1
|
Zhou Q, Liu J, Qi Y, Hu Y, Li Y, Cong C, Chen Y. Jianpi qingre tongluo prescription alleviates the senescence-associated secretory phenotype with osteoarthritis by regulating STAG1/TP53/P21 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118953. [PMID: 39423944 DOI: 10.1016/j.jep.2024.118953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jianpi Qingre Chubi prescription primarily consists of a compound formula, also known as Huangqin Qingre Chubi Capsules (HQC), which strengthens the spleen and resolves dampness, clear heat, and collaterals. Long-term clinical use has shown that HQC improves joint swelling and pain in patients with osteoarthritis. Mechanistically, we demonstrated that HQC inhibits inflammatory responses, extracellular matrix degradation, and delays chondrocyte senescence. AIM To determine the bioactivity and mechanism of action of Jianpi Qingre Tongluo prescription (HQC) on osteoarthritis (OA). MATERIALS AND METHODS First, the chondroprotective effects of HQC were assessed using histopathology, immunohistochemical staining and protein blotting in an OA rat model. Additionally, we identified key targets for crucial targets of HQC in OA using the Network Pharmacology and Gene Expression Omnibus (GEO) dataset (GSE98918 and GSE152805). In vitro conditions, IL-1β-treated chondrocytes served to study the impact of HQC on OA development and the senescence-associated secretory phenotype (SASP). This was evaluated using a series of approaches, such as flow cytometry assays, and immunofluorescence staining, and then verified by rescue experiments. RESULTS Therapy with HQC attenuated the severity of osteoarthritis (demonstrated by histopathology, OARSI grading scores, and Mankin scores) and SASP factors (as indicated by IL-1β, IL-6, IL-4, IL-37, MMP13, ADAMTS5, COL2A1, and ACAN levels, and apoptotic cell death). HQC might treat osteoarthritis via four important targets (STAG1, TP53, P21, and P16), with the p53 signalling pathway representing one of the main pathways. The HQC acts primarily on chondrocyte clusters. In vitro experiments indicated that STAG1 overexpression accelerates chondrocyte apoptosis, promotes SASP factor expression and extracellular matrix (ECM) degradation, and facilitates OA progression. HQC-containing serum suppressed the expression of the STAG1/TP53/P21 pathway, regulated SASP factors, and restored ECM balance. CONCLUSION Jianpi Qingre Tongluo prescription modulated SASP factors by regulating the STAG1/TP53/P21 signal transduction axis and decelerating cartilage senescence and degradation in patients with OA. Jianpi Qingre Tongluo may be an effective drug candidate.
Collapse
Affiliation(s)
- Qiao Zhou
- Department of Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China; The First Clinical School of Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Jian Liu
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Yajun Qi
- The First Clinical School of Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Yuedi Hu
- The First Clinical School of Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Yang Li
- The First Clinical School of Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Chengzhi Cong
- The First Clinical School of Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Yiming Chen
- The First Clinical School of Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
2
|
Yin Y, He Q, He J, Feng Y, Xu Y. Inhibition of LINC00958 hinders the progression of osteoarthritis through regulation of the miR-214-3p/FOXM1 axis. J Orthop Surg Res 2024; 19:66. [PMID: 38218927 PMCID: PMC10788018 DOI: 10.1186/s13018-024-04545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVE We investigated the impact of the long noncoding RNA LINC00958 on cellular activity and oxidative stress in osteoarthritis (OA). METHODS We performed bioinformatics analysis via StarBase and luciferase reporter assays to predict and validate the interactions between LINC00958 and miR-214-3p and between miR-214-3p and FOXM1. The expression levels of LINC00958, miR-214-3p, and FOXM1 were measured by qRT-PCR and western blotting. To assess effects on CHON-001 cells, we performed MTT proliferation assays, evaluated cytotoxicity with a lactate dehydrogenase (LDH) assay, and examined apoptosis through flow cytometry. Additionally, we measured the levels of apoptosis-related proteins, including