1
|
Zhou SL, Zhong LL, Wu YL, Ji SW, Li Y, Niu N. The role of ion channels in the regulation of dendritic cell function. Cell Calcium 2025; 128:103031. [PMID: 40253771 DOI: 10.1016/j.ceca.2025.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Ion channels, membrane proteins that facilitate the transport of various inorganic ions across hydrophobic cellular lipid membranes, are ubiquitous in a wide variety of cell and tissue types. They are involved in establishing the cell membrane potential and play a role in various physiological activities by regulating ion concentrations within the cell. Dendritic cells (DCs) are specialised antigen-presenting cells found mainly on the surface of the body (skin and mucous membranes), in the mesenchyme of most organs, in the T-cell compartment of the spleen and in lymph nodes. DCs exert an important influence on the regulation of inflammation by activating T cells and producing cytokines. Studies have shown that ion channels expressed in DCs contribute to the regulation of the immune response, making them a key component of the immune system. This review summarises the major scientific advances in understanding the functional impact of ion channels (calcium channels, sodium channels and aquaporin) in DCs, including the regulation of inflammatory responses, antigen presentation, maturation, migration and cytokine production, to inform ongoing studies of ion channel function in DCs.
Collapse
Affiliation(s)
- Shi-Li Zhou
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Lan-Lan Zhong
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Yi-Lan Wu
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Si-Wen Ji
- Office of Academic Affairs, North Sichuan Medical College, Nanchong, 637000, China
| | - Yong Li
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Na Niu
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China..
| |
Collapse
|
2
|
Groen SR, Keszthelyi D, Wilms E, Huig J, Xu P, Elizalde M, Vork L, Jonkers DMAE, Helyes Z, Masclee AAM, Weerts ZZRM. Colonic mucosal TRPA1 expression profiles in irritable bowel syndrome and its correlation to symptom severity: An exploratory study. Auton Neurosci 2025; 259:103273. [PMID: 40157122 DOI: 10.1016/j.autneu.2025.103273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 02/13/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
INTRODUCTION Visceral hypersensitivity is a hallmark of irritable bowel syndrome (IBS). A putative involvement of the Transient Receptor Potential Ankyrin-1 (TRPA1) cation channel has been suggested by several animal studies. Main objective of this study is to assess location-specific TRPA1 expression in the colonic mucosa and its correlation with symptom severity in IBS patients. METHODS Biopsies were obtained from the sigmoid of 30 IBS patients (Rome III; median age 39.0 years, 80 % female) and 23 healthy controls (median age 22.7 years, 43.5 % female). Additional biopsies of the proximal colon were obtained in 24 IBS patients. TRPA1 expression levels were measured in duplicate by quantitative reverse-transcriptase-polymerase-chain-reaction, normalized to GAPDH, and assessed as relative mRNA values using the -2ΔCt method. In IBS patients, symptoms were assessed and correlated with TRPA1 expression. RESULTS Relative TRPA1 expression in the sigmoid was significantly higher in IBS patients compared to healthy controls (P < 0.001). Within IBS patients TRPA1 expression of sigmoid biopsies was significantly higher compared to proximal colon samples (p < 0.001). No significant correlation was found between TRPA1 expression in sigmoid or proximal colon samples and the symptom severity (abdominal discomfort, abdominal pain and bloating). CONCLUSION These findings suggest a potential role for the TRPA1 related pathway as a target for IBS treatment in the future. Since there was no correlation found in the current exploratory study between TRPA1 expression and symptom severity, further research towards the clinical relevance of the increased TRPA1 expression in IBS-patients along with its location-specific expression is warranted.
Collapse
Affiliation(s)
- Sylvester R Groen
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.
| | - Daniel Keszthelyi
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Ellen Wilms
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Justin Huig
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Pan Xu
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Montserrat Elizalde
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Lisa Vork
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Daisy M A E Jonkers
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; HUN-REN Chronic Pain Research Group, University of Pécs, Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Ad A M Masclee
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Zsa Zsa R M Weerts
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
3
|
Wu Z, Peng S, Huang W, Zhang Y, Liu Y, Yu X, Shen L. The Role and Function of TRPM8 in the Digestive System. Biomolecules 2024; 14:877. [PMID: 39062591 PMCID: PMC11275170 DOI: 10.3390/biom14070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Transient receptor potential (TRP) melastatin member 8 (TRPM8) is a non-selective cation channel that can be activated by low temperatures (8-26 °C), cooling agents (including menthol analogs such as menthol, icilin, and WS-12), voltage, and extracellular osmotic pressure changes. TRPM8 expression has been identified in the digestive system by several research teams, demonstrating its significant involvement in tissue function and pathologies of the digestive system. Specifically, studies have implicated TRPM8 in various physiological and pathological processes of the esophagus, stomach, colorectal region, liver, and pancreas. This paper aims to comprehensively outline the distinct role of TRPM8 in different organs of the digestive system, offering insights for future mechanistic investigations of TRPM8. Additionally, it presents potential therapeutic targets for treating conditions such as digestive tract inflammation, tumors, sensory and functional disorders, and other related diseases. Furthermore, this paper addresses the limitations of existing studies and highlights the research prospects associated with TRPM8.
Collapse
Affiliation(s)
- Zunan Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.W.); (S.P.); (W.H.)
- Hubei Key Laboratory of Digestive Diseases, Wuhan 430060, China
| | - Shuai Peng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.W.); (S.P.); (W.H.)
- Hubei Key Laboratory of Digestive Diseases, Wuhan 430060, China
| | - Wensha Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.W.); (S.P.); (W.H.)
- Hubei Key Laboratory of Digestive Diseases, Wuhan 430060, China
| | - Yuling Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.Z.); (Y.L.)
| | - Yashi Liu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.Z.); (Y.L.)
| | - Xiaoyun Yu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.Z.); (Y.L.)
| | - Lei Shen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.W.); (S.P.); (W.H.)
- Hubei Key Laboratory of Digestive Diseases, Wuhan 430060, China
| |
Collapse
|
4
|
Leech T, Peiris M. Mucosal neuroimmune mechanisms in gastro-oesophageal reflux disease (GORD) pathogenesis. J Gastroenterol 2024; 59:165-178. [PMID: 38221552 PMCID: PMC10904498 DOI: 10.1007/s00535-023-02065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
Gastro-oesophageal reflux disease (GORD) is a chronic condition characterised by visceral pain in the distal oesophagus. The current first-line treatment for GORD is proton pump inhibitors (PPIs), however, PPIs are ineffective in a large cohort of patients and long-term use may have adverse effects. Emerging evidence suggests that nerve fibre number and location are likely to play interrelated roles in nociception in the oesophagus of GORD patients. Simultaneously, alterations in cells of the oesophageal mucosa, namely epithelial cells, mast cells, dendritic cells, and T lymphocytes, have been a focus of GORD research for several years. The oesophagus of GORD patients exhibits both macro- and micro-inflammation as a response to chronic acidic reflux at the epithelium. In other conditions of the GI tract, such as IBS and IBD, well-characterised bidirectional processes between immune cells and mucosal nerve fibres contribute to pathogenesis and symptom generation. Sensory alterations in these conditions such as nerve fibre outgrowth and hypersensitivity can be driven by inflammatory processes, which promote visceral pain signalling. This review will examine what is currently known of the molecular pathways linking inflammation and sensory perception leading to the development of GORD symptoms and explore potentially relevant mechanisms in other GI regions which may indicate new areas in GORD research.
Collapse
Affiliation(s)
- Tom Leech
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Madusha Peiris
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.
| |
Collapse
|
5
|
Matsueda K, Fukudo S, Ogishima M, Naito Y, Nakamura S. Efficacy and safety of peppermint oil for the treatment in Japanese patients with irritable bowel syndrome: a prospective, open-label, and single-arm study. Biopsychosoc Med 2024; 18:3. [PMID: 38331851 PMCID: PMC10854076 DOI: 10.1186/s13030-024-00302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND In Europe, an herbal medicine containing peppermint oil is widely used in patients with irritable bowel syndrome (IBS). In Japan, however, no clinical evidence for peppermint oil in IBS has been established, and it has not been approved as a drug for IBS. Accordingly, we conducted a clinical study to confirm the efficacy and safety of peppermint oil (ZO-Y60) in Japanese patients with IBS. METHODS The study was a multi-center, open-label, single-arm, phase 3 trial in Japanese outpatients with IBS aged 17-60 years and diagnosed according to the Rome III criteria. The subjects were treated with an oral capsule of ZO-Y60 three times a day before meals, for four weeks. The efficacy of ZO-Y60 was evaluated using the patient's global assessment (PtGA), IBS symptom severity score, stool frequency score, stool form score, and physician's global assessment (PGA). The safety of ZO-Y60 was also assessed. RESULTS Sixty-nine subjects were treated with ZO-Y60. During the four-week administration of ZO-Y60, the improvement rate of the PtGA was 71.6% (48/67) in week 2 and 85.1% (57/67) in week 4. It was also suggested that ZO-Y60 is effective against any type of IBS (IBS with constipation, IBS with diarrhea, and mixed/unsubtyped IBS). The improvement rate of the PGA was 73.1% (49/67) in week 2 and 85.1% (57/67) in week 4, also confirming the efficacy of ZO-Y60. Adverse events were observed in 14 subjects (20.3%), however, none of these adverse events were categorized as serious. CONCLUSION The efficacy of treatment was confirmed, subjective symptoms were improved, as was observed in previous clinical studies of ZO-Y60 conducted outside of Japan. All adverse reactions were previously known and were non-serious. These findings suggest that peppermint oil may be effective in the Japanese population and that it has an acceptable safety profile. TRIAL REGISTRATION JAPIC Clinical Trials Information number: JapicCTI-121727 https://jrct.niph.go.jp/en-latest-detail/jRCT1080221685 . Registration date: 2012-01-10.
Collapse
Affiliation(s)
| | - Shin Fukudo
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Ogishima
- Zeria Pharmaceutical Co., Ltd., 10-11 Nihonbashikobuna-Cho, Chuo-Ku, Tokyo, 103-8351, Japan
| | - Yuki Naito
- Zeria Pharmaceutical Co., Ltd., 10-11 Nihonbashikobuna-Cho, Chuo-Ku, Tokyo, 103-8351, Japan.
| | - Soichiro Nakamura
- Zeria Pharmaceutical Co., Ltd., 10-11 Nihonbashikobuna-Cho, Chuo-Ku, Tokyo, 103-8351, Japan
| |
Collapse
|
6
|
Goudarzi MA, Radfar M, Goudarzi Z. Peppermint as a promising treatment agent in inflammatory conditions: A comprehensive systematic review of literature. Phytother Res 2024; 38:187-195. [PMID: 37850332 DOI: 10.1002/ptr.8041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/12/2023] [Accepted: 09/30/2023] [Indexed: 10/19/2023]
Abstract
Inflammation, a type of the body's defense against injury or infection, causes many chronic disorders including diabetes, cardiovascular disease, and cancer. Therefore, discovering natural compounds with numerous biological activities for the management of inflammation is highly recommended. Out of natural compounds, peppermint and its main component, menthol, has been suggested to possess antiinflammatory potential. Four databases including Web of Sciences, PubMed, Scopus, and Embase were searched to identify articles about peppermint and its antiinflammatory effects up to March 2023. Out of 3805 records screened, 14 articles met the study criteria. The evidence reviewed here proposed peppermint as an antiinflammatory agent. Peppermint may suppress inflammation by activating the AMP-activated protein kinase/unc-51 like kinase 1/nuclear factor-E2 associated factor 2 autophagy pathway, downregulating extracellular signal-regulated kinase-nuclear factor kappa B and mitogen activated protein kinases pathways, attenuating oxidative stress, suppressing the production of pro-inflammatory mediators and nitric oxide, and inducing the production of antiinflammatory prostaglandins. Due to the promising antiinflammatory effects of peppermint and the lack of human studies in this regard, future randomized clinical trials examining the effects of peppermint on inflammation and its related maladies are warranted.
