1
|
Aliyu A, Dellschaft N, Hoad C, Williams H, Gaudoin E, Sulaiman S, Crooks C, Gowland P, Aran A, Lange R, Bois De Fer B, Corsetti M, Marciani L, Spiller R. Magnetic Resonance Imaging Reveals Novel Insights into the Dual Mode of Action of Bisacodyl: A Randomized, Placebo-controlled Trial in Constipation. Clin Pharmacol Ther 2025; 117:1284-1291. [PMID: 39679695 PMCID: PMC11993282 DOI: 10.1002/cpt.3532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Bisacodyl is a widely used laxative that stimulates both motility and secretion. Our aim was to exploit the unique capabilities of MRI to define bisacodyl's mode of action. Two placebo-controlled cross-over trials were performed, one using a single dose of Bisacodyl 5 mg while the second dosed daily for 3 consecutive days. Serial MRI was performed every 75 minutes. Primary endpoint: ascending colon water content as assessed by T1AC AUC300-450 minutes. Secondary endpoints included: small bowel water content, whole gut transit time (WGTT), colonic volumes, stool frequency, and consistency using Bristol Stool Form Score (BSFS). Exploratory endpoints: changes in the serial segmental volumes were quantified from the number of "mass movements" defined as episodes when segmental volume change from the previous scan was > 20% of baseline volume. We also measure the time to defecate after dosing. After 3 days of bisacodyl, ascending colon water content (T1) was 62% greater than after placebo, mean difference T1 AUC300-450 minutes 50.2 (61.0) sec.min, 95% CI (9.2, 91.2), P = 0.02, while after a single dose difference was only 11% (P = 0.58). Both single and repeated doses shortened WGTT (P < 0.049) and time to defecate (P 0.01). Only repeated doses significantly increased small bowel water content (P < 0.03), the number of "mass movements" (P = 0.048), bowel frequency (P = 0.006), and BSFS (P = 0.03). Repeated, compared to single dosing of Bisacodyl, additionally increases small bowel and colon water content and increases the number of "mass movements" thereby increasing its laxative effect. MRI is a non-invasive, patient-acceptable technique for evaluating drugs which alter secretion and/or motility.
Collapse
Affiliation(s)
- Abdulsalam Aliyu
- Nottingham NIHR Research CentreUniversity of NottinghamNottinghamUK
- School of MedicineUniversity of NottinghamNottinghamUK
| | - Neele Dellschaft
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | - Caroline Hoad
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | - Hannah Williams
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | - Emily Gaudoin
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | | | - Colin Crooks
- Nottingham NIHR Research CentreUniversity of NottinghamNottinghamUK
- School of MedicineUniversity of NottinghamNottinghamUK
| | - Penny Gowland
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | | | | | | | - Maura Corsetti
- Nottingham NIHR Research CentreUniversity of NottinghamNottinghamUK
- School of MedicineUniversity of NottinghamNottinghamUK
| | - Luca Marciani
- Nottingham NIHR Research CentreUniversity of NottinghamNottinghamUK
- School of MedicineUniversity of NottinghamNottinghamUK
| | - Robin Spiller
- Nottingham NIHR Research CentreUniversity of NottinghamNottinghamUK
- School of MedicineUniversity of NottinghamNottinghamUK
| |
Collapse
|
2
|
Mark EB, Okdahl T, Kahlke DG, Hansen LEM, Krogh K, Frøkjær JB, Drewes AM. Effects of opium tincture on gastrointestinal function and motility in healthy volunteers: A magnetic resonance imaging study. Neurogastroenterol Motil 2024; 36:e14941. [PMID: 39375836 DOI: 10.1111/nmo.14941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Opioids inhibit motility and secretion of the gut and have been used for antidiarrheal treatment for centuries. However, the underlying mechanisms of opium tincture are not evident. AIM To investigate the effects of opium tincture on gastrointestinal motility, intestinal volumes, and water content of different gut segments assessed by magnetic resonance imaging (MRI). METHODS Twenty healthy volunteers were included in a randomized, placebo-controlled, crossover study of 9 days of treatment with 30 drops of opium tincture per day. MRI was performed on day 1 (before treatment) and day 9 (during treatment). Measurements included assessments of gastric volume, gastric emptying, gastric motility, small bowel volume, small bowel water content, small bowel motility, colon volume, colon water content, and whole gut transit. KEY RESULTS Opium tincture delayed gastric emptying by a mean difference of 5.6 min [95% CI: 1.8-9.4], p = 0.004, and increased postprandial gastric meal volume (17-21%, p = 0.02). Small bowel endpoints did not change. Opium tincture delayed whole gut transit time (p = 0.027) and increased ascending colon volume by 59 mL [95% CI: 15-103], p = 0.004, and transverse colon volume by 48 mL [95% CI: 4-92], p = 0.027. T1-relaxation time of the descending colon chyme was decreased during opium treatment, indicating dryer feces (difference: -173 ms [95% CI: -336 -11], p = 0.03). CONCLUSION AND INFERENCES Opium tincture induced changes in the stomach and colon in healthy volunteers. An improved understanding of how opioids affect gut functions may lead to a better understanding and optimized management of diarrhea.
