1
|
Mugan D, Vuong QC, Dietz BE, Obara I. Characterization of preclinical models to investigate spinal cord stimulation for neuropathic pain: a systematic review and meta-analysis. Pain Rep 2025; 10:e1228. [PMID: 39816902 PMCID: PMC11732658 DOI: 10.1097/pr9.0000000000001228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 01/18/2025] Open
Abstract
Despite advancements in preclinical and clinical spinal cord stimulation (SCS) research, the mechanisms of SCS action remain unclear. This may result from challenges in translatability of findings between species. Our systematic review (PROSPERO: CRD42023457443) aimed to comprehensively characterize the important translational components of preclinical SCS models, including stimulating elements and stimulation specifications. Databases (Embase, PubMed, Web of Science, and WikiStim) were searched on October 5, 2023, identifying 78 studies meeting the search criteria. We conducted a post hoc meta-analysis, including subgroup analyses and meta-regression, to assess SCS efficacy on mechanical hypersensitivity in rats subjected to neuropathic pain. Although monopolar electrodes were predominantly used as stimulating elements until 2013, quadripolar paddle and cylindrical leads gained recent popularity. Most research was conducted using 50 Hz and 200 µs stimulation. Motor threshold (MT) estimation was the predominant strategy to determine SCS intensity, which was set to 71.9% of MT on average. Our analysis revealed a large effect size for SCS (Hedge g = 1.13, 95% CI: [0.93, 1.32]) with similar magnitudes of effect between conventional (≤100 Hz) and nonconventional SCS paradigms while sham SCS had nonsignificant effect size. In addition, different stimulation intensity, frequency, and electrode design did not affect effect size. The risk of bias was assessed using Systematic Review Centre for Laboratory animal Experimentation criteria and was unclear, and only the frequency subgroup analysis showed publication bias. In summary, our review characterizes the critical components of preclinical SCS models and provides recommendations to improve reproducibility and translatability, thereby advancing the scientific foundation for SCS research.
Collapse
Affiliation(s)
- Dave Mugan
- School of Pharmacy, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Saluda Medical Europe Ltd, Harrogate, United Kingdom
| | - Quoc C. Vuong
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- School of Psychology, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Birte E. Dietz
- School of Pharmacy, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Saluda Medical Europe Ltd, Harrogate, United Kingdom
| | - Ilona Obara
- School of Pharmacy, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
2
|
Ness TJ, Su X. Parametric Assessment of Spinal Cord Stimulation on Bladder Pain-Like Responses in Rats. Neuromodulation 2022; 25:1134-1140. [PMID: 35088748 DOI: 10.1016/j.neurom.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/09/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Spinal cord stimulation (SCS) for the treatment of pelvic visceral pains has been understudied and underused. The goal of the current study was to examine multiple stimulation parameters of SCS to determine optimal settings for the inhibition of responses to urinary bladder distension (UBD) in animal models of bladder pain as a guide for human studies. MATERIALS AND METHODS Adult, female isoflurane/urethane-anesthetized rats underwent a T13/L1 mini-laminectomy sufficient to implant an SCS paddle lead for neuromodulation. Silver wire electrodes were inserted into the external oblique musculature. A 22-gauge angiocatheter was placed transurethrally into the bladder and used to deliver phasic, air UBDs at pressures of 10 to 60 mm Hg and visceromotor (abdominal contractile) electromyographic responses to UBD measured in the presence and absence of SCS. Electromyographic activity was quantified using standard differential amplification and rectification. Parameter settings for SCS included both conventional (10, 50, 100 Hz) and high frequency (1,000, 5,000, and 10,000 Hz) biphasic square wave pulses with 50 to 200 μs durations. To create states of hypersensitivity, pretreatment of adult rats included an intravesical zymosan infusion 24 hours before testing with and without a preceding episode of neonatal bladder inflammation. RESULTS Low frequency (10, 50, and 100 Hz) 200 μs biphasic pulses at submotor thresholds demonstrated inhibition of visceromotor responses (VMRs) to UBD in rats made hypersensitive to UBD by a protocol that included neonatal cystitis. Onset of inhibitory effects occurred within 20 minutes of beginning SCS. Otherwise, SCS at all other parameters studied and in other tested rat models produced either no significant effect or augmentation of VMRs. CONCLUSIONS Demonstration of inhibitory effects of SCS in a clinically relevant model of bladder pain suggests the potential utility of this therapy in patients with painful bladder disorders.
