1
|
Perez-Rial A, Carmona A, Ali L, Rubio J, Millan T, Castro P, Die JV. Phenotypic and genetic characterization of a near-isogenic line pair: insights into flowering time in chickpea. BMC PLANT BIOLOGY 2024; 24:709. [PMID: 39054447 PMCID: PMC11270784 DOI: 10.1186/s12870-024-05411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Cicer arietinum is a significant legume crop cultivated mainly in short-season environments, where early-flowering is a desirable trait to overcome terminal constraints. Despite its agricultural significance, the genetic control of flowering time in chickpea is not fully understood. In this study, we developed, phenotyped, re-sequenced and genetically characterized a pair of near-isogenic lines (NILs) with contrasting days to flowering to identify candidate gene variants potentially associated with flowering time. RESULTS In addition to days to flowering, noticeable differences in multiple shoot architecture traits were observed between the NILs. The resequencing data confirms that the NILs developed in this study serve as appropriate plant materials, effectively constraining genetic variation to specific regions and thereby establishing a valuable resource for future genetic and functional investigations in chickpea research. Leveraging bioinformatics tools and public genomic datasets, we identified homologs of flowering-related genes from Arabidopsis thaliana, including ELF3 and, for the first time in chickpea, MED16 and STO/BBX24, with variants among the NILs. Analysis of the allelic distribution of these genes revealed their preservation within chickpea diversity and their potential association with flowering time. Variants were also identified in members of the ERF and ARF gene families. Furthermore, in silico expression analysis was conducted elucidating their putative roles in flowering. CONCLUSIONS While the gene CaELF3a is identified as a prominent candidate, this study also exposes new targets in chickpea, such as CaMED16b and LOC101499101 (BBX24-like), homologs of flowering-related genes in Arabidopsis, as well as ERF12 and ARF2. The in silico expression characterization and genetic variability analysis performed could contribute to their use as specific markers for chickpea breeding programs. This study lays the groundwork for future investigations utilizing this plant material, promising further insights into the complex mechanisms governing flowering time in chickpea.
Collapse
Affiliation(s)
- Adrian Perez-Rial
- Department of Genetics-ETSIAM, University of Córdoba, Campus de Rabanales, Córdoba, 14071, Spain
| | - Alejandro Carmona
- Department of Genetics-ETSIAM, University of Córdoba, Campus de Rabanales, Córdoba, 14071, Spain
| | - Latifah Ali
- Department of Plant Biology-Science Faculty, University of Tishreen, Lattakia City, Syria
| | - Josefa Rubio
- Área de Mejora y Biotecnología, IFAPA Centro 'Alameda del Obispo', Córdoba, 14080, Spain
| | - