1
|
Rosuvastatin alleviated the liver ischemia reperfusion injury by activating the expression of peroxisome proliferator-activated receptor gamma (PPARγ). J Bioenerg Biomembr 2021; 53:573-583. [PMID: 34235609 DOI: 10.1007/s10863-021-09909-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Liver ischemia and reperfusion could cause serious damage to liver tissues. Abnormal liver function could induce serious damage and threaten human health. Evidence emerged to suggest that rosuvastatin could relieve cerebral ischemia-reperfusion injury and alleviate the disease related to vessels by activating the expression of PPARγ. However, whether rosuvastatin could relieve the liver ischemia reperfusion injury by enhancing the expression of PPARγ is unclear. For the strictness of experimental findings, we established both the rat models and the cell model of liver ischemia reperfusion injury by respectively treating rats and cells with rosuvastatin. PPARγ inhibitor was also used for the stimulation of these cells and rats. Reactive oxygen species (ROS) levels, apoptosis and related protein levels were determined with ROS staining, ROS staining and western blotting for the detection of injury induced by oxygen-glucose deprivation and re-oxygenation (OGD/R). Pretreatment of rosuvastatin promoted the expression of PPARγ in liver tissues and MIHA cells. It also inhibited the ischemia reperfusion and OGD/R induced production of ROS while promoted the release of SOD in liver tissues and MIHA cells. Furthermore, rosuvastatin also alleviated the ischemia reperfusion -induced apoptosis of liver tissues and OGD/R-induced MIHA cells apoptosis. However, application of PPARγ inhibitor abolished the restorative effects of rosuvastatin on the apoptosis and oxidative stress on liver tissues and MIHA cells. Rosuvastatin prevented the liver ischemia reperfusion injury of rats by activating PPARγ.
Collapse
|
2
|
Mansour BS, Salem NA, Kader GA, Abdel-Alrahman G, Mahmoud OM. Protective effect of Rosuvastatin on Azithromycin induced cardiotoxicity in a rat model. Life Sci 2021; 269:119099. [PMID: 33476632 PMCID: PMC7816566 DOI: 10.1016/j.lfs.2021.119099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/23/2022]
Abstract
AIMS Azithromycin is widely used broad spectrum antibiotic recently used in treatment protocol of COVID-19 for its antiviral and immunomodulatory effects combined with Hydroxychloroquine or alone. Rat models showed that Azithromycin produces oxidative stress, inflammation, and apoptosis of myocardial tissue. Rosuvastatin, a synthetic statin, can attenuate myocardial ischemia with antioxidant and antiapoptotic effects. This study aims to evaluate the probable protective effect of Rosuvastatin against Azithromycin induced cardiotoxicity. MAIN METHOD Twenty adult male albino rats were divided randomly into four groups, five rats each control, Azithromycin, Rosuvastatin, and Azithromycin +Rosuvastatin groups. Azithromycin 30 mg/kg/day and Rosuvastatin 2 mg/kg/day were administrated for two weeks by an intragastric tube. Twenty-four hours after the last dose, rats were anesthetized and the following measures were carried out; Electrocardiogram, Blood samples for Biochemical analysis of lactate dehydrogenase (LDH), and creatine phosphokinase (CPK). The animals sacrificed, hearts excised, apical part processed for H&E, immunohistochemical staining, and examined by light microscope. The remaining parts of the heart were collected for assessment of Malondialdehyde (MDA) and Reduced Glutathione (GSH). KEY FINDINGS The results revealed that Rosuvastatin significantly ameliorates ECG changes, biochemical, and Oxidative stress markers alterations of Azithromycin. Histological evaluation from Azithromycin group showed marked areas of degeneration, myofibers disorganization, inflammatory infiltrate, and hemorrhage. Immunohistochemical evaluation showed significant increase in both Caspase 3 and Tumor necrosis factor (TNF) immune stain. Rosuvastatin treated group showed restoration of the cardiac muscle fibers in H&E and Immunohistochemical results. SIGNIFICANCE We concluded that Rosuvastatin significantly ameliorates the toxic changes of Azithromycin on the heart.