BAX and BCL2, using western blotting. The secretion of inflammatory cytokines (IL-6, IL-8, and TNF-α) was measured using ELISA. RESULTS Our findings confirmed that LINC00958 is a direct target of miR-214-3p. LINC00958 expression was upregulated but miR-214-3p expression was downregulated in both OA cells and IL-1β-stimulated CHON-001 cells compared to the corresponding control cells. Remarkably, miR-214-3p expression was further reduced after miR-214-3p inhibitor treatment but increased following LINC00958-siRNA stimulation. Silencing LINC00958 significantly decreased its expression, and this effect was reversed by miR-214-3p inhibitor treatment. Notably, LINC00958-siRNA transfection alleviated the IL-1β-induced inflammatory response, as evidenced by the increased cell viability, reduced LDH release, suppression of apoptosis, downregulated BAX expression, and elevated BCL2 levels. Moreover, LINC00958 silencing led to reduced secretion of inflammatory factors from IL-1β-stimulated CHON-001 cells. The opposite results were observed in the miR-214-3p inhibitor-transfected groups. Furthermore, in CHON-001 cells, miR-214-3p directly targeted FOXM1 and negatively regulated its expression. CONCLUSION Our findings suggest that downregulating LINC00958 mitigates IL-1β-induced injury in CHON-001 cells through the miR-214-3p/FOXM1 axis. These results imply that LINC00958 plays a role in OA development and may be a valuable therapeutic target for OA.
Collapse
Affiliation(s)
- Yingchuan Yin
- Endocrinology Department, The Third People's Hospital of Hefei, No.204, Wangjiangdong Road, Hefei, 230022, China.
| | - Qiaojuan He
- Endocrinology Department, The Third People's Hospital of Hefei, No.204, Wangjiangdong Road, Hefei, 230022, China
| | - Jing He
- Endocrinology Department, The Third People's Hospital of Hefei, No.204, Wangjiangdong Road, Hefei, 230022, China
| | - Ying Feng
- Endocrinology Department, The Third People's Hospital of Hefei, No.204, Wangjiangdong Road, Hefei, 230022, China
| | - Yunyun Xu
- Endocrinology Department, The Third People's Hospital of Hefei, No.204, Wangjiangdong Road, Hefei, 230022, China
| |
Collapse
|
3
|
Toscano ECB, Vieira ÉLM, Grinberg LT, Rocha NP, Brant JAS, Paradela RS, Giannetti AV, Suemoto CK, Leite REP, Nitrini R, Rachid MA, Teixeira AL. Hyperphosphorylated Tau in Mesial Temporal Lobe Epilepsy: a Neuropathological and Cognitive Study. Mol Neurobiol 2023; 60:2174-2185. [PMID: 36622561 PMCID: PMC10084588 DOI: 10.1007/s12035-022-03190-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023]
Abstract
Temporal lobe epilepsy (TLE) often courses with cognitive deficits, but its underlying neuronal basis remains unclear. Confluent data suggest that epilepsy share pathophysiological mechanisms with neurodegenerative diseases. However, as most studies analyze subjects 60 years old and older, it is challenging to rule out that neurodegenerative changes arise from age-related mechanisms rather than epilepsy in these individuals. To fill this gap, we conducted a neuropathological investigation of the hippocampal formation of 22 adults with mesial TLE and 20 age- and sex-matched controls (both younger than 60 years). Moreover, we interrogated the relationship between these neuropathological metrics and cognitive performance. Hippocampal formation extracted from patients with drug-resistant mesial TLE undergoing surgery and postmortem non-sclerotic hippocampal formation of clinically and neuropathologically controls underwent immunohistochemistry against amyloid β (Aβ), hyperphosphorylated tau (p-tau), and TAR DNA-binding protein-43 (TDP-43) proteins, followed by quantitative analysis. Patients underwent a comprehensive neuropsychological evaluation prior to surgery. TLE hippocampi showed a significantly higher burden of p-tau than controls, whereas Aβ deposits and abnormal inclusions of TDP-43 were absent in both groups. Patients with hippocampal sclerosis (HS) type 2 had higher immunostaining for p-tau than patients with HS type 1. In addition, p-tau burden was associated with impairment in attention tasks and seizures frequency. In this series of adults younger than 60 years-old, the increase of p-tau burden associated with higher frequency of seizures and attention impairment suggests the involvement of tau pathology as a potential contributor to cognitive deficits in mesial TLE.
