1
|
Shi Q, Dai M, Ma Y, Liu J, Liu X, Wang XJ. DRED: A Comprehensive Database of Genes Related to Repeat Expansion Diseases. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae068. [PMID: 39348154 PMCID: PMC11696699 DOI: 10.1093/gpbjnl/qzae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Expansion of tandem repeats in genes often causes severe diseases, such as fragile X syndrome, Huntington's disease, and spinocerebellar ataxia. However, information on genes associated with repeat expansion diseases is scattered throughout the literature, systematic prediction of potential genes that may cause diseases via repeat expansion is also lacking. Here, we develop DRED, a Database of genes related to Repeat Expansion Diseases, as a manually-curated database that covers all known 61 genes related to repeat expansion diseases reported in PubMed and OMIM, along with the detailed repeat information for each gene. DRED also includes 516 genes with the potential to cause diseases via repeat expansion, which were predicted based on their repeat composition, genetic variations, genomic features, and disease associations. Various types of information on repeat expansion diseases and their corresponding genes/repeats are presented in DRED, together with links to external resources, such as NCBI and ClinVar. DRED provides user-friendly interfaces with comprehensive functions, and can serve as a central data resource for basic research and repeat expansion disease-related medical diagnosis. DRED is freely accessible at http://omicslab.genetics.ac.cn/dred, and will be frequently updated to include newly reported genes related to repeat expansion diseases.
Collapse
Affiliation(s)
- Qingqing Shi
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Dai
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingke Ma
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Liu
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuying Liu
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiu-Jie Wang
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Van Alstyne M, Nguyen VL, Hoeffer CA, Parker R. Polyserine peptides are toxic and exacerbate tau pathology in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.616100. [PMID: 39416198 PMCID: PMC11482949 DOI: 10.1101/2024.10.10.616100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Polyserine domains mediate the association of nuclear RNA binding proteins with cytoplasmic tau aggregates that occurs across tauopathy models and patient samples. In cell lines, polyserine peptides co-localize with and promote formation of tau aggregates suggesting the cytoplasmic mislocalization of polyserine-containing proteins might contribute to human disease. Moreover, polyserine can be produced by repeat associated non-AUG translation in CAG repeat expansion diseases. However, whether polyserine expressed in a mammalian brain is toxic and/or can exacerbate tau pathology is unknown. Here, we used AAV9-mediated delivery to express a 42-repeat polyserine protein in wild-type and tau transgenic mouse models. We observe that polyserine expression has toxic effects in wild-type animals indicated by reduced weight, behavioral abnormalities and a striking loss of Purkinje cells. Moreover, in the presence of a pathogenic variant of human tau, polyserine exacerbates disease markers such as phosphorylated and insoluble tau levels and the seeding capacity of brain extracts. These findings demonstrate that polyserine domains can promote tau-mediated pathology in a mouse model and are consistent with the hypothesis that cytoplasmic mislocalization of polyserine containing proteins might contribute to the progression of human tauopathies.
Collapse
Affiliation(s)
- Meaghan Van Alstyne
- Department of Biochemistry, University of Colorado Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| | | | - Charles A. Hoeffer
- Department of Integrative Physiology, University of Colorado Boulder, CO, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, CO, USA
| |
Collapse
|
3
|
Langerscheidt F, Wied T, Al Kabbani MA, van Eimeren T, Wunderlich G, Zempel H. Genetic forms of tauopathies: inherited causes and implications of Alzheimer's disease-like TAU pathology in primary and secondary tauopathies. J Neurol 2024; 271:2992-3018. [PMID: 38554150 PMCID: PMC11136742 DOI: 10.1007/s00415-024-12314-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Tauopathies are a heterogeneous group of neurologic diseases characterized by pathological axodendritic distribution, ectopic expression, and/or phosphorylation and aggregation of the microtubule-associated protein TAU, encoded by the gene MAPT. Neuronal dysfunction, dementia, and neurodegeneration are common features of these often detrimental diseases. A neurodegenerative disease is considered a primary tauopathy when MAPT mutations/haplotypes are its primary cause and/or TAU is the main pathological feature. In case TAU pathology is observed but superimposed by another pathological hallmark, the condition is classified as a secondary tauopathy. In some tauopathies (e.g. MAPT-associated frontotemporal dementia (FTD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Alzheimer's disease (AD)) TAU is recognized as a significant pathogenic driver of the disease. In many secondary tauopathies, including Parkinson's disease (PD) and Huntington's disease (HD), TAU is suggested to contribute to the development of dementia, but in others (e.g. Niemann-Pick disease (NPC)) TAU may only be a bystander. The genetic and pathological mechanisms underlying TAU pathology are often not fully understood. In this review, the genetic predispositions and variants associated with both primary and secondary tauopathies are examined in detail, assessing evidence for the role of TAU in these conditions. We highlight less common genetic forms of tauopathies to increase awareness for these disorders and the involvement of TAU in their pathology. This approach not only contributes to a deeper understanding of these conditions but may also lay the groundwork for potential TAU-based therapeutic interventions for various tauopathies.
Collapse
Affiliation(s)
- Felix Langerscheidt
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Tamara Wied
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Von-Liebig-Str. 20, 53359, Rheinbach, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Gilbert Wunderlich
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
4
|
Chen S, Li S, Liu Y, She R, Jiang W. Spastic paraplegia is the main manifestation of a spinocerebellar ataxia type 8 lineage in China: a case report and review of literature. Front Hum Neurosci 2023; 17:1198309. [PMID: 37529405 PMCID: PMC10388100 DOI: 10.3389/fnhum.2023.1198309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023] Open
Abstract
The diagnosis and treatment of cerebellar atrophy remain challenging owing to its nonspecific symptoms and laboratory indicators. Three patients with spinocerebellar ataxia type 8 caused by ATXN8OS were found among the 16 people in the studied family. The clinical manifestations of the patients included progressive spastic paraplegia of the lower extremities, mild ataxia, mild cognitive impairment, and cerebellar atrophy. After administering antispasmodic rehabilitation treatment, using oral drugs, botulinum toxin injection, baclofen pump, and other systems in our hospital, the patients' lower extremity spasticity was significantly relieved. To our knowledge, till date, this is the first domestic report of spinocerebellar ataxia type 8 affecting a family, caused by ATXN8OS with spasticity onset in early childhood. Manifestations of the disease included spastic dyskinesia (in early disease stages) and cerebellar atrophy. Through systematic rehabilitation, the daily life of patients with this movement disorder was improved. This case report adds to the literature on spinocerebellar ataxia type 8 by summarizing its features.
Collapse
|