1
|
Navarro-López V, Del-Valle-Gratacós M, Fernández-Vázquez D, Fernández-González P, Carratalá-Tejada M, Molina-Rueda F. Transcranial direct current stimulation in the management of phantom limb pain: a systematic review of randomized controlled trials. Eur J Phys Rehabil Med 2022; 58:738-748. [PMID: 35758072 PMCID: PMC10019480 DOI: 10.23736/s1973-9087.22.07439-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Phantom limb pain (PLP) after amputation is a frequent entity that conditions the life of those who suffer it. Current treatment methods are not sufficiently effective for PLP management. We aim to analyze the clinical application of transcranial direct current (tDCS) in people with amputation suffering from PLP. EVIDENCE ACQUISITION The following databases were consulted in September 2021: MEDLINE, EMBASE, The Web of Science, PEDro, SCOPUS and SciELO. Randomized controlled trials investigating the use of tDCS in people with amputation undergoing PLP were selected. Demographic data, type and cause of amputation, time since amputation, stimulation parameters, and outcomes were extracted. EVIDENCE SYNTHESIS Six articles were included in this review (seven studies were considered because one study performed two individual protocols). All included studies evaluated PLP; six evaluated the phantom limb sensations (PLS) and two evaluated the psychiatric disorders. In all included studies the intensity and frequency of PLP was reduced, in three PLS were reduced, and in none study psychiatric symptoms were modified. CONCLUSIONS Anodic tDCS over the contralateral M1 to the affected limb, with an intensity of 1-2 mA, for 15-20 minutes seems to significantly reduce PLP in people with amputation. Single-session treatment could modify PLP intensity for hours, and multi-session treatment could modify PLP for months. Limited evidence suggests that PLS and psychiatric disorders should be treated with different PLP electrode placements. Further studies with larger sample size and longer follow-up times are needed to establish the priority of tDCS application in the PLP management.
Collapse
Affiliation(s)
- Víctor Navarro-López
- Motion Analysis, Biomechanics, Ergonomy and Motor Control Laboratory (LAMBECOM group), Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, Madrid, Spain
- International Doctoral School, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | | | - Diego Fernández-Vázquez
- Motion Analysis, Biomechanics, Ergonomy and Motor Control Laboratory (LAMBECOM group), Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, Madrid, Spain
- International Doctoral School, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Pilar Fernández-González
- Motion Analysis, Biomechanics, Ergonomy and Motor Control Laboratory (LAMBECOM group), Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, Madrid, Spain
| | - María Carratalá-Tejada
- Motion Analysis, Biomechanics, Ergonomy and Motor Control Laboratory (LAMBECOM group), Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, Madrid, Spain -
| | - Francisco Molina-Rueda
- Motion Analysis, Biomechanics, Ergonomy and Motor Control Laboratory (LAMBECOM group), Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, Madrid, Spain
| |
Collapse
|
2
|
Bährend I, Muench MR, Schneider H, Moshourab R, Dreyer FR, Vajkoczy P, Picht T, Faust K. Incidence and linguistic quality of speech errors: a comparison of preoperative transcranial magnetic stimulation and intraoperative direct cortex stimulation. J Neurosurg 2021; 134:1409-1418. [PMID: 32470943 DOI: 10.3171/2020.3.jns193085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/30/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Given the interindividual variance of functional language anatomy, risk prediction based merely on anatomical data is insufficient in language area-related brain tumor surgery, suggesting the need for direct cortical and subcortical mapping during awake surgery. Reliable, noninvasive preoperative methods of language localization hold the potential for reducing the necessity for awake procedures and may improve patient counseling and surgical planning. Repetitive navigated transcranial magnetic stimulation (rnTMS) is an evolving tool for localizing language-eloquent areas. The aim of this study was to investigate the reliability of rnTMS in locating cortical language sites. METHODS Twenty-five patients with brain tumors in speech-related areas were prospectively evaluated with preoperative rnTMS (5 Hz, train of five, average 105% resting motor threshold) and navigated direct cortical stimulation (DCS; bipolar, 50 Hz, 6-8 mA, 200-μsec pulse width) during awake surgeries employing a picture-naming task. Positive and negative stimulation spots within the craniotomy were documented in the same MRI data set. TMS and DCS language-positive areas were compared with regard to their spatial overlap, their allocation in a cortical parcellation system, and their linguistic qualities. RESULTS There were over twofold more positive language spots within the exposed area on rnTMS than on DCS. The comparison of positive rnTMS and DCS (ground truth) overlaps revealed low sensitivity (35%) and low positive predictive value (16%) but high specificity (90%) and high negative predictive value (96%). Within the overlaps, there was no correlation in error quality. On DCS, 73% of language-positive spots were located in the pars opercularis and pars triangularis of the frontal operculum and 24% within the supramarginal gyrus and dorsal portion of the superior temporal gyrus, while on rnTMS language positivity was distributed more evenly over a large number of gyri. CONCLUSIONS The current protocol for rnTMS for language mapping identified language-negative sites with good dependability but was unable to reliably detect language-positive spots. Further refinements of the technique will be needed to establish rnTMS language mapping as a useful clinical tool.
Collapse
Affiliation(s)
| | | | | | | | - Felix R Dreyer
- 3Brain Language Laboratory, Freie Universität Berlin, Germany
| | | | | | | |
Collapse
|
3
|
Nardone R, Versace V, Sebastianelli L, Brigo F, Christova M, Scarano GI, Saltuari L, Trinka E, Hauer L, Sellner J. Transcranial magnetic stimulation in subjects with phantom pain and non-painful phantom sensations: A systematic review. Brain Res Bull 2019; 148:1-9. [DOI: 10.1016/j.brainresbull.2019.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
|
4
|
Noninvasive neuromodulation techniques for the management of phantom limb pain: a systematic review of randomized controlled trials. Int J Rehabil Res 2018; 42:1-10. [PMID: 30222617 DOI: 10.1097/mrr.0000000000000317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neuromodulation techniques work by modulating pain perception by inducing changes in polarity of the neuronal membrane and thereby cortical excitability. The aim of this review is to evaluate the efficiency and safety of noninvasive neuromodulation techniques for phantom limb pain (PLP). A systematic literature search in the PubMed, Scopus, Web of Science, and Cochrane Library databases was performed to identify studies investigating the effects of noninvasive neuromodulation for PLP. The included journal articles were assessed with Furlan et al.'s method for examining the risk of bias to assess methodologic quality, and evidence was graded using the GRADE approach. The literature search identified 239 studies. Of these 239, four studies fulfilled the inclusion criteria and were included for data extraction. Two of the studies focused on repetitive transcranial magnetic stimulation (rTMS) whereas two other concentrated on transcranial direct current stimulation (tDCS). The present review showed that there is conflicting evidence to support the use of tDCS in short term and moderate evidence to support the use of rTMS in immediate and short term. It is important to recognize that this evidence comes from a very small sample size. No serious adverse effects were reported. Further information from randomized controlled trials with larger sample size investigating immediate and short-term and long-term effects are needed to clarify the best effective stimulation parameters and number of sessions of tDCS and rTMS for PLP.
Collapse
|