Collapse
Affiliation(s)
- Timothy J Ness
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Xin Su
- Global Neuromodulation Research, Medtronic, Fridley, MN, USA
| |
Collapse
|
3
|
Lubejko ST, Graham RD, Livrizzi G, Schaefer R, Banghart MR, Creed MC. The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia. Front Syst Neurosci 2022; 16:1044686. [PMID: 36591324 PMCID: PMC9794630 DOI: 10.3389/fnsys.2022.1044686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the prevalence of chronic pain worldwide, there is an urgent need to improve pain management strategies. While opioid drugs have long been used to treat chronic pain, their use is severely limited by adverse effects and abuse liability. Neurostimulation techniques have emerged as a promising option for chronic pain that is refractory to other treatments. While different neurostimulation strategies have been applied to many neural structures implicated in pain processing, there is variability in efficacy between patients, underscoring the need to optimize neurostimulation techniques for use in pain management. This optimization requires a deeper understanding of the mechanisms underlying neurostimulation-induced pain relief. Here, we discuss the most commonly used neurostimulation techniques for treating chronic pain. We present evidence that neurostimulation-induced analgesia is in part driven by the release of endogenous opioids and that this endogenous opioid release is a common endpoint between different methods of neurostimulation. Finally, we introduce technological and clinical innovations that are being explored to optimize neurostimulation techniques for the treatment of pain, including multidisciplinary efforts between neuroscience research and clinical treatment that may refine the efficacy of neurostimulation based on its underlying mechanisms.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert D. Graham
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert Schaefer
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Matthew R. Banghart,
| | - Meaghan C. Creed
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Meaghan C. Creed,
| |
Collapse
|
4
|
Duan LL, Qiu XY, Wei SQ, Su HY, Bai FR, Traub RJ, Zhou Q, Cao DY. Spinal CCK contributes to somatic hyperalgesia induced by orofacial inflammation combined with stress in adult female rats. Eur J Pharmacol 2021; 913:174619. [PMID: 34748768 DOI: 10.1016/j.ejphar.2021.174619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022]
Abstract
In some chronic primary pain conditions such as temporomandibular disorder (TMD) and fibromyalgia syndrome (FMS), mild or chronic stress enhances pain. TMD and FMS often occur together, but the underlying mechanisms are unclear. The purpose of this study was to investigate the role of cholecystokinin (CCK) in the spinal cord in somatic hyperalgesia induced by orofacial inflammation combined with stress. Somatic hyperalgesia was detected by the thermal withdrawal latency and mechanical withdrawal threshold. The expression of CCK1 receptors, CCK2 receptors, ERK1/2 and p-ERK1/2 in the spinal cord was examined by Western blot. After the stimulation of orofacial inflammation combined with 3 day forced swim, the expression of CCK2 receptors and p-ERK1/2 protein in the L4-L5 spinal dorsal horn increased significantly, while the expression of CCK1 receptors and ERK1/2 protein remained unchanged. Intrathecal injection of the CCK2 receptor antagonist YM-022 or mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor PD98059 blocked somatic hyperalgesia induced by orofacial inflammation combined with stress. Intrathecal administration of the MEK inhibitor blocked somatic sensitization caused by the CCK receptor agonist CCK8. The CCK2 receptor antagonist YM-022 significantly reduced the expression of p-ERK1/2. These data indicate that upregulation of CCK2 receptors through the MAPK pathway contributes to somatic hyperalgesia in this comorbid pain model. Thus, CCK2 receptors and MAPK pathway may be potential targets for the treatment of TMD comorbid with FMS.