Collapse
Affiliation(s)
- Eliana C B Toscano
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal de Juiz de Fora, Av. Eugênio do Nascimento, s/no. - 36038-330 - Dom Bosco, Juiz de Fora, MG, Brazil.
| | - Érica L M Vieira
- Centre for Addiction and Mental Healthy (CAMH), Toronto, ON, Canada
| | - Lea T Grinberg
- Biobank for Aging Studies, Universidade de São Paulo, São Paulo, SP, Brazil
- Departments of Neurology and Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Natalia P Rocha
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joseane A S Brant
- Departamento de Neurocirurgia, Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Regina S Paradela
- Biobank for Aging Studies, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alexandre V Giannetti
- Departamento de Neurocirurgia, Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Claudia K Suemoto
- Biobank for Aging Studies, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Renata E P Leite
- Biobank for Aging Studies, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ricardo Nitrini
- Biobank for Aging Studies, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Milene A Rachid
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antonio L Teixeira
- Faculdade Santa Casa BH, Belo Horizonte, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
4
|
Ghosh C, Westcott R, Perucca E, Hossain M, Bingaman W, Najm I. Cytochrome P450-mediated antiseizure medication interactions influence apoptosis, modulate the brain BAX/Bcl-X L ratio and aggravate mitochondrial stressors in human pharmacoresistant epilepsy. Front Pharmacol 2022; 13:983233. [PMID: 36515436 PMCID: PMC9441576 DOI: 10.3389/fphar.2022.983233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/29/2022] [Indexed: 12/15/2022] Open
Abstract
Polytherapy with antiseizure medications (ASMs) is often used to control seizures in patients suffering from epilepsy, where about 30% of patients are pharmacoresistant. While drug combinations are intended to be beneficial, the consequence of CYP-dependent drug interactions on apoptotic protein levels and mitochondrial function in the epileptic brain remains unclear. We examined the interactions of ASMs given prior to surgery in surgically resected brain tissues and of three ASMs (lacosamide, LCM; oxcarbazepine, OXC; levetiracetam LEV) in isolated brain cells from patients with drug-resistant epilepsy (n = 23). We divided the patients into groups-those who took combinations of NON-CYP + CYP substrate ASMs, NON-CYP + CYP inducer ASMs, CYP substrate + CYP substrate or CYP substrate + CYP inducer ASMs-to study the 1) pro- and anti-apoptotic protein levels and other apoptotic signaling proteins and levels of reactive oxygen species (reduced glutathione and lipid peroxidation) in brain tissues; 2) cytotoxicity at blood-brain barrier epileptic endothelial cells (EPI-ECs) and subsequent changes in mitochondrial membrane potential in normal neuronal cells, following treatment with LCM + OXC (CYP substrate + CYP inducer) or LCM + LEV (CYP substrate + NON-CYP-substrate) after blood-brain barrier penetration, and 3) apoptotic and mitochondrial protein targets in the cells, pre-and post-CYP3A4 inhibition by ketoconazole and drug treatments. We found an increased BAX (pro-apoptotic)/Bcl-XL (anti-apoptotic) protein ratio in epileptic brain tissue after treatment with CYP substrate + CYP substrate or inducer compared to NON-CYP + CYP substrate or inducer, and subsequently decreased glutathione and elevated lipid peroxidation levels. Further, increased cytotoxicity and Mito-ID levels, indicative of compromised mitochondrial membrane potential, were observed after treatment of LCM + OXC in combination compared to LCM + LEV or these ASMs alone in EPI-ECs, which was attenuated by pre-treatment of CYP inhibitor, ketoconazole. A combination of two CYP-mediated ASMs on EPI-ECs resulted in elevated caspase-3 and cytochrome c with decreased SIRT3 levels and activity, which was rescued by CYP inhibition. Together, the study highlights for the first time that pro- and anti-apoptotic proteins levels are dependent on ASM combinations in epilepsy, modulated via a CYP-mediated mechanism that controls free radicals, cytotoxicity and mitochondrial activity. These findings lead to a better understanding of future drug selection choices offsetting pharmacodynamic CYP-mediated interactions.
