93:1452-1464. [PMID: 29792274 DOI: 10.1016/j.kint.2018.01.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 02/08/2023]
Abstract
Novel concepts employing autologous, ex vivo expanded natural regulatory T cells (nTreg) for adoptive transfer has potential to prevent organ rejection after kidney transplantation. However, the impact of dialysis and maintenance immunosuppression on the nTreg phenotype and peripheral survival is not well understood, but essential when assessing patient eligibility. The current study investigates regulatory T-cells in dialysis and kidney transplanted patients and the feasibility of generating a clinically useful nTreg product from these patients. Heparinized blood from 200 individuals including healthy controls, dialysis patients with end stage renal disease and patients 1, 5, 10, 15, 20 years after kidney transplantation were analyzed. Differentiation and maturation of nTregs were studied by flow cytometry in order to compare dialysis patients and kidney transplanted patients under maintenance immunosuppression to healthy controls. CD127 expressing CD4+CD25highFoxP3+ nTregs were detectable at increased frequencies in dialysis patients with no negative impact on the nTreg end product quality and therapeutic usefulness of the ex vivo expanded nTregs. Further, despite that immunosuppression mildly altered nTreg maturation, neither dialysis nor pharmacological immunosuppression or previous acute rejection episodes impeded nTreg survival in vivo. Accordingly, the generation of autologous, highly pure nTreg products is feasible and qualifies patients awaiting or having received allogenic kidney transplantation for adoptive nTreg therapy. Thus, our novel treatment approach may enable us to reduce the incidence of organ rejection and reduce the need of long-term immunosuppression.
Collapse
Affiliation(s)
- Sybille Landwehr-Kenzel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Department of Pediatrics, Division of Pneumonology and Immunology, Charité University Medicine Berlin, Berlin, Germany.
| | - Anne Zobel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| | - Henrike Hoffmann
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Niels Landwehr
- Leibniz-Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany; University of Potsdam, Department for Computer Science, Potsdam, Germany
| | - Michael Schmueck-Henneresse
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany; Institute of Medical Immunology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Thomas Schachtner
- Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| | - Andy Roemhild
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
16
|
Mirzakhani M, Shahbazi M, Oliaei F, Mohammadnia-Afrouzi M. Immunological biomarkers of tolerance in human kidney transplantation: An updated literature review. J Cell Physiol 2018; 234:5762-5774. [PMID: 30362556 DOI: 10.1002/jcp.27480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
The half-life of transplanted kidneys is <10 years. Acute or chronic rejections have a negative impact on transplant outcome. Therefore, achieving to allograft tolerance for improving long-term transplant outcome is a desirable goal of transplantation field. In contrast, there are evidence that distinct immunological characteristics lead to tolerance in some transplant recipients. In contrast, the main reason for allograft loss is immunological responses. Various immune cells including T cells, B cells, dendritic cells, macrophages, natural killer, and myeloid-derived suppressor cells damage graft tissue and, thereby, graft loss happens. Therefore, being armed with the comprehensive knowledge about either preimmunological or postimmunological characteristics of renal transplant patients may help us to achieve an operational tolerance. In the present study, we are going to review and discuss immunological characteristics of renal transplant recipients with rejection and compare them with tolerant subjects.
Collapse
Affiliation(s)
- Mohammad Mirzakhani
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Shahbazi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farshid Oliaei
- Kidney Transplantation Center, Shahid Beheshti Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Mousa Mohammadnia-Afrouzi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
17
|
Degauque N, Brosseau C, Brouard S. Regulation of the Immune Response by the Inflammatory Metabolic Microenvironment in the Context of Allotransplantation. Front Immunol 2018; 9:1465. [PMID: 29988548 PMCID: PMC6026640 DOI: 10.3389/fimmu.2018.01465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Antigen challenge induced by allotransplantation results in the activation of T and B cells, followed by their differentiation and proliferation to mount an effective immune response. Metabolic fitness has been shown to be crucial for supporting the major shift from quiescent to active immune cells and for tuning the immune response. Metabolic reprogramming includes regulation of the balance between glycolysis and mitochondrial respiration processes. Recent research has shed new light on the functions served by the end products of metabolism such as lactate, acetate, and ATP. At enhanced local concentrations, these metabolites have complex effects in which they not only induce T and B cell responses, cell mobility, and cytokine secretion but also favor the resolution of inflammation by promoting regulatory functions. Such mechanisms are instrumental in the context of the immune response in transplantation, not only to protect the graft and/or eliminate cells targeting it but also to maintain cell homeostasis per se. Metabolic adaptation thus plays an instrumental role on the outcome of the cellular and humoral responses. This, of course, raises the possibility of drugs that would interfere in these metabolic pathways to control the immune response but also highlights the risk that some drugs may perturb this metabolism and cell homeostasis and be deleterious for graft outcome. This review focuses on how metabolic alterations of the local immune microenvironment regulate the immune response and the impact of metabolic manipulation in allotransplantation.
Collapse
Affiliation(s)
- Nicolas Degauque
- CRTI UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Carole Brosseau
- CRTI UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Sophie Brouard
- CRTI UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
18
|
Kishore BK, Robson SC, Dwyer KM. CD39-adenosinergic axis in renal pathophysiology and therapeutics. Purinergic Signal 2018; 14:109-120. [PMID: 29332180 PMCID: PMC5940625 DOI: 10.1007/s11302-017-9596-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022] Open
Abstract
Extracellular ATP interacts with purinergic type 2 (P2) receptors and elicits many crucial biological functions. Extracellular ATP is sequentially hydrolyzed to ADP and AMP by the actions of defined nucleotidases, such as CD39, and AMP is converted to adenosine, largely by CD73, an ecto-5'-nucleotidase. Extracellular adenosine interacts with P1 receptors and often opposes the effects of P2 receptor activation. The balance between extracellular ATP and adenosine in the blood and extracellular fluid is regulated chiefly by the activities of CD39 and CD73, which constitute the CD39-adenosinergic axis. In recent years, several studies have shown this axis to play critical roles in transport of water/sodium, tubuloglomerular feedback, renin secretion, ischemia reperfusion injury, renal fibrosis, hypertension, diabetic nephropathy, transplantation, inflammation, and macrophage transformation. Important developments include global and targeted gene knockout and/or transgenic mouse models of CD39 or CD73, biological or small molecule inhibitors, and soluble engineered ectonucleotidases to directly impact the CD39-adenosinergic axis. This review presents a comprehensive picture of the multiple roles of CD39-adenosinergic axis in renal physiology, pathophysiology, and therapeutics. Scientific advances and greater understanding of the role of this axis in the kidney, in both health and illness, will direct development of innovative therapies for renal diseases.
Collapse
Affiliation(s)
- Bellamkonda K. Kishore
- Departments of Internal Medicine and Nutrition & Integrative Physiology, and Center on Aging, University of Utah Health, Salt Lake City, UT USA
- Nephrology Research, VA Salt Lake City Health Care System, 500 Foothill Drive (151M), Salt Lake City, UT 84148 USA
| | - Simon C. Robson
- Division of Gastroenterology/Hepatology and Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Karen M. Dwyer
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC 3220 Australia
| |
Collapse
|