Collapse
Affiliation(s)
- Basma S Mansour
- Anatomy Department, Faculty of Medicine, Suez Canal University, Egypt
| | - Noha A Salem
- Anatomy Department, Faculty of Medicine, Suez Canal University, Egypt
| | - Ghada Abdel Kader
- Anatomy Department, Faculty of Medicine, Suez Canal University, Egypt
| | | | - Omayma M Mahmoud
- Anatomy Department, Faculty of Medicine, Suez Canal University, Egypt.
| |
Collapse
|
3
|
Guo S, Zhang F, Chen Y, Chen Y, Shushakova N, Yao Y, Zeng R, Li J, Lu X, Chen R, Haller H, Gueler F, Xu G, Rong S. Pre-ischemic renal lavage protects against renal ischemia-reperfusion injury by attenuation of local and systemic inflammatory responses. FASEB J 2020; 34:16307-16318. [PMID: 33089923 DOI: 10.1096/fj.201902943r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 01/04/2023]
Abstract
Postischemic acute kidney injury (AKI) is a common clinical complication and often fatal, with no effective treatment available. Little is known about the role of leukocytes trapped in renal vessels during ischemia-reperfusion injury (IRI) in the postischemic AKI. We designed a new animal model in rats with preforming renal artery lavage prior to IRI to investigate the effect of diminishing the residual circulating leukocytes on kidney damage and inflammation. Moreover, the functional changes of macrophages in hypoxia reoxygenation condition were also analyzed. We found pre-ischemic renal lavage significantly decreased the serum creatinine and blood urea nitrogen levels, and downregulated the mRNA and protein expressions in kidneys and urinary secretion of kidney injury molecule-1 of rats after IRI. The renal pathological damage caused by IRI was also ameliorated by pre-ischemic renal lavage, as evidenced by fewer cast formation, diminished morphological signs of AKI in the tissue at 24 hours after IRI. Pre-ischemic renal lavage reduced the numbers of infiltrating CD68+ macrophages and MPO+ neutrophils. The mRNA expression of pro-inflammatory mediator in IRI kidneys and the levels of pro-inflammatory cytokines in circulatory system and urine were also reduced due to pre-ischemic lavage. Compared with nontreated rats with IRI, pre-ischemic renal lavage significantly reduced the phosphorylation levels of ERK and p65 subunit of NF-κB in the kidney after IRI. In addition, we found hypoxia/reoxygenation could promote the expression of pro-inflammatory mediators and inhibit the expression of anti-inflammatory factors by regulating ERK/NF-κB signaling pathway. Thus, pre-ischemic renal lavage could clearly reduce the renal damage after IRI by attenuating inflammation, and macrophages trapped in renal vessels during IRI could be important pathogenic factors driving tissue injury.
Collapse
Affiliation(s)
- Shuiming Guo
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuxiang Zhang
- ICU, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Ying Chen
- Department of Nephrology, The First People's Hospital of Yichang, Yichang, China
| | - Yuetao Chen
- Department of Respiratory, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nelli Shushakova
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Ying Yao
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhua Li
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Lu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongjun Chen
- Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Gang Xu
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Rong
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Anti-inflammatory and antioxidant activity of essential amino acid α-ketoacid analogues against renal ischemia-reperfusion damage in Wistar rats. ACTA ACUST UNITED AC 2020; 40:336-348. [PMID: 32673461 PMCID: PMC7505519 DOI: 10.7705/biomedica.4875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Indexed: 11/25/2022]
Abstract
Introduction: Essential amino acid α-keto acid analogs are used in the treatment of chronic kidney disease to delay the symptoms of uremia. However, it is unknown whether essential amino acid α-keto acid analogs affect the oxidative stress and the inflammation in acute renal injury such as those produced by ischemia-reperfusion. Objective: To evaluate the effect of essential amino acid α-keto acid analogs on renal ischemia-reperfusion injury in Wistar rats. Materials and methods: Rats were divided into 11 groups (n=6/group): Two groups received physiological saline with or without ischemia-reperfusion injury (45 min/24 h), six groups received essential amino acid α-keto acid analogs (400, 800, or 1,200 mg/kg/24 h/7d) with or without ischemia-reperfusion injury (essential amino acid α-keto acid analogs + ischemia-reperfusion), and two groups received allopurinol (50 mg/kg/24 h/7d) with or without ischemia-reperfusion injury. Biochemical markers included creatinine and blood urea nitrogen (BUN), proinflammatory cytokines (IL-1β, IL-6, and TNF-α), renal damage markers (cystatin C, KIM-1, and NGAL), and markers of oxidative stress such as malondialdehyde (MDA) and total antioxidant activity. Results: The essential amino acid α-keto acid analog- and allopurinol-treated groups had lower levels of creatinine, BUN, renal damage markers, proinflammatory cytokines, and MDA than their corresponding ischemia-reperfusion groups. These changes were related to the essential amino acid α-keto acid analogs dosage. Total antioxidant activity was lower in essential amino acid α-keto acid analog- and allopurinol-treated groups than in the corresponding ischemia-reperfusion groups. Conclusions: This is a new report on the nephroprotective effects of essential amino acid α-keto acid analogs against ischemia-reperfusion injury. Essential amino acid α-keto acid analogs decreased the levels of biochemical markers, kidney injury markers, proinflammatory cytokines, and MDA while minimizing total antioxidant consumption.
Collapse
|