Collapse
Affiliation(s)
- Chaitali Ghosh
- Department of Biomedical Engineering, Cerebrovascular Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biomedical Engineering and Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Rosemary Westcott
- Department of Biomedical Engineering, Cerebrovascular Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Emilio Perucca
- Department of Medicine (Austin Health), The University of Melbourne, Melbourne, VIC, Australia
- Australia and Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Mohammed Hossain
- Department of Biomedical Engineering, Cerebrovascular Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - William Bingaman
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Imad Najm
- Australia and Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Liu N, Li Y, Yang Y, Shu L, Liu Y, Wu Y, Sun D, Kang Z, Zhang Y, Ni D, Wei Z, Li S, Yang M, Wang Y, Sun J, Yang X. OL-FS13 alleviates experimental cerebral ischemia-reperfusion injury. Exp Neurol 2022; 357:114180. [PMID: 35901974 DOI: 10.1016/j.expneurol.2022.114180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022]
Abstract
Cerebral ischemia-reperfusion (I/R) is the main cause of neurological injury after stroke. However, existing treatments for I/R injury are relatively poor, and relevant drugs need to be further explored. Amphibians have received increasing attention as a resource bank of bioactive peptides. However, reports on neuroprotective peptides from amphibians remain extremely rare. Here, we identified a new neuroprotective peptide (OL-FS13, amino acid sequence: FSLLLTWWRRRVC) from the odorous frog species Odorrana livida using a constructed cDNA library. OL-FS13 significantly improving infarct volume, behavioral and histological abnormalities in rats, and also showed neuroprotective activities in PC12 cell (by oxygen glucose deprivation/reoxygenation, OGD/R). Mechanistically, OL-FS13 increased the level of antioxidative enzymes to resist oxidative stress and alleviated endoplasmic reticulum (ER) stress induced by I/R and OGD/R. The use of ML385 (Nrf2 inhibitor) indicated that OL-FS13 relieved nerve damage caused by oxidative and ER stress by increasing the nuclear displacement of Nrf2. Collectively, this research provides a novel drug candidate for the clinical cerebral I/R curation.
Collapse
Affiliation(s)
- Naixin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Yilin Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Ying Yang
- Endocrinology Department of affiliated Hospital of Yunnan University, Kunming 650021, Yunnan, China
| | - Longjun Shu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, Yunnan, China
| | - Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, Yunnan, China
| | - Yutong Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Dandan Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Zijian Kang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Yue Zhang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Dan Ni
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Ziqi Wei
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Shanshan Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Meifeng Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, Yunnan, China.
| | - Jun Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China.
