1
|
da Cunha PHM, Lapa JDDS, Hosomi K, de Andrade DC. Neuromodulation for neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:471-502. [PMID: 39580221 DOI: 10.1016/bs.irn.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
The treatment of neuropathic pain (NeP) often leads to partial or incomplete pain relief, with up to 40 % of patients being pharmaco-resistant. In this chapter the efficacy of neuromodulation techniques in treating NeP is reviewed. It presents a detailed evaluation of the mechanisms of action and evidence supporting the clinical use of the most common approaches like transcutaneous electrical nerve stimulation (TENS), transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), deep brain stimulation (DBS), invasive motor cortex stimulation (iMCS), spinal cord stimulation (SCS), dorsal root ganglion stimulation (DRG-S), and peripheral nerve stimulation (PNS). Current literature suggests that motor cortex rTMS is effective for peripheral and central NeP, and TENS for peripheral NeP. Evidence for tDCS is inconclusive. DBS is reserved for research settings due to heterogeneous results, while iMSC has shown efficacy in a small randomized trial in neuropathic pain due to stroke and brachial plexus avulsion. SCS has moderate evidence for painful diabetic neuropathy and failed back surgery syndrome, but trials were not controlled with sham. DRG-S and PNS have shown positive results for complex regional pain syndrome and post-surgical neuropathic pain, respectively. Adverse effects vary, with non-invasive techniques showing local discomfort, dizziness and headache, and DBS and SCS hardware-related issues. To date, non-invasive techniques have been more extensively studied and some are included in international guidelines, while the evidence level for invasive techniques are less robust, potentially suggesting their use in a case-by-case indication considering patient´s preferences, costs and expected benefits.
Collapse
Affiliation(s)
| | | | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
2
|
Schultheis BC, Ross-Steinhagen N, Jerosch J, Breil-Wirth A, Weidle PA. The Impact of Dorsal Root Ganglion Stimulation on Pain Levels and Functionality in Patients With Chronic Postsurgical Knee Pain. Neuromodulation 2024; 27:151-159. [PMID: 36464561 DOI: 10.1016/j.neurom.2022.10.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/29/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Chronic postsurgical pain is a considerable source of disabling neuropathic pain. Rates of knee replacement surgeries are increasing, and many patients report chronic postsurgical pain in their wake. When conventional therapies prove ineffective, neuromodulation options such as dorsal root ganglion stimulation (DRGS) may be used. However, little is known about the effect of DRGS on improvements in quantitative functional outcome parameters. MATERIALS AND METHODS In a prospective observational study at two pain centers, patients with chronic postsurgical knee pain underwent implantation with a DRGS system after an interdisciplinary multimodal pain program. Ratings of pain, mood, quality of life, and function were captured at baseline and through 12 months of treatment. Quantitative measures (range of motion, walking distance, and pain medication usage) were also recorded. RESULTS Visual analog scale ratings of pain decreased from 8.6 to 3.0 (p < 0.0001; N = 11), and other pain measures agreed. Quality of life on the 36-Item Short Form Health Survey questionnaire improved from 69.3 to 87.6 (p < 0.0001), whereas the improvement in depression ratings was nonsignificant. International Knee Documentation Committee questionnaire ratings of function improved from 27.7 to 51.7 (p < 0.0001), which aligned with other functional measures. On average, knee range of motion improved by 24.5°, and walking distance dramatically increased from 125 meters to 1481. Cessation of opioids, antidepressants, and/or anticonvulsants was achieved by 73% of participants. CONCLUSIONS Both subjective-based questionnaire and quantitative examination-based variables were in broad agreement on the value of DRGS in improving functionality and chronic postsurgical pain in the knee. Although this finding is limited by the small sample size, this intervention may have utility in the many cases in which pain becomes problematic after orthopedic knee surgery.