Collapse
Affiliation(s)
- Lu-Lu Duan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China; Department of Implant Dentistry, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Xin-Yi Qiu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Si-Qi Wei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Han-Yu Su
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Fu-Rong Bai
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Richard J Traub
- Department of Neural and Pain Sciences, UM Center to Advance Chronic Pain Research, University of Maryland School of Dentistry, Baltimore MD, 21201, USA
| | - Qin Zhou
- Department of Implant Dentistry, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China.
| | - Dong-Yuan Cao
- Department of Implant Dentistry, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
5
|
Li H, An C. Exploring the role of neurogenic pathway-linked cholecystokinin release in remote preconditioning-induced cardioprotection. Acta Cir Bras 2020; 35:e202000906. [PMID: 33146235 PMCID: PMC7727451 DOI: 10.1590/s0102-865020200090000006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/12/2020] [Indexed: 12/03/2022] Open
Abstract
Purpose: The current study explored the involvement of neurogenic pathway-linked cholecystokinin (CCK) release in RIP-induced cardioprotection in rats. Methods: Male Wistar rats were subjected to four cycles of alternate episodes of ischemia and reperfusion (five min each) to induce RIP. Thereafter, the hearts were subjected to global ischemia and reperfusion ex vivo. The myocardial damage was assessed by quantifying the levels of heartspecific biochemicals i.e. LDH-1, CK-MB and cTnT. Apoptotic cell injury was assessed by measuring the levels of caspase-3 and Bcl-2. The levels of CCK were measured in the plasma following RIP. Results: Exposure to RIP significantly increased the plasma levels of CCK and attenuated IR-induced myocardial injury. Administration of CCK antagonist, proglumide significantly attenuated RIP-induced cardioprotection. Administration of hexamethonium, a ganglion blocker, abolished RIP-induced increase in plasma CCK levels and cardioprotective effects. Exogenous delivery of CCK-8 restored the effects of RIP in hexamethonium treated animals. Conclusion: RIP activates the neurogenic pathway that may increase the plasma levels of CCK, which may act on the heart-localized CCK receptors to produce cardioprotection against I/R injury.
Collapse
Affiliation(s)
- Huilian Li
- Shandong First Medical University, China
| | - Cuilan An
- Shandong First Medical University, China
| |
Collapse
|
6
|
Caylor J, Reddy R, Yin S, Cui C, Huang M, Huang C, Rao R, Baker DG, Simmons A, Souza D, Narouze S, Vallejo R, Lerman I. Spinal cord stimulation in chronic pain: evidence and theory for mechanisms of action. Bioelectron Med 2019; 5:12. [PMID: 31435499 PMCID: PMC6703564 DOI: 10.1186/s42234-019-0023-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/30/2019] [Indexed: 12/30/2022] Open
Abstract
Well-established in the field of bioelectronic medicine, Spinal Cord Stimulation (SCS) offers an implantable, non-pharmacologic treatment for patients with intractable chronic pain conditions. Chronic pain is a widely heterogenous syndrome with regard to both pathophysiology and the resultant phenotype. Despite advances in our understanding of SCS-mediated antinociception, there still exists limited evidence clarifying the pathways recruited when patterned electric pulses are applied to the epidural space. The rapid clinical implementation of novel SCS methods including burst, high frequency and dorsal root ganglion SCS has provided the clinician with multiple options to treat refractory chronic pain. While compelling evidence for safety and efficacy exists in support of these novel paradigms, our understanding of their mechanisms of action (MOA) dramatically lags behind clinical data. In this review, we reconstruct the available basic science and clinical literature that offers support for mechanisms of both paresthesia spinal cord stimulation (P-SCS) and paresthesia-free spinal cord stimulation (PF-SCS). While P-SCS has been heavily examined since its inception, PF-SCS paradigms have recently been clinically approved with the support of limited preclinical research. Thus, wide knowledge gaps exist between their clinical efficacy and MOA. To close this gap, many rich investigative avenues for both P-SCS and PF-SCS are underway, which will further open the door for paradigm optimization, adjunctive therapies and new indications for SCS. As our understanding of these mechanisms evolves, clinicians will be empowered with the possibility of improving patient care using SCS to selectively target specific pathophysiological processes in chronic pain.