Collapse
Affiliation(s)
- Esben Bolvig Mark
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Tina Okdahl
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Daniel Gerdt Kahlke
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Line Elise Møller Hansen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Klaus Krogh
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Brøndum Frøkjær
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Mech-Sense, Radiology Research Center, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Asbjørn Mohr Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
3
|
Wattchow DA, Brookes SJ, Spencer NJ, Heitmann PT, De Giorgio R, Costa M, Dinning PG. From the organ bath to the whole person: a review of human colonic motility. ANZ J Surg 2024; 94:320-326. [PMID: 37974532 DOI: 10.1111/ans.18779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Motor function of the colon is essential for health. Our current understanding of the mechanisms that underlie colonic motility are based upon a range of experimental techniques, including molecular biology, single cell studies, recordings from muscle strips, analysis of part or whole organ ex vivo through to in vivo human recordings. For the surgeon involved in the clinical management of colonic conditions this amounts to a formidable volume of material. Here, we synthesize the key findings from these various experimental approaches so that surgeons can be better armed to deal with the complexities of the colon.
Collapse
Affiliation(s)
- David A Wattchow
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Departments of Surgery and Gastroenterology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Simon J Brookes
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Paul T Heitmann
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Marcello Costa
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Phil G Dinning
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Departments of Surgery and Gastroenterology, Flinders Medical Centre, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Rajindrajith S, Hathagoda W, Ganewatte E, Devanarayana NM, Thapar N, Benninga M. Imaging in pediatric disorders of the gut-brain interactions: current best practice and future directions. Expert Rev Gastroenterol Hepatol 2023; 17:1255-1266. [PMID: 37997030 DOI: 10.1080/17474124.2023.2288164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
INTRODUCTION Disorders of Gut-Brain Interactions (DGBI) are a common clinical problem in children and pose significant challenges to the attending pediatrician. Radiological investigations are commonly ordered to evaluate these children. AREA COVERED This review focuses on the current best practice of using radiological investigations in DGBIs and how novel radiological investigations could revolutionize the assessment and therapeutic approach of DGBI in children. EXPERT OPINION We believe imaging in DGBI is still in its early stages, but it has the potential to revolutionize how we diagnose and treat children with DGBI. As the understanding of the gut-brain axis continues to grow, we can expect to see the disappearance of conventional imaging techniques and the emergence of more sophisticated imaging techniques with less radiation exposure in the future which provide more clinically meaningful information regarding the gut-brain axis and its influence on intestinal function. Some of the novel imaging modalities will be able to broaden our horizon of understanding DGBI in children providing more useful therapeutic options to minimize their suffering.
Collapse
Affiliation(s)
- Shaman Rajindrajith
- Department of Paediatrics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- Lady Ridgeway Hospital for Children, Colombo, Sri Lanka
| | - Wathsala Hathagoda
- Department of Paediatrics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- Lady Ridgeway Hospital for Children, Colombo, Sri Lanka
| | | | | | - Nikhil Thapar
- Department of Gastroenterology, Hepatology, and Liver Transplant, Queensland Children's Hospital, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Marc Benninga
- Department of Pediatric Gastroenterology, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Hosseini S, Avci R, Paskaranandavadivel N, Suresh V, Cheng LK. Quantification of the Regional Properties of Gastric Motility Using Dynamic Magnetic Resonance Images. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 4:38-44. [PMID: 37138590 PMCID: PMC10151011 DOI: 10.1109/ojemb.2023.3261224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/16/2023] [Accepted: 03/14/2023] [Indexed: 05/05/2023] Open
Abstract
Goal: To quantify the regional properties of gastric motility from free-breathing dynamic MRI data. Methods: Free-breathing MRI scans were performed on 10 healthy human subjects. Motion correction was applied to reduce the respiratory effect. A stomach centerline was automatically generated and used as a reference axis. Contractions were quantified and visualized as spatio-temporal contraction maps. Gastric motility properties were reported separately for the lesser and greater curvatures in the proximal and distal regions of the stomach. Results: Motility properties varied in different regions of the stomach. The mean contraction frequencies for the lesser and greater curvatures were both 3.1±0.4 cycles per minute. The contraction speed was significantly higher on the greater curvature than the lesser curvature (3.5±0.7 vs 2.5±0.4 mm/s, p<0.001) while contraction size on both curvatures was comparable (4.9±1.2 vs 5.7±2.4 mm, p = 0.326). The mean gastric motility index was significantly higher in the distal greater curvature (28.13±18.89 mm2/s) compared to the other regions of the stomach (11.16-14.12 mm2/s). Conclusions: The results showed the effectiveness of the proposed method for visualization and quantification of motility patterns from MRI data.