Collapse
Affiliation(s)
- Björn Carsten Schultheis
- Hospital Neuwerk, Muscular-Skeletal Center, Spinalsurgery and Departement of Interventional Pain Management, Dünnerstrasse, Mönchengladbach, Germany.
| | - Nikolas Ross-Steinhagen
- Hospital Neuwerk, Muscular-Skeletal Center, Spinalsurgery and Departement of Interventional Pain Management, Dünnerstrasse, Mönchengladbach, Germany
| | - Joerg Jerosch
- Johanna Etienne Hospital Neuss, Endoprthetic Center, Neuss, Germany
| | | | - Patrick A Weidle
- Hospital Neuwerk, Muscular-Skeletal Center, Spinalsurgery and Departement of Interventional Pain Management, Dünnerstrasse, Mönchengladbach, Germany
| |
Collapse
|
3
|
Koetsier E, Vacchi E, Maino P, Dukanac J, Melli G, van Kuijk SMJ. Dorsal Root Ganglion Stimulation in Chronic Painful Polyneuropathy: A Potential Modulator for Small Nerve Fiber Regeneration. Neuromodulation 2023; 26:1772-1780. [PMID: 36192280 DOI: 10.1016/j.neurom.2022.08.455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Neuromodulatory treatments like spinal cord stimulation and dorsal root ganglion stimulation (DRGS) have emerged as effective treatments to relieve pain in painful polyneuropathy. Animal studies have demonstrated that neurostimulation can enhance nerve regeneration. This study aimed to investigate if DRGS may impact intraepidermal nerve fiber regeneration and sensory nerve function. MATERIALS AND METHODS Nine patients with chronic, intractable painful polyneuropathy were recruited. Intraepidermal nerve fiber density (IENFD) quantification in 3 mm punch skin biopsy was performed 1 month before DRGS (placed at the level of the L5 and S1 dorsal root ganglion) and after 12- and 24-month follow-up. Quantitative sensory testing, nerve conduction studies, and a clinical scale score were also performed at the same time points. RESULTS In 7 of 9 patients, DRGS was successful (defined as a reduction of ≥ 50% in daytime and/or night-time pain intensity), allowing a definitive implantable pulse generator implantation. The median baseline IENFD among these 7 patients was 1.6 fibers/mm (first and third quartile: 1.2; 4.3) and increased to 2.6 fibers/mm (2.5; 2.9) and 1.9 fibers/mm (1.6; 2.4) at 1- and 2-years follow-up, respectively. These changes were not statistically significant (p = 1.000 and 0.375). Sensory nerve tests did not show substantial changes. CONCLUSIONS Although not significant, the results of this study showed that in most of the patients with implants, there was a slight increase of the IENFD at the 1- and 2-year follow-up. Larger-scale clinical trials are warranted to explore the possible role of DRGS in reversing the progressive neurodegeneration over time. CLINICAL TRIAL REGISTRATION The Clinicaltrials.gov registration number for the study is NCT02435004; Swiss National Clinical Trials Portal: SNCTP000001376.
Collapse
Affiliation(s)
- Eva Koetsier
- Pain Management Center, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.