| |
Collapse
|
6
|
Taddei E, Rosiles A, Hernandez L, Luna R, Rubio C. Apoptosis in the Dentate Nucleus Following Kindling-induced Seizures in Rats. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:511-519. [PMID: 34852754 DOI: 10.2174/1871527320666211201161800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/27/2020] [Accepted: 02/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Epilepsy is a common neurological disorder characterized by abnormal and recurrent neuronal discharges that result in epileptic seizures. The dentate nuclei of the cerebellum receive excitatory input from different brain regions. Purkinje cell loss due to chronic seizures could lead to decreased inhibition of these excitatory neurons, resulting in the activation of apoptotic cascades in the dentate nucleus. OBJECTIVE The present study was designed to determine whether there is a presence of apoptosis (either intrinsic or extrinsic) in the dentate nucleus, the final relay of the cerebellar circuit, following kindling-induced seizures. METHODS In order to determine this, seizures were triggered via the amygdaloid kindling model. Following 0, 15, or 45 stimuli, rats were sacrificed, and the cerebellum was extracted. It was posteriorly prepared for the immunohistochemical analysis with cell death biomarkers: TUNEL, Bcl-2, truncated Bid (tBid), Bax, cytochrome C, and cleaved caspase 3 (active form). Our findings reproduce results obtained in other parts of the cerebellum. RESULTS We found a decrease of Bcl-2 expression, an anti-apoptotic protein, in the dentate nucleus of kindled rats. We also determined the presence of TUNEL-positive neurons, which confirms the presence of apoptosis in the dentate nucleus. We observed the expression of tBid, Bax, as well as cytochrome C and cleaved caspase-3, the main executor caspase of apoptosis. CONCLUSION There is a clear activation of both the intrinsic and extrinsic apoptotic pathways in the cells of the dentate nucleus of the cerebellum of rats subjected to amygdaloid kindling.
Collapse
Affiliation(s)
- Elisa Taddei
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía"Manuel Velasco Suárez", Ciudad de México, México
| | - Artemio Rosiles
- Laboratorio de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía" Manuel Velasco Suárez", Ciudad de México, México
| | - Leonardo Hernandez
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía"Manuel Velasco Suárez", Ciudad de México, México
| | - Rudy Luna
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía"Manuel Velasco Suárez", Ciudad de México, México
| | - Carmen Rubio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía"Manuel Velasco Suárez", Ciudad de México, México
| |
Collapse
|
7
|
Bazhanova E, Kozlov A. Mechanisms of apoptosis in drug-resistant epilepsy. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:43-50. [DOI: 10.17116/jnevro202212205143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Li YN, Ning N, Song L, Geng Y, Fan JT, Ma CY, Jiang HZ. Derivatives of Deoxypodophyllotoxin Induce Apoptosis through Bcl-2/Bax Proteins Expression. Anticancer Agents Med Chem 2021; 21:611-620. [PMID: 32748757 DOI: 10.2174/1871520620999200730160952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/30/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Deoxypodophyllotoxin, isolated from the Traditional Chinese Medicine Anthriscus sylvestris, is well-known because of its significant anti-tumor activity with strong toxicity in vitro and in vivo. OBJECTIVE In this article, a series of deoxypodophyllotoxin derivatives were synthesized and their anti-tumor effectiveness was evaluated. METHODS The anti-tumor activity of deoxypodophyllotoxin derivatives was investigated by the MTT assay method. Apoptosis percentage was measured by flow cytometer analysis using Annexin-V-FITC. RESULTS The derivatives revealed obvious cytotoxicity in the MTT assay by decreasing the number of late cancer cells. The decrease of Bcl-2/Bax could be observed in MCF-7, HepG2, HT-29, and MG-63 using Annexin V-FITC. The ratio of Bcl-2/Bax in the administration group was decreased, which was determined by the ELISA kit. CONCLUSION The derivatives of deoxypodophyllotoxin could induce apoptosis in tumor cell lines by influencing Bcl-2/Bax.