Collapse
Affiliation(s)
| | - Mohammad Radfar
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Goudarzi
- Faculty of Pharmacy, Cyprus International University, Nicosia, Cyprus
| |
Collapse
|
7
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:261. [PMID: 37402746 DOI: 10.1038/s41392-023-01464-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lei Pan
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
8
|
Shin A, Kashyap PC. Multi-omics for biomarker approaches in the diagnostic evaluation and management of abdominal pain and irritable bowel syndrome: what lies ahead. Gut Microbes 2023; 15:2195792. [PMID: 37009874 PMCID: PMC10072066 DOI: 10.1080/19490976.2023.2195792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/23/2023] [Indexed: 04/04/2023] Open
Abstract
Reliable biomarkers for common disorders of gut-brain interaction characterized by abdominal pain, including irritable bowel syndrome (IBS), are critically needed to enhance care and develop individualized therapies. The dynamic and heterogeneous nature of the pathophysiological mechanisms that underlie visceral hypersensitivity have challenged successful biomarker development. Consequently, effective therapies for pain in IBS are lacking. However, recent advances in modern omics technologies offer new opportunities to acquire deep biological insights into mechanisms of pain and nociception. Newer methods for large-scale data integration of complementary omics approaches have further expanded our ability to build a holistic understanding of complex biological networks and their co-contributions to abdominal pain. Here, we review the mechanisms of visceral hypersensitivity, focusing on IBS. We discuss candidate biomarkers for pain in IBS identified through single omics studies and summarize emerging multi-omics approaches for developing novel biomarkers that may transform clinical care for patients with IBS and abdominal pain.
Collapse
Affiliation(s)
- Andrea Shin
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Purna C. Kashyap
- Clinical Enteric Neuroscience Translational and Epidemiological Research Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
9
|
Cheng H, An X. Cold stimuli, hot topic: An updated review on the biological activity of menthol in relation to inflammation. Front Immunol 2022; 13:1023746. [PMID: 36439160 PMCID: PMC9682018 DOI: 10.3389/fimmu.2022.1023746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/25/2022] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Rising incidence of inflammation-related diseases is an increasing concern nowadays. However, while menthol is a wildly-used and efficacious complementary medicine, its pharmacological mechanism still remains uncertain. Superimposed upon that, the aim of this review is to summarize the contemporary evidence of menthol's anti-inflammatory activity. METHODS Using the pharmacopeias and electronic databases, including Web of Science, PubMed, and CNKI, this study analyzed the relevant research articles and review articles from 2002 to 2022 and concluded those results and conjectures to finish this article. RESULTS The decrease in pro-inflammatory cytokines and related inflammatory markers, as well as associated pathway activation, was found to play the greatest role in the protective effects of menthol against inflammatory damage or association with protection against chronic inflammation. CONCLUSION This review mainly concludes the progress in menthol's anti-inflammatory activity. Further studies are needed to establish relationships between the mechanisms of action and to clarify the clinical relevance of any anti-inflammatory effects.