Collapse
Affiliation(s)
- Jacob Caylor
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Rajiv Reddy
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Sopyda Yin
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Christina Cui
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Mingxiong Huang
- Department of Radiology, University of California San Diego School of Medicine, La Jolla, CA USA
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA USA
| | - Charles Huang
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Bioengineering, Stanford University, Palo Alto, CA USA
| | - Ramesh Rao
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA USA
| | - Dewleen G. Baker
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Alan Simmons
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Dmitri Souza
- Center for Pain Medicine, Western Reserve Hospital. Department of Surgery, Northeast Ohio Medical School (NEOMED), Athens, OH USA
| | - Samer Narouze
- Center for Pain Medicine, Western Reserve Hospital. Department of Surgery, Northeast Ohio Medical School (NEOMED), Athens, OH USA
| | - Ricardo Vallejo
- Basic Science Research, Millennium Pain Center, Bloomington, IL USA
- School of Biological Sciences, Illinois State University, Normal, IL USA
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL USA
| | - Imanuel Lerman
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA USA
- Present Address: VA San Diego, 3350 La Jolla Village Dr, (MC116A), San Diego, CA 92161 USA
| |
Collapse
|
7
|
Sub-paresthesia spinal cord stimulation reverses thermal hyperalgesia and modulates low frequency EEG in a rat model of neuropathic pain. Sci Rep 2018; 8:7181. [PMID: 29740068 PMCID: PMC5940806 DOI: 10.1038/s41598-018-25420-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/18/2018] [Indexed: 12/31/2022] Open
Abstract
Paresthesia, a common feature of epidural spinal cord stimulation (SCS) for pain management, presents a challenge to the double-blind study design. Although sub-paresthesia SCS has been shown to be effective in alleviating pain, empirical criteria for sub-paresthesia SCS have not been established and its basic mechanisms of action at supraspinal levels are unknown. We tested our hypothesis that sub-paresthesia SCS attenuates behavioral signs of neuropathic pain in a rat model, and modulates pain-related theta (4–8 Hz) power of the electroencephalogram (EEG), a previously validated correlate of spontaneous pain in rodent models. Results show that sub-paresthesia SCS attenuates thermal hyperalgesia and power amplitude in the 3–4 Hz range, consistent with clinical data showing significant yet modest analgesic effects of sub-paresthesia SCS in humans. Therefore, we present evidence for anti-nociceptive effects of sub-paresthesia SCS in a rat model of neuropathic pain and further validate EEG theta power as a reliable ‘biosignature’ of spontaneous pain.
Collapse
|
8
|
Sdrulla AD, Guan Y, Raja SN. Spinal Cord Stimulation: Clinical Efficacy and Potential Mechanisms. Pain Pract 2018. [PMID: 29526043 DOI: 10.1111/papr.12692] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spinal cord stimulation (SCS) is a minimally invasive therapy used for the treatment of chronic neuropathic pain. SCS is a safe and effective alternative to medications such as opioids, and multiple randomized controlled studies have demonstrated efficacy for difficult-to-treat neuropathic conditions such as failed back surgery syndrome. Conventional SCS is believed mediate pain relief via activation of dorsal column Aβ fibers, resulting in variable effects on sensory and pain thresholds, and measurable alterations in higher order cortical processing. Although potentiation of inhibition, as suggested by Wall and Melzack's gate control theory, continues to be the leading explanatory model, other segmental and supraspinal mechanisms have been described. Novel, non-standard, stimulation waveforms such as high-frequency and burst have been shown in some studies to be clinically superior to conventional SCS, however their mechanisms of action remain to be determined. Additional studies are needed, both mechanistic and clinical, to better understand optimal stimulation strategies for different neuropathic conditions, improve patient selection and optimize efficacy.
Collapse
Affiliation(s)
- Andrei D Sdrulla
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, U.S.A
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, U.S.A.,Department of Neurological Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, U.S.A
| | - Srinivasa N Raja
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, U.S.A
| |
Collapse
|