1
|
Aboasali F, Castonguay CE, Medeiros M, Dion PA, Rouleau GA. Tremor in the Age of Omics: An Overview of the Transcriptomic Landscape of Essential Tremor. CEREBELLUM (LONDON, ENGLAND) 2025; 24:35. [PMID: 39853640 DOI: 10.1007/s12311-025-01793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2025] [Indexed: 01/26/2025]
Abstract
Essential Tremor (ET) is the most common movement disorder and has a worldwide prevalence of 1%, including 5% of the population over 65 years old. It is characterized by an active, postural or kinetic tremor, primarily affecting the upper limbs, and is diagnosed based on clinical characteristics. The pathological mechanisms of ET, however, are mostly unknown. Moreover, despite its high heritability, genetic studies of ET genetics have yielded mixed results. Transcriptomics is a field that has the potential to reveal valuable insights about the processes and pathogenesis of ET thus providing an avenue for the development of more effective therapies. With the emergence of techniques such as single-cell and single-nucleus RNA sequencing (scRNA-seq and snRNA-seq), molecular and cellular events can now be more closely examined, providing valuable insights into potential causal mechanisms. In this review, we review the growing literature on transcriptomic studies in ET, aiming to identify biological pathways involved and explore possible avenues for further ET research. We emphasized the convergence on shared of biological pathways across several studies, specifically axonal guidance and calcium signaling. These findings posit multiple hypotheses linking both pathways through the regulation of axonal and synaptic plasticity. We conclude that increasing the sample size is vital to uncover the subtleties of ET clinical and pathological heterogeneity. Additionally, integrating Multiomics approaches should provide a comprehensive understanding of the disease's pathophysiology.
Collapse
Affiliation(s)
- Farah Aboasali
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Charles-Etienne Castonguay
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, H3A 2B4, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Miranda Medeiros
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Patrick A Dion
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Guy A Rouleau
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.
- Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, H3A 2B4, Canada.
| |
Collapse
|
2
|
Puk O, Jabłońska M, Sokal P. Immunomodulatory and endocrine effects of deep brain stimulation and spinal cord stimulation - A systematic review. Biomed Pharmacother 2023; 168:115732. [PMID: 37862972 DOI: 10.1016/j.biopha.2023.115732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
INTRODUCTION Deep Brain Stimulation (DBS) and Spinal Cord Stimulation (SCS) represent burgeoning treatments for diverse neurological disorders. This systematic review aims to consolidate findings on the immunological and endocrine effects of DBS and SCS, shedding light on the intricate mechanisms of neuromodulation. MATERIALS AND METHODS This systematic review, aligned with PRISMA protocols, synthesizes findings from 33 references-20 on DBS and 13 on SCS-to unravel the immunological and endocrine impacts of neuromodulation. RESULTS DBS interventions exhibited divergent effects on cytokines, with an increase in hepcidin levels and a variable impact on the IL-6/IL-10 ratio. While some studies reported elevated IL-6, animal studies consistently demonstrated a reduction in IL-1β and IL-6, with no significant changes in TNF-α and an increase in IL-10. Noteworthy hormonal changes included decreased corticosterone and ACTH concentrations and increased oxytocin levels following DBS of the hypothalamus. SCS mirrored similar effects on interleukins, indicating a reduction in IL-6 and IL-1β and an increase in IL-10 levels. Additionally, SCS led to reduced VEGF levels and elevated expression of neurotrophic factors such as BDNF and GDNF, particularly under burst stimulation. CONCLUSIONS Both DBS and SCS exert anti-inflammatory effects, manifesting as a decrease in pro-inflammatory cytokines alongside the stimulation of anti-inflammatory cytokine synthesis. These findings, observed in both animal and human models, imply that neurostimulation may modify the trajectory of neurological diseases by modulating local immune responses in an immunomodulatory and endocrine manner. This comprehensive exploration sets the stage for future research endeavors in this evolving domain.
Collapse
Affiliation(s)
- Oskar Puk
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland.
| | - Magdalena Jabłońska
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Paweł Sokal
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
3
|
Mahjoub Y, Martino D. Immunology and microbiome: Implications for motor systems. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:135-157. [PMID: 37562867 DOI: 10.1016/b978-0-323-98818-6.00001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Immune-inflammatory mechanisms seem to play a relevant role in neurodegenerative disorders affecting motor systems, particularly Parkinson's disease, where activity changes in inflammatory cells and evidence of neuroinflammation in experimental models and patients is available. Amyotrophic lateral sclerosis is also characterized by neuroinflammatory changes that involve primarily glial cells, both microglia and astrocytes, as well as systemic immune dysregulation associated with more rapid progression. Similarly, the exploration of gut dysbiosis in these two prototypical neurodegenerative motor disorders is advancing rapidly. Altered composition of gut microbial constituents and related metabolic and putative functional pathways is supporting a pathophysiological link that is currently explored in preclinical, germ-free animal models. Less compelling, but still intriguing, evidence suggests that motor neurodevelopmental disorders, e.g., Tourette syndrome, are associated with abnormal trajectories of maturation that include also immune system development. Microglia has a key role also in these disorders, and new therapeutic avenues aiming at its modulation are exciting prospects. Preclinical and clinical research on the role of gut dysbiosis in Tourette syndrome and related behavioral disorders is still in its infancy, but early findings support the rationale to delve deeper into its contribution to neural and immune maturation abnormalities in its spectrum.