Collapse
Affiliation(s)
- Haojin Cheng
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xuemei An
- Nursing Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Zhao H, Ren S, Yang H, Tang S, Guo C, Liu M, Tao Q, Ming T, Xu H. Peppermint essential oil: its phytochemistry, biological activity, pharmacological effect and application. Biomed Pharmacother 2022; 154:113559. [PMID: 35994817 DOI: 10.1016/j.biopha.2022.113559] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 12/18/2022] Open
Abstract
Mentha (also known as peppermint), a genus of plants in the taxonomic family Lamiaceae (mint family), is widely distributed throughout temperate regions of the world. Mentha contains various constituents that are classified as peppermint essential oil (PEO) and non-essential components. PEO, consisting mainly of menthol, menthone, neomenthol and iso-menthone, is a mixture of volatile metabolites with anti-inflammatory, antibacterial, antiviral, scolicidal, immunomodulatory, antitumor, neuroprotective, antifatigue and antioxidant activities. Mounting evidence indicates that PEO may pharmacologically protect gastrointestinal, liver, kidney, skin, respiratory, brain and nervous systems, and exert hypoglycemic and hypolipidemic effects. Clinically, PEO is used for gastrointestinal and dermatological diseases, postoperative adjuvant therapy and other fields. This review aims to address the advances in the extraction and isolation of PEO, its biological activities, pharmacological effects, toxicity and applications, with an emphasis on the efficacy of PEO on burn wounds and psoriasis, providing a comprehensive foundation for research, development and application of PEO in future.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenyang Guo
- Department of Pharmacology, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
11
|
Dysregulation of Immune Response Mediators and Pain-Related Ion Channels Is Associated with Pain-like Behavior in the GLA KO Mouse Model of Fabry Disease. Cells 2022; 11:cells11111730. [PMID: 35681422 PMCID: PMC9179379 DOI: 10.3390/cells11111730] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 12/28/2022] Open
Abstract
Fabry disease (FD) is a rare life-threatening disorder caused by deficiency of the alpha-galactosidase A (GLA) enzyme with a characteristic pain phenotype. Impaired GLA production or function leads to the accumulation of the cell membrane compound globotriaosylceramide (Gb3) in the neurons of the dorsal root ganglia (DRG) of FD patients. Applying immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT PCR) analysis on DRG tissue of the GLA knockout (KO) mouse model of FD, we address the question of how Gb3 accumulation may contribute to FD pain and focus on the immune system and pain-associated ion channel gene expression. We show a higher Gb3 load in the DRG of young (<6 months) (p < 0.01) and old (≥12 months) (p < 0.001) GLA KO mice compared to old wildtype (WT) littermates, and an overall suppressed immune response in the DRG of old GLA KO mice, represented by a reduced number of CD206+ macrophages (p < 0.01) and lower gene expression levels of the inflammation-associated targets interleukin(IL)1b (p < 0.05), IL10 (p < 0.001), glial fibrillary acidic protein (GFAP) (p < 0.05), and leucine rich alpha-2-glycoprotein 1 (LRG1) (p < 0.01) in the DRG of old GLA KO mice compared to old WT. Dysregulation of immune-related genes may be linked to lower gene expression levels of the pain-associated ion channels calcium-activated potassium channel 3.1 (KCa3.1) and transient receptor potential ankyrin 1 channel (TRPA1). Ion channel expression might further be disturbed by impaired sphingolipid recruitment mediated via the lipid raft marker flotillin-1 (FLOT1). This impairment is represented by an increased number of FLOT1+ DRG neurons with a membranous expression pattern in old GLA KO mice compared to young GLA KO, young WT, and old WT mice (p < 0.001 each). Further, we provide evidence for aberrant behavior of GLA KO mice, which might be linked to dysregulated ion channel gene expression levels and disturbed FLOT1 distribution patterns. Behavioral testing revealed mechanical hypersensitivity in young (p < 0.01) and old (p < 0.001) GLA KO mice compared to WT, heat hypersensitivity in young GLA KO mice (p < 0.001) compared to WT, age-dependent heat hyposensitivity in old GLA KO mice (p < 0.001) compared to young GLA KO mice, and cold hyposensitivity in young (p < 0.001) and old (p < 0.001) GLA KO mice compared to WT, which well reflects the clinical phenotype observed in FD patients.
Collapse
|