Collapse
Affiliation(s)
- Saeed Hosseini
- Auckland Bioengineering InstituteUniversity of Auckland Auckland 1010 New Zealand
- Riddet Institute Palmerston North 4474 New Zealand
| | - Recep Avci
- Auckland Bioengineering InstituteUniversity of Auckland Auckland 1010 New Zealand
| | | | - Vinod Suresh
- Auckland Bioengineering InstituteUniversity of Auckland Auckland 1010 New Zealand
- Department of Engineering ScienceUniversity of Auckland Auckland 1010 New Zealand
| | - Leo K Cheng
- Auckland Bioengineering InstituteUniversity of Auckland Auckland 1010 New Zealand
- Riddet InstitutePalmerston North 4474 New Zealand
| |
Collapse
|
6
|
Gollifer RM, Taylor SA, Menys A, Zarate‐Lopez N, Chatoor D, Emmanuel A, Atkinson D. Magnetic resonance imaging assessed enteric motility and luminal content analysis in patients with severe bloating and visible distension. Neurogastroenterol Motil 2022; 34:e14381. [PMID: 35438218 PMCID: PMC9786248 DOI: 10.1111/nmo.14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Gastrointestinal symptoms in functional gut disorders occur without any discernible structural gut abnormality. Preliminary observations on enteric MRI suggest possible abnormal content and motility of the terminal ileum (TI) in constipation-predominant IBS (IBS-C) with severe bloating, and in functional bloating and distension (FABD) patients. We investigated whether MRI can quantify differences in small bowel (SB) content and motility between patients and healthy controls (HCs). METHODS 11 IBS-C (mean age 40 [21-52] years; 10 women) and 7 FABD (36 [21-56]; all women) patients with bloating and 20 HCs (28 [22-48]; 6 women) underwent enteric MRI, including dynamic motility and anatomical sequences. Three texture analysis (TA) parameters assessed the homogeneity of the luminal content, with ratios calculated between the TI and (1) the SB and (2) the ascending colon. Four TI motility metrics were derived. Ascending colon diameter (ACD) was measured. A comparison between HCs and patients was performed independently for: (1) three TA parameters, (2) four TI motility metrics, and (3) ACD. KEY RESULTS Compared with HCs, patients had TI:colon ratios higher for TA contrast (p < 0.001), decreased TI motility (lower mean motility [p = 0.04], spatial motility variation [p = 0.03], and area of motile TI [p = 0.03]), and increased ACD (p = 0.001). CONCLUSIONS AND INFERENCES IBS-C and FABD patients show reduced TI motility and differences in luminal content compared with HCs. This potentially indicates reflux of colonic contents or delayed clearance of the TI, which alongside increased ACD may contribute to symptoms of constipation and bloating.
Collapse
Affiliation(s)
| | - Stuart A. Taylor
- Centre for Medical ImagingUniversity College London (UCL)LondonUK
| | - Alex Menys
- Centre for Medical ImagingUniversity College London (UCL)LondonUK
| | | | - Dave Chatoor
- Department of GastroenterologyUniversity College London HospitalsLondonUK
| | - Anton Emmanuel
- Department of GastroenterologyUniversity College London HospitalsLondonUK
| | - David Atkinson
- Centre for Medical ImagingUniversity College London (UCL)LondonUK
| |
Collapse
|
7
|
Colonic Function Investigations in Children: Review by the ESPGHAN Motility Working Group. J Pediatr Gastroenterol Nutr 2022; 74:681-692. [PMID: 35262513 DOI: 10.1097/mpg.0000000000003429] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Disorders of colonic motility, most often presenting as constipation, comprise one of the commonest causes of outpatient visits in pediatric gastroenterology. This review, discussed and created by the European Society for Pediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) Motility Working Group, is a practical guide, which highlights the recent advances in pediatric colonic motility testing including indications, technical principles of the tests, patient preparation, performance and basis of the results' analysis of the tests. classical methods, such as colonic transit time (cTT) with radiopaque markers and colonic scintigraphy, as well as manometry and novel techniques, such as wireless motility capsule and electromagnetic capsule tracking systems are discussed.