Collapse
Affiliation(s)
- Ya-Nan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ni Ning
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Lei Song
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yun Geng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jun-Ting Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Chao-Ying Ma
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - He-Zhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
9
|
Wang J, Lv P. Chrysophanol inhibits the osteoglycin/mTOR and activats NF2 signaling pathways to reduce viability and proliferation of malignant meningioma cells. Bioengineered 2021; 12:755-762. [PMID: 33622177 PMCID: PMC8291820 DOI: 10.1080/21655979.2021.1885864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chrysophanol shows promising antitumor activity, but how it may work against malignant meningioma is poorly understood. In addition, osteoglycin (OGN) may help mediate the antitumor effects of chrysophanol; thus, this study investigated the potential antitumor mechanism of chrysophanol in malignant meningioma cultures. Meningioma cell line HBL-52 were incubated with varying doses of chrysophanol (0-90 μM) for different time points, and osteoglycin (OGN) was overexpressed or inhibited in some cell cultures to assess its roles. Cell viability was quantified using the CCK8 assay and colony formation assays, while effects on cell cycle distribution and apoptotic rates were examined by flow cytometry and enzyme-linked immunosorbent assays (ELISA) to detect histone DNA levels. Caspase-3 and -9 activities were detected by related commercial kits. Protein expression was assessed using Western blotting. Chrysophanol significantly reduced HBL-52 cell viability, based on reduced colony formation, and proliferation, based on low levels of bromodeoxyuridine incorporation. Annexin V/propidium iodide staining revealed a 30% increase in apoptotic cells at 90 μM chrysophanol (33.7% vs 3.3% in control cultures). Chrysophanol treatment greatly decreased the Bcl-2/Bax expression ratio and increased the expressions of cleaved caspase-3 and -9, and the activities of caspase-3 and -9. Chrysophanol blocked cells in G1 phase and inhibited the OGN/mTOR signaling cascade, but activated neurofibromatosis 2 (NF2) cascade. OGN overexpression activated mTOR, down-regulated NF2, and partially reversed growth inhibition by chrysophanol. Chrysophanol may be useful as a treatment against malignant meningioma by inhibiting OGN/mTOR signaling and activating NF2 signaling.
Collapse
Affiliation(s)
- Jiapeng Wang
- Department of Intensive Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| | - Peng Lv
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Neurosurgery, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| |
Collapse
|
10
|
Cristina de Brito Toscano E, Leandro Marciano Vieira É, Boni Rocha Dias B, Vidigal Caliari M, Paula Gonçalves A, Varela Giannetti A, Maurício Siqueira J, Kimie Suemoto C, Elaine Paraizo Leite R, Nitrini R, Alvarenga Rachid M, Lúcio Teixeira A. NLRP3 and NLRP1 inflammasomes are up-regulated in patients with mesial temporal lobe epilepsy and may contribute to overexpression of caspase-1 and IL-β in sclerotic hippocampi. Brain Res 2020; 1752:147230. [PMID: 33385378 DOI: 10.1016/j.brainres.2020.147230] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/28/2022]
Abstract
Inflammation plays a role in the pathophysiology of mesial temporal lobe epilepsy (MTLE). Inflammasome pathways, including the NLRP1 and NLRP3-induced ones, promote neuroinflammation and pyroptosis through interleukin (IL)-1β and caspase-1 action. Evaluation of NLRP1 in sclerotic hippocampi is scarce and there are no data on NLRP3 in human TLE. The aim of this study was to evaluate the expression of these proteins alongside caspase-1 and IL-1β in the hippocampi of patients with TLE compared to control samples. We also sought to investigate peripheral levels of caspase-1 and IL-1β in an independent cohort. Sclerotic and control hippocampi were collected for both histological and immunohistochemical analyses of NLRP1, NLRP3, caspase-1 and IL-1β; plasma was sampled for the measurement of caspase-1 and IL-1β levels through enzyme-linked immunoassay (ELISA) and cytometric bead array (CBA). Sclerotic hippocampi displayed higher expression of the measured proteins than control. Both glia and neurons showed activation of these pathways. Additionally, increased expression of NLRP1 and NLRP3 was associated with elevated plasma levels of IL-1β and in TLE, and increased levels of peripheral caspase-1 were associated with bilateral hippocampal sclerosis (HS). In conclusion, NLRP1 and NLRP3 are up-regulated in sclerotic hippocampi, what may be responsible, at least in part, for the increased hippocampal expression of caspase-1 and IL-1β. Our data suggest a role for inflammasome activation in central and peripheral inflammation in TLE.