| | - Elena Vacchi
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Laboratories for Translational Research, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Paolo Maino
- Pain Management Center, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Jasmina Dukanac
- Pain Management Center, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Giorgia Melli
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Laboratories for Translational Research, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Sander M J van Kuijk
- Pain Management Center, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland; Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
4
|
Burkey AR, Chen J, Argoff CE, Edgar DR, Petersen EA. Painful Peripheral Neuropathies of the Lower Limbs and/or Lower Extremities Treated with Spinal Cord Stimulation: A Systematic Review with Narrative Synthesis. J Pain Res 2023; 16:1607-1636. [PMID: 37229154 PMCID: PMC10202826 DOI: 10.2147/jpr.s403715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Painful peripheral neuropathy (PPN) is a debilitating condition with varied etiologies. Spinal cord stimulation (SCS) is increasingly used when conservative treatments fail to provide adequate pain relief. Few published reviews have examined SCS outcomes in all forms of PPN. Methods We conducted a systematic review of SCS in PPN. The PubMed database was searched up to February 7th, 2022, for peer-reviewed studies of SCS that enrolled PPN patients with pain symptoms in their lower limbs and/or lower extremities. We assessed the quality of randomized controlled trial (RCT) evidence using the Cochrane risk of bias tool. Data were tabulated and presented narratively. Results Twenty eligible studies documented SCS treatment in PPN patients, including 10 kHz SCS, traditional low-frequency SCS (t-SCS), dorsal root ganglion stimulation (DRGS), and burst SCS. In total, 451 patients received a permanent implant (10 kHz SCS, n=267; t-SCS, n=147; DRGS, n=25; burst SCS, n=12). Approximately 88% of implanted patients had painful diabetic neuropathy (PDN). Overall, we found clinically meaningful pain relief (≥30%) with all SCS modalities. Among the studies, RCTs supported the use of 10 kHz SCS and t-SCS to treat PDN, with 10 kHz SCS providing a higher reduction in pain (76%) than t-SCS (38-55%). Pain relief with 10 kHz SCS and DRGS in other PPN etiologies ranged from 42-81%. In addition, 66-71% of PDN patients and 38% of nondiabetic PPN patients experienced neurological improvement with 10 kHz SCS. Conclusion Our review found clinically meaningful pain relief in PPN patients after SCS treatment. RCT evidence supported the use of 10 kHz SCS and t-SCS in the diabetic neuropathy subpopulation, with more robust pain relief evident with 10 kHz SCS. Outcomes in other PPN etiologies were also promising for 10 kHz SCS. In addition, a majority of PDN patients experienced neurological improvement with 10 kHz SCS, as did a notable subset of nondiabetic PPN patients.
Collapse
Affiliation(s)
| | - Jeffrey Chen
- UCSD Department of Anesthesiology Center for Pain, University of California San Diego Medical Center, La Jolla, CA, USA
| | | | | | - Erika A Petersen
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
5
|
Chapman KB, Sayed D, Lamer T, Hunter C, Weisbein J, Patel KV, Dickerson D, Hagedorn JM, Lee DW, Amirdelfan K, Deer T, Chakravarthy K. Best Practices for Dorsal Root Ganglion Stimulation for Chronic Pain: Guidelines from the American Society of Pain and Neuroscience. J Pain Res 2023; 16:839-879. [PMID: 36942306 PMCID: PMC10024474 DOI: 10.2147/jpr.s364370] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 01/17/2023] [Indexed: 03/14/2023] Open
Abstract
With continued innovations in neuromodulation comes the need for evolving reviews of best practices. Dorsal root ganglion stimulation (DRG-S) has significantly improved the treatment of complex regional pain syndrome (CRPS), and it has broad applicability across a wide range of other conditions. Through funding and organizational leadership by the American Society for Pain and Neuroscience (ASPN), this best practices consensus document has been developed for the selection, implantation, and use of DRG stimulation for the treatment of chronic pain syndromes. This document is composed of a comprehensive narrative literature review that has been performed regarding the role of the DRG in chronic pain and the clinical evidence for DRG-S as a treatment for multiple pain etiologies. Best practice recommendations encompass safety management, implantation techniques, and mitigation of the potential complications reported in the literature. Looking to the future of neuromodulation, DRG-S holds promise as a robust intervention for otherwise intractable pain.
Collapse
Affiliation(s)
- Kenneth B Chapman
- The Spine & Pain Institute of New York, New York, NY, USA
- Department of Anesthesiology, Zucker School of Medicine at Hofstra Northwell, Manhasset, NY, USA
- Department of Anesthesiology, NYU Langone Medical Center, New York, NY, USA
| | - Dawood Sayed
- Department of Anesthesiology, The University of Kansas Medical Center (KUMC), Kansas City, KS, USA
| | - Tim Lamer
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| | - Corey Hunter
- Ainsworth Institute of Pain Management, New York, NY, USA
| | | | - Kiran V Patel
- The Spine & Pain Institute of New York, New York, NY, USA
- Department of Anesthesiology, Zucker School of Medicine at Hofstra Northwell, Manhasset, NY, USA
- Department of Anesthesiology, NYU Langone Medical Center, New York, NY, USA
| | - David Dickerson
- Department of Anesthesiology, Critical Care and Pain Medicine, NorthShore University Health System, Evanston, IL, USA
- Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, USA
| | | | - David W Lee
- Fullerton Orthopedic Surgery Medical Group, Fullerton, CA, USA
| | | | - Timothy Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, USA
| | - Krishnan Chakravarthy
- Department of Anesthesiology and Pain Medicine, University of California San Diego Health Sciences, San Diego, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
6
|
A prospective long-term follow-up of dorsal root ganglion stimulation for the management of chronic intractable pain. Pain 2022; 163:702-710. [PMID: 35302973 DOI: 10.1097/j.pain.0000000000002405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/25/2021] [Indexed: 01/19/2023]
Abstract
ABSTRACT Initial clinical studies have shown that the stimulation of the dorsal root ganglion (DRG) can significantly reduce chronic intractable pain. However, clinical data on long-term results and complications of these systems are limited. The aim of this prospective study is to report on a single center long-term follow-up of DRG stimulation for intractable chronic pain. Participants were implanted with DRG stimulation devices between 2013 and 2015 with an observation period of 24 months. Patients were contacted again in 2020 for a final follow-up (ie, between 5 and 7 years postimplantation). Forty-two participants were recruited, of whom 32 received the fully implantable pulse generator (IPG). At the final follow-up, 50% (16/32) of participants were still using DRG stimulation. Two participants still had the original IPG and 14 had received a replacement IPG. Pain scores were significantly reduced at 24 months, mean difference 1.7 (95% confidence interval: 0.2-3.3, P = 0.03), and at the last follow-up, mean difference 2.1 (95% confidence interval: 0.3-4, P = 0.03). Significant improvements were observed for health-related quality of life. The findings were generally robust to imputation methods of missing data. Implantable pulse generators of 8 patients were explanted because of dissatisfaction with pain relief. In conclusion, DRG stimulation can provide effective pain relief and improved quality of life in patients suffering with neuropathic pain, although this study had a revision rate of 42% within the first 24 months, and 56% of IPGs that were replaced because of battery depletion had a shorter than expected battery life.
Collapse
|
7
|
D'Souza RS, Kubrova E, Her YF, Barman RA, Smith BJ, Alvarez GM, West TE, Abd-Elsayed A. Dorsal Root Ganglion Stimulation for Lower Extremity Neuropathic Pain Syndromes: An Evidence-Based Literature Review. Adv Ther 2022; 39:4440-4473. [PMID: 35994195 PMCID: PMC9464732 DOI: 10.1007/s12325-022-02244-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 01/30/2023]
Abstract
Dorsal root ganglion stimulation (DRG-S) is a form of selective neuromodulation therapy that targets the dorsal root ganglion. DRG-S offers analgesia in a variety of chronic pain conditions and is approved for treatment of complex regional pain syndrome (CRPS) by the US Food and Drug Administration (FDA). There has been increasing utilization of DRG-S to treat various neuropathic pain syndromes of the lower extremity, although evidence remains limited to one randomized controlled trial and 39 observational studies. In this review, we appraised the current evidence for DRG-S in the treatment of lower extremity neuropathic pain using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) criteria. The primary outcome was change in pain intensity after DRG-S compared to baseline. We stratified presentation of results based of type of neuropathy (CRPS, painful diabetic neuropathy, mononeuropathy, polyneuropathy) as well as location of neuropathy (hip, knee, foot). Future powered randomized controlled trials with homogeneous participants are warranted.
Collapse
Affiliation(s)
- Ryan S D'Souza
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eva Kubrova
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Yeng F Her
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ross A Barman
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Brandon J Smith
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Gabriel M Alvarez
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Tyler E West
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|