Collapse
|
8
|
Costa M, Wiklendt L, Hibberd T, Dinning P, Spencer NJ, Brookes S. Analysis of Intestinal Movements with Spatiotemporal Maps: Beyond Anatomy and Physiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:271-294. [PMID: 36587166 DOI: 10.1007/978-3-031-05843-1_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Over 150 years ago, methods for quantitative analysis of gastrointestinal motor patterns first appeared. Graphic representations of physiological variables were recorded with the kymograph after the mid-1800s. Changes in force or length of intestinal muscles could be quantified, however most recordings were limited to a single point along the digestive tract.In parallel, photography and cinematography with X-Rays visualised changes in intestinal shape, but were hard to quantify. More recently, the ability to record physiological events at many sites along the gut in combination with computer processing allowed construction of spatiotemporal maps. These included diameter maps (DMaps), constructed from video recordings of intestinal movements and pressure maps (PMaps), constructed using data from high-resolution manometry catheters. Combining different kinds of spatiotemporal maps revealed additional details about gut wall status, including compliance, which relates forces to changes in length. Plotting compliance values along the intestine enabled combined DPMaps to be constructed, which can distinguish active contractions and relaxations from passive changes. From combinations of spatiotemporal maps, it is possible to deduce the role of enteric circuits and pacemaker cells in the generation of complex motor patterns. Development and application of spatiotemporal methods to normal and abnormal motor patterns in animals and humans is ongoing, with further technical improvements arising from their combination with impedance manometry, magnetic resonance imaging, electrophysiology, and ultrasonography.
Collapse
Affiliation(s)
- Marcello Costa
- College of Medicine and Public Health, Department of Human Physiology, Flinders University, Bedford Park, SA, Australia.
| | - Luke Wiklendt
- Department of Gastroenterology and Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Tim Hibberd
- College of Medicine and Public Health, Department of Human Physiology, Flinders University, Bedford Park, SA, Australia
| | - Phil Dinning
- Department of Gastroenterology and Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Nick J Spencer
- College of Medicine and Public Health, Department of Human Physiology, Flinders University, Bedford Park, SA, Australia
| | - Simon Brookes
- College of Medicine and Public Health, Department of Human Physiology, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
9
|
Lu KH, Liu Z, Jaffey D, Wo JM, Mosier KM, Cao J, Wang X, Powley TL. Automatic assessment of human gastric motility and emptying from dynamic 3D magnetic resonance imaging. Neurogastroenterol Motil 2022; 34:e14239. [PMID: 34431171 DOI: 10.1111/nmo.14239] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Time-sequenced magnetic resonance imaging (MRI) of the stomach is an emerging technique for non-invasive assessment of gastric emptying and motility. However, an automated and systematic image processing pipeline for analyzing dynamic 3D (ie, 4D) gastric MRI data has not been established. This study uses an MRI protocol for imaging the stomach with high spatiotemporal resolution and provides a pipeline for assessing gastric emptying and motility. METHODS Diet contrast-enhanced MRI images were acquired from seventeen healthy humans after they consumed a naturalistic contrast meal. An automated image processing pipeline was developed to correct for respiratory motion, to segment and compartmentalize the lumen-enhanced stomach, to quantify total gastric and compartmental emptying, and to compute and visualize gastric motility on the luminal surface of the stomach. KEY RESULTS The gastric segmentation reached an accuracy of 91.10 ± 0.43% with the Type-I error and Type-II error being 0.11 ± 0.01% and 0.22 ± 0.01%, respectively. Gastric volume decreased 34.64 ± 2.8% over 1 h where the emptying followed a linear-exponential pattern. The gastric motility showed peristaltic patterns with a median = 4 wave fronts (range 3-6) and a mean frequency of 3.09 ± 0.07 cycles per minute. Further, the contractile amplitude was stronger in the antrum than in the corpus (antrum vs. corpus: 5.18 ± 0.24 vs. 3.30 ± 0.16 mm; p < 0.001). CONCLUSIONS & INFERENCES Our analysis pipeline can process dynamic 3D MRI images and produce personalized profiles of gastric motility and emptying. It will facilitate the application of MRI for monitoring gastric dynamics in research and clinical settings.
Collapse
Affiliation(s)
- Kun-Han Lu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Zhongming Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, USA
| | - Deborah Jaffey
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - John M Wo
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Jiayue Cao
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiaokai Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Terry L Powley
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
10
|
Hosseini S, Avci R, Paskaranandavadivel N, Suresh V, Cheng LK. Quantification of Gastric Contractions Using MRI with a Natural Contrast Agent. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3601-3604. [PMID: 34892017 DOI: 10.1109/embc46164.2021.9629601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gastric motility has an essential role in mixing and the breakdown of ingested food. It can affect the digestion process and the efficacy of the orally administered drugs. There are several methods to image, measure, and quantify gastric motility. MRI has been shown to be a suitable non-invasive method for gastric motility imaging. However, in most studies, gadolinium-based agents have been used as an oral contrast agent, making it less desirable for general usage. In this study, MRI scans were performed on 4 healthy volunteers, where pineapple juice was used as a natural contrast agent for imaging gastric motility. A novel method was developed to automatically estimate a curved centerline of the stomach. The centerline was used as a reference to quantify contraction magnitudes. The results were visualized as contraction magnitude-maps. The mean speed of each contraction wave on the lesser and greater curvatures of the stomach was calculated, and the variation of the speeds in 4 regions of the stomach were quantified. There were 3-4 contraction waves simultaneously present in the stomach for all cases. The mean speed of all contractions was 2.4±0.9 mm/s, and was in agreement with previous gastric motility studies. The propagation speed of the contractions in the greater curvature was higher in comparison to the lesser curvature (2.9±0.8 vs 1.9±0.5 mm/s); however, the speeds were more similar near to the pylorus. This study shows the feasibility of using pineapple juice as a natural oral contrast agent for the MRI measurements of gastric motility. Also, it demonstrated the viability of the proposed method for automatic curved centerline estimation, which enables practical clinical translation.Clinical Relevance- MRI is able to non-invasively provide dynamic images of the contraction patterns of the stomach, providing a novel clinical tool for assessing functional motility disorders. The use of a natural oral contrast agent such as pineapple juice, as opposed to a gadolinium-based contrast agent, makes MRI more widely accessible. Our semi-automated methods for quantifying contraction magnitude and speed will streamline analysis and clinical diagnosis.
Collapse
|
11
|
Scott SM, Simrén M, Farmer AD, Dinning PG, Carrington EV, Benninga MA, Burgell RE, Dimidi E, Fikree A, Ford AC, Fox M, Hoad CL, Knowles CH, Krogh K, Nugent K, Remes-Troche JM, Whelan K, Corsetti M. Chronic constipation in adults: Contemporary perspectives and clinical challenges. 1: Epidemiology, diagnosis, clinical associations, pathophysiology and investigation. Neurogastroenterol Motil 2021; 33:e14050. [PMID: 33263938 DOI: 10.1111/nmo.14050] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/12/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chronic constipation is a prevalent disorder that affects patients' quality of life and consumes resources in healthcare systems worldwide. In clinical practice, it is still considered a challenge as clinicians frequently are unsure as to which treatments to use and when. Over a decade ago, a Neurogastroenterology & Motility journal supplement devoted to the investigation and management of constipation was published (2009; 21 (Suppl.2)). This included seven articles, disseminating all themes covered during a preceding 2-day meeting held in London, entitled "Current perspectives in chronic constipation: a scientific and clinical symposium." In October 2018, the 3rd London Masterclass, entitled "Contemporary management of constipation" was held, again over 2 days. All faculty members were invited to author two new review articles, which represent a collective synthesis of talks presented and discussions held during this meeting. PURPOSE This article represents the first of these reviews, addressing epidemiology, diagnosis, clinical associations, pathophysiology, and investigation. Clearly, not all aspects of the condition can be covered in adequate detail; hence, there is a focus on particular "hot topics" and themes that are of contemporary interest. The second review addresses management of chronic constipation, covering behavioral, conservative, medical, and surgical therapies.
Collapse
Affiliation(s)
- S Mark Scott
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Queen Mary University of London, London, UK
| | - Magnus Simrén
- Department of Internal Medicine & Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Center for Functional GI and Motility Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam D Farmer
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Queen Mary University of London, London, UK.,Institute of Applied Clinical Science, University of Keele, Keele, UK
| | - Philip G Dinning
- College of Medicine and Public Health, Flinders Medical Centre, Flinders University & Discipline of Gastroenterology, Adelaide, SA, Australia
| | - Emma V Carrington
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Queen Mary University of London, London, UK.,Surgical Professorial Unit, St Vincent's University Hospital, Dublin, Ireland
| | - Marc A Benninga
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rebecca E Burgell
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, Vic., Australia
| | - Eirini Dimidi
- Department of Nutritional Sciences, King's College London, London, UK
| | - Asma Fikree
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Queen Mary University of London, London, UK.,Gastroenterology Department, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Alexander C Ford
- Leeds Institute of Medical Research at St. James's, Leeds Gastroenterology Institute, Leeds Teaching Hospitals Trust, University of Leeds, Leeds, UK
| | - Mark Fox
- Division of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland.,Digestive Function: Basel, Laboratory and Clinic for Motility Disorders and Functional Gastrointestinal Diseases, Centre for Integrative Gastroenterology, Klinik Arlesheim, Arlesheim, Switzerland
| | - Caroline L Hoad
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre (BRC), Hospitals NHS Trust and the University of Nottingham, Nottingham University, Nottingham, UK
| | - Charles H Knowles
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Queen Mary University of London, London, UK
| | - Klaus Krogh
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Karen Nugent
- Department of Surgery, Southampton University Hospital NHS Foundation Trust, Southampton, UK
| | - Jose Maria Remes-Troche
- Digestive Physiology and Motility Lab, Medical Biological Research Institute, Universidad Veracruzana, Veracruz, Mexico
| | - Kevin Whelan
- Department of Nutritional Sciences, King's College London, London, UK
| | - Maura Corsetti
- NIHR Nottingham Biomedical Research Centre (BRC), Hospitals NHS Trust and the University of Nottingham, Nottingham University, Nottingham, UK.,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
12
|
Cheng LK, Nagahawatte ND, Avci R, Du P, Liu Z, Paskaranandavadivel N. Strategies to Refine Gastric Stimulation and Pacing Protocols: Experimental and Modeling Approaches. Front Neurosci 2021; 15:645472. [PMID: 33967679 PMCID: PMC8100207 DOI: 10.3389/fnins.2021.645472] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric pacing and stimulation strategies were first proposed in the 1960s to treat motility disorders. However, there has been relatively limited clinical translation of these techniques. Experimental investigations have been critical in advancing our understanding of the control mechanisms that innervate gut function. In this review, we will discuss the use of pacing to modulate the rhythmic slow wave conduction patterns generated by interstitial cells of Cajal in the gastric musculature. In addition, the use of gastric high-frequency stimulation methods that target nerves in the stomach to either inhibit or enhance stomach function will be discussed. Pacing and stimulation protocols to modulate gastric activity, effective parameters and limitations in the existing studies are summarized. Mathematical models are useful to understand complex and dynamic systems. A review of existing mathematical models and techniques that aim to help refine pacing and stimulation protocols are provided. Finally, some future directions and challenges that should be investigated are discussed.
Collapse
Affiliation(s)
- Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of General Surgery, Vanderbilt University Medical Center, Nashville, TN, United States.,Riddet Institute, Palmerston North, New Zealand
| | - Nipuni D Nagahawatte
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Recep Avci
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Zhongming Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.,Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States
| | | |
Collapse
|
13
|
Watson TA, Barber J, Woodley H. Paediatric gastrointestinal and hepatobiliary radiology: why do we need subspecialists, and what is new? Pediatr Radiol 2021; 51:554-569. [PMID: 33743039 DOI: 10.1007/s00247-020-04778-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/06/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
We present the case for subspecialisation in paediatric gastrointestinal and hepato-pancreatico-biliary radiology. We frame the discussion around a number of questions: What is different about the paediatric patient and paediatric gastrointestinal system? What does the radiologist need to do differently? And finally, what can be translated from these subspecialty areas into everyday practice? We cover conditions that the sub-specialist might encounter, focusing on entities such as inflammatory bowel disease and hepatic vascular anomalies. We also highlight novel imaging techniques that are a focus of research in the subspecialties, including contrast-enhanced ultrasound, MRI motility, magnetisation transfer factor, and magnetic resonance elastography.
Collapse
Affiliation(s)
- Tom A Watson
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK.
| | - Joy Barber
- Department of Radiology, St. George's Hospital NHS Foundation Trust, London, UK
| | - Helen Woodley
- Department of Radiology, Leeds Teaching Hospital NHS Trust, Leeds, UK
| |
Collapse
|
14
|
Vriesman MH, de Jonge CS, Kuizenga-Wessel S, Adler B, Menys A, Nederveen AJ, Stoker J, Benninga MA, Di Lorenzo C. Simultaneous assessment of colon motility in children with functional constipation by cine-MRI and colonic manometry: a feasibility study. Eur Radiol Exp 2021; 5:8. [PMID: 33565002 PMCID: PMC7873179 DOI: 10.1186/s41747-021-00205-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/19/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Colonic manometry is the current reference standard for assessing colonic neuromuscular function in children with intractable functional constipation (FC). Recently, cine magnetic resonance imaging (cine-MRI) has been proposed as a non-invasive alternative. We compared colonic motility patterns on cine-MRI with those obtained by manometry in children, by stimulating high-amplitude propagating contractions (HAPCs) with bisacodyl under manometric control while simultaneously acquiring cine-MRI. METHODS After Institutional Review Board approval, adolescents with FC scheduled to undergo colonic manometry were included. A water-perfused 8-lumen catheter was used for colonic manometry recordings. After an intraluminal bisacodyl infusion, cine-MRI sequences of the descending colon were acquired for about 30 min simultaneously with colonic manometry. Manometry recordings were analysed for HAPCs. MRI images were processed with spatiotemporal motility MRI techniques. The anonymised motility results of both techniques were visually compared for the identification of HAPCs in the descending colon. RESULTS Data regarding six patients (three males) were analysed (median age 14 years, range 12-17). After bisacodyl infusion, three patients showed a total of eleven HAPCs with colonic manometry. Corresponding cine-MRI recorded high colonic activity during two of these HAPCs, minimal activity during seven HAPCs, while two HAPCs were not recorded. In two of three patients with absent HAPCs on manometry, colonic activity was recorded with cine-MRI. CONCLUSIONS Simultaneous acquisition of colonic cine-MRI and manometry in children with FC is feasible. Their motility results did not completely overlap in the identification of HAPCs. Research is needed to unravel the role of cine-MRI in this setting.
Collapse
Affiliation(s)
- M H Vriesman
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital/Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - C S de Jonge
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - S Kuizenga-Wessel
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital/Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - B Adler
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH, USA
| | | | - A J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - J Stoker
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - M A Benninga
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital/Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - C Di Lorenzo
- Division of Gastroenterology, Hepatology and Nutrition, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
15
|
Measurement of fasted state gastric antral motility before and after a standard bioavailability and bioequivalence 240 mL drink of water: Validation of MRI method against concomitant perfused manometry in healthy participants. PLoS One 2020; 15:e0241441. [PMID: 33175860 PMCID: PMC7657519 DOI: 10.1371/journal.pone.0241441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
Objective The gastrointestinal environment in which drug products need to disintegrate before the drug can dissolve and be absorbed has not been studied in detail due to limitations, especially invasiveness of existing techniques. Minimal in vivo data is available on undisturbed gastrointestinal motility to improve relevance of predictive dissolution models and in silico tools such as physiologically-based pharmacokinetic models. Recent advances in magnetic resonance imaging methods could provide novel data and insights that can be used as a reference to validate and, if necessary, optimize these models. The conventional method for measuring gastrointestinal motility is via a manometric technique involving intubation. Nevertheless, it is feasible to measure gastrointestinal motility with magnetic resonance imaging. The aim of this study was is to develop and validate a magnetic resonance imaging method using the most recent semi-automated analysis method against concomitant perfused manometry method. Material and methods Eighteen healthy fasted participants were recruited for this study. The participants were intubated with a water-perfused manometry catheter. Subsequently, stomach motility was assessed by cine-MRI acquired at intervals, of 3.5min sets, at coronal oblique planes through the abdomen and by simultaneous water perfused manometry, before and after administration of a standard bioavailability / bioequivalence 8 ounces (~240mL) drink of water. The magnetic resonance imaging motility images were analysed using Spatio-Temporal Motility analysis STMM techniques. The area under the curve of the gastric motility contractions was calculated for each set and compared between techniques. The study visit was then repeated one week later. Results Data from 15 participants was analysed. There was a good correlation between the MRI antral motility plots area under the curve and corresponding perfused manometry motility area under the curve (r = 0.860) during both antral contractions and quiescence. Conclusion Non-invasive dynamic magnetic resonance imaging of gastric antral motility coupled with recently developed, semi-automated magnetic resonance imaging data processing techniques correlated well with simultaneous, ‘gold standard’ water perfused manometry. This will be particularly helpful for research purposes related to oral absorption where the absorption of a drug is highly depending on the underlying gastrointestinal processes such as gastric emptying, gastrointestinal motility and availability of residual fluid volumes. Clinical trial This trial was registered at ClinicalTrials.gov as NCT03191045.
Collapse
|
16
|
Wilkinson-Smith V, Menys A, Bradley C, Corsetti M, Marciani L, Atkinson D, Coupland C, Taylor SA, Gowland P, Spiller R, Hoad C. The MRI colonic function test: Reproducibility of the Macrogol stimulus challenge. Neurogastroenterol Motil 2020; 32:e13942. [PMID: 32677154 DOI: 10.1111/nmo.13942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) of the colonic response to a macrogol challenge drink can be used to assess the mechanisms underlying severe constipation. We measured the intrasubject reproducibility of MRI measures of colonic function to aid their implementation as a possible clinical test. METHODS Healthy participants attended for MRI on two occasions (identical protocols, minimum 1 week apart). They underwent a fasted scan and then consumed the macrogol drink. Subjects were scanned at 60 and 120 minutes, with maximum value reached used for comparison. The colonic volume, water content, mixing of colonic content and the movement of the colon walls were measured. Coefficients of variation and intraclass correlation coefficients (ICC) were calculated. RESULTS Twelve participants completed the study: nine female, mean age 26 years (SD 5) and body mass index 24.8 kg/m2 (SD 3.2). All measures consistently increased above baseline following provocation with macrogol. The volume, water content and content mixing had good intrasubject reproducibility (ICC volume = 0.84, water content = 0.93, mixing = 0.79, P < .001). With the wall movement, the response to the challenge was generally large, but more variable between visits resulting in a lower ICC overall (ascending colon = 0.65, descending colon = 0.76, P < .001). CONCLUSIONS The colonic response to the macrogol stimulus as assessed by MRI is heterogeneous but large compared to baseline, with moderate to good reproducibility, making the test suitable to study potential pathologies underlying GI disorders such as constipation. More data are needed to better define the normal range for comparison with patient groups who may have both hypo- and hypermotile responses.