Collapse
Affiliation(s)
- Eliana Cristina de Brito Toscano
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Laboratório Interdisciplinar de Investigação Médica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Érica Leandro Marciano Vieira
- Laboratório Interdisciplinar de Investigação Médica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara Boni Rocha Dias
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo Vidigal Caliari
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Gonçalves
- Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Núcleo Avançado de Tratamento das Epilepsias - Hospital Felício Rocho, Belo Horizonte, MG, Brazil
| | | | - José Maurício Siqueira
- Núcleo Avançado de Tratamento das Epilepsias - Hospital Felício Rocho, Belo Horizonte, MG, Brazil
| | | | | | - Ricardo Nitrini
- Biobank for Aging Studies, Universidade de São Paulo, São Paulo, Brazil
| | - Milene Alvarenga Rachid
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, TX, United States
| |
Collapse
|
11
|
CDDO-Me Distinctly Regulates Regional Specific Astroglial Responses to Status Epilepticus via ERK1/2-Nrf2, PTEN-PI3K-AKT and NFκB Signaling Pathways. Antioxidants (Basel) 2020; 9:antiox9101026. [PMID: 33096818 PMCID: PMC7589507 DOI: 10.3390/antiox9101026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) is a triterpenoid analogue of oleanolic acid. CDDO-Me shows anti-inflammatory and neuroprotective effects. Furthermore, CDDO-Me has antioxidant properties, since it activates nuclear factor-erythroid 2-related factor 2 (Nrf2), which is a key player of redox homeostasis. In the present study, we evaluated whether CDDO-Me affects astroglial responses to status epilepticus (SE, a prolonged seizure activity) in the rat hippocampus in order to understand the underlying mechanisms of reactive astrogliosis and astroglial apoptosis. Under physiological conditions, CDDO-Me increased Nrf2 expression in the hippocampus without altering activities (phosphorylations) of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), phosphatidylinositol-3-kinase (PI3K), and AKT. CDDO-Me did not affect seizure activity in response to pilocarpine. However, CDDO-Me ameliorated reduced astroglial Nrf2 expression in the CA1 region and the molecular layer of the dentate gyrus (ML), and attenuated reactive astrogliosis and ML astroglial apoptosis following SE. In CA1 astrocytes, CDDO-Me inhibited the PI3K/AKT pathway by activating PTEN. In contrast, CDDO-ME resulted in extracellular signal-related kinases 1/2 (ERK1/2)-mediated Nrf2 upregulation in ML astrocytes. Furthermore, CDDO-Me decreased nuclear factor-κB (NFκB) phosphorylation in both CA1 and ML astrocytes. Therefore, our findings suggest that CDDO-Me may attenuate SE-induced reactive astrogliosis and astroglial apoptosis via regulation of ERK1/2-Nrf2, PTEN-PI3K-AKT, and NFκB signaling pathways.