Collapse
Affiliation(s)
- Yasamin Mahjoub
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Davide Martino
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
4
|
He Q, Li T, Xiong Y, Xia X, Dang Y, Chen X, Geng X, He J, Yang Y, Zhao J. Elevated cerebrospinal fluid protein levels associated with poor short-term outcomes after spinal cord stimulation in patients with disorders of consciousness. Front Aging Neurosci 2022; 14:1032740. [DOI: 10.3389/fnagi.2022.1032740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
BackgroundSpinal cord stimulation (SCS) is a promising treatment for patients with disorders of consciousness (DoC); however, the laboratory examinations and different electrodes (permanent #39286 vs. temporary percutaneous #3777, Medtronic, USA) that are associated with postoperative outcomes are unclear. The study aims to study the association between the change in postoperative cerebrospinal fluid (CSF) protein level and improvement in consciousness after SCS in DoC patients and to explore whether different electrodes were associated with elevated CSF protein levels.Materials and methodsA total of 66 DoC patients who received SCS treatment from December 2019 to December 2021 were retrospectively analyzed. Patients were grouped according to their elevated CSF protein level. The clinical characteristics of the patients and SCS stimulation parameters were compared. The preoperative sagittal diameter of the spinal canal is the distance from the midpoint of the posterior border of the vertebral body to the midpoint of the posterior wall of the spinal canal at the level of the superior border of C3. The postoperative sagittal diameter of the spinal canal is the distance from the midpoint of the posterior edge of the vertebral body to the anterior edge of the stimulation electrode. Patients with improved postoperative CRS-R scores greater than 3 or who progressed to the MCS + /eMCS were classified as the improved group and otherwise regarded as poor outcome.ResultsWe found that more DoC patients had elevated CSF protein levels among those receiving SCS treatment with permanent electrodes than temporary percutaneous electrodes (P = 0.001), and elevated CSF protein levels were significantly associated with a reduced sagittal diameter (P = 0.044). In DoC patients receiving SCS treatment, we found that elevated CSF protein levels (P = 0.022) and preoperative diagnosis (P = 0.003) were significantly associated with poor outcomes at 3 months. Logistic regression analysis showed that elevated CSF protein levels were significantly associated with poor outcomes (OR 1.008, 95% CI 1.001–1.016, P = 0.032).ConclusionThe results suggest that reducing the effect of electrode pads on anatomical changes may help improve the outcomes of DoC patients receiving SCS treatment. CSF protein levels are associated with poor postoperative outcomes and whether they are potential biomarkers in DoC patients receiving SCS treatment remain further exploration.
Collapse
|
5
|
An Investigation into Proteomic Constituents of Cerebrospinal Fluid in Patients with Chronic Peripheral Neuropathic Pain Medicated with Opioids- a Pilot Study. J Neuroimmune Pharmacol 2020; 16:634-650. [PMID: 33219474 DOI: 10.1007/s11481-020-09970-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022]
Abstract
The pharmacodynamics of opioids for chronic peripheral neuropathic pain are complex and likely extend beyond classical opioid receptor theory. Preclinical evidence of opioid modulation of central immune signalling has not been identified in vivo in humans. Examining the cerebrospinal fluid (CSF) of patients medicated with opioids is required to identify potential pharmacodynamic mechanisms. We compared CSF samples of chronic peripheral neuropathic pain patients receiving opioids (n = 7) versus chronic peripheral neuropathic pain patients not taking opioids (control group, n = 13). Baseline pain scores with demographics were recorded. Proteome analysis was performed using mass spectrometry and secreted neuropeptides were measured by enzyme-linked immunosorbent assay. Based on Gene Ontology analysis, proteins involved in the positive regulation of nervous system development and myeloid leukocyte activation were increased in patients taking opioids versus the control group. The largest decrease in protein expression in patients taking opioids were related to neutrophil mediated immunity. In addition, notably higher expression levels of neural proteins (85%) and receptors (80%) were detected in the opioid group compared to the control group. This study suggests modulation of CNS homeostasis, possibly attributable to opioids, thus highlighting potential mechanisms for the pharmacodynamics of opioids. We also provide new insights into the immunomodulatory functions of opioids in vivo.
Collapse
|