Collapse
Affiliation(s)
- Victoria Wilkinson-Smith
- Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | | | - Christopher Bradley
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.,Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Maura Corsetti
- Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Luca Marciani
- Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - David Atkinson
- Centre for Medical Imaging, University College London, London, UK
| | - Carol Coupland
- Division of Primary Care, University of Nottingham, Nottingham, UK
| | - Stuart A Taylor
- Centre for Medical Imaging, University College London, London, UK
| | - Penny Gowland
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.,Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Robin Spiller
- Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Caroline Hoad
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.,Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
17
|
Detection of gastric slow oscillatory contraction using parasagittal cine MR images: Comparison with simultaneously measured electrogastrogram. Magn Reson Imaging 2020; 75:149-155. [PMID: 33137456 DOI: 10.1016/j.mri.2020.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
PURPOSE To determine if parasagittal gastric cine magnetic resonance imaging (MRI) is able to measure gastric oscillatory contractions around 0.05 Hz and to determine its relationship with electrical activity as measured by electrogastrography (EGG). METHODS Assessment of the gastric motility is important for the research of the enteric nervous system and for the diagnosis of functional gastric disorders. Electrogastrography is a non-invasive method that can measure gastric oscillatory electrical activity around 0.05 Hz (slow wave) using electrodes on the abdominal skin, but its sensitivity and specificity of the slow wave detection is limited. We used parasagittal gastric cine MRI around the angular incisure to measure gastric oscillatory contraction around 0.05 Hz in 24 healthy volunteers. Cine MRI was acquired with time resolution of 1 s for 10 min while freely breathing participants were lying on the bed. The gastric area of the cross section was measured for each MR image and assessed its change over time. The results were compared with those for simultaneously recorded EGG. RESULTS The main frequency of the gastric area change for each participant ranged from 0.041 to 0.059 Hz (mean ± S.D. = 0.049 ± 0.004), which corresponds to the gastric slow wave frequency (mean ± S.D. = 0.049 ± 0.004) as measured by EGG (p = 7.9585 × 10 -8, Kendall 's tau test). Cross correlation analysis showed that 22 of 24 participants' gastric area changes were significantly (p < 0.05) related to the EGG waveforms. Displacement of the stomach due to respiration did not affect gastric area measurements. CONCLUSIONS Parasagittal cine MRI is correlated with EGG recordings and able to detect and quantifying gastric motility abnormalities.
Collapse
|
18
|
Tsume Y, Patel S, Wang M, Hermans A, Kesisoglou F. The Introduction of a New Flexible In Vivo Predictive Dissolution Apparatus, GIS-Alpha (GIS-α), to Study Dissolution Profiles of BCS Class IIb Drugs, Dipyridamole and Ketoconazole. J Pharm Sci 2020; 109:3471-3479. [PMID: 32888960 DOI: 10.1016/j.xphs.2020.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/07/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
The physiological pH changes and peristalsis activities in gastrointestinal (GI) tract have big impact on the dissolution of oral drug products, when those oral drug products include APIs with pH-dependent solubility. It is well documented that predicting the bioperformance of those oral drug products can be challenging using compendial methods. To overcome this limitation, in vivo predictive dissolution apparatuses, such as the transfer model, have been developed to predict bioperformance of oral formulation candidates and drug products. In this manuscript we utilize a new transfer-model dissolution apparatus, the gastrointestinal simulator-α (GIS-α), to characterize its behavior in terms of transfer kinetics and pH, assess its reproducibility and adaptability to mimic different transfer conditions, as well as study dissolution of ketoconazole and dipyridamole as model BCS class IIb compounds. Availability of commercially available dissolution transfer systems with similar configuration to compendial dissolution apparatus, may be helpful to simplify and standardize in vivo predictive dissolution methodologies for BCS class IIb compounds in the future.
Collapse
Affiliation(s)
- Yasuhiro Tsume
- Biopharmaceutics, Merck & Co. Inc, Rahway, NJ 07065-0900, USA.
| | | | - Michael Wang
- Biopharmaceutics, Merck & Co. Inc, Rahway, NJ 07065-0900, USA
| | - Andre Hermans
- Analytical Science, Merck & Co. Inc, Rahway, NJ 07065-0900, USA
| | | |
Collapse
|
19
|
Dynamic Colon Model (DCM): A Cine-MRI Informed Biorelevant In Vitro Model of the Human Proximal Large Intestine Characterized by Positron Imaging Techniques. Pharmaceutics 2020; 12:pharmaceutics12070659. [PMID: 32668624 PMCID: PMC7407282 DOI: 10.3390/pharmaceutics12070659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
This work used in vivo MRI images of human colon wall motion to inform a biorelevant Dynamic Colon Model (DCM) to understand the interplay of wall motion, volume, viscosity, fluid, and particle motion within the colon lumen. Hydrodynamics and particle motion within the DCM were characterized using Positron Emission Tomography (PET) and Positron Emission Particle Tracking (PEPT), respectively. In vitro PET images showed that fluid of higher viscosity follows the wall motion with poor mixing, whereas good mixing was observed for a low viscosity fluid. PEPT data showed particle displacements comparable to the in vivo data. Increasing fluid viscosity favors the net forward propulsion of the tracked particles. The use of a floating particle demonstrated shorter residence times and greater velocities on the liquid surface, suggesting a surface wave that was moving faster than the bulk liquid. The DCM can provide an understanding of flow motion and behavior of particles with different buoyancy, which in turn may improve the design of drug formulations, whereby fragments of the dosage form and/or drug particles are suspended in the proximal colon.
Collapse
|