Collapse
|
12
|
Su Q, Wang F, Dong Z, Chen M, Cao R. IFN‑γ induces apoptosis in human melanocytes by activating the JAK1/STAT1 signaling pathway. Mol Med Rep 2020; 22:3111-3116. [PMID: 32945463 PMCID: PMC7453586 DOI: 10.3892/mmr.2020.11403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to investigate the role of janus kinase (JAK)1/STAT1 in interferon (IFN)-γ-induced apoptosis in human melanocytes. Following IFN-γ treatment, the viability of human melanocytes were analyzed using a Cell Counting Kit-8 assay and the apoptotic rate was determined using flow cytometry. Western blotting was also performed to analyze the phosphorylation levels of JAK1, JAK2 and the transcriptional factor STAT1, as well as the expression levels of Bcl-2, Bax, Bcl-2 homologous antagonist killer (Bak) and cleaved caspase-3. Finally, following the pretreatment with the STAT1 inhibitor fludarabine, human melanocytes were treated with IFN-γ and flow cytometry was used to detect the apoptotic rate. The results revealed that IFN-γ reduced the proliferation and induced the apoptosis of human melanocytes. In addition, IFN-γ treatment led to decreased expression levels of Bcl-2 and increased expression levels of Bax, Bak and cleaved caspase-3, alongside the activation of the JAK1/STAT1 signaling pathway. Conversely, the pretreatment with the STAT1 inhibitor fludarabine decreased the apoptotic rate of human melanocytes following IFN-γ induction. In conclusion, the findings of the present study suggested that IFN-γ may induce the apoptosis of human melanocytes by activating the JAK1/STAT1 signaling pathway, alongside increasing the expression levels of Bax, Bak and cleaved caspase-3, and decreasing the expression levels of Bcl-2.
Collapse
Affiliation(s)
- Qianya Su
- Department of Dermatology, School of Medicine, Zhong Da Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Fei Wang
- Department of Dermatology, School of Medicine, Zhong Da Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhengbang Dong
- Department of Dermatology, School of Medicine, Zhong Da Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Mei Chen
- Department of Dermatology, School of Medicine, Zhong Da Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Rong Cao
- Department of Dermatology, School of Medicine, Zhong Da Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
13
|
Toscano ECDB, Vieira ÉLM, Portela ACDC, Caliari MV, Brant JAS, Giannetti AV, Suemoto CK, Leite REP, Nitrini R, Rachid MA, Teixeira AL. Microgliosis is associated with visual memory decline in patients with temporal lobe epilepsy and hippocampal sclerosis: A clinicopathologic study. Epilepsy Behav 2020; 102:106643. [PMID: 31805504 DOI: 10.1016/j.yebeh.2019.106643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 01/14/2023]
Abstract
Hippocampal sclerosis (HS) is characterized by neuronal loss and gliosis. The intensity and distribution of these histopathological findings over the Cornu Ammonis (CA) subfields are important for the classification of HS and prognostication of patients with temporal lobe epilepsy (TLE). Several studies have associated the neuronal density reduction in the hippocampus with cognitive decline in patients with TLE. The current study aimed at investigating whether the expression of glial proteins in sclerotic hippocampi is associated with presurgical memory performance of patients with TLE. Before amygdalohippocampectomy, patients were submitted to memory tests. Immunohistochemical and morphometric analyses with glial fibrillary acidic protein (GFAP) for astrogliosis and human leucocyte antigen DR (HLA-DR) for microgliosis were performed in paraffin-embedded HS and control hippocampi. Sclerotic hippocampi exhibited increased gliosis in comparison with controls. In patients with TLE, the area and intensity of staining for HLA-DR were associated with worse performance in the memory tests. Glial fibrillary acidic protein was neither associated nor correlated with memory test performance. Our data suggest association between microgliosis, but not astrogliosis, with visual memory decline in patients with TLE.
Collapse
Affiliation(s)
- Eliana Cristina de Brito Toscano
- Departamento de Patologia Geral do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Neuroscience Division, Interdisciplinary Laboratory of Medical Investigation, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Érica Leandro Marciano Vieira
- Neuroscience Division, Interdisciplinary Laboratory of Medical Investigation, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Marcelo Vidigal Caliari
- Departamento de Patologia Geral do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Claudia Kimie Suemoto
- Laboratório de Fisiopatologia no Envelhecimento, Universidade de São Paulo, SP, Brazil
| | | | - Ricardo Nitrini
- Laboratório de Fisiopatologia no Envelhecimento, Universidade de São Paulo, SP, Brazil
| | - Milene Alvarenga Rachid
- Departamento de Patologia Geral do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program and Immuno-Psychiatry Lab, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, TX, United States
| |
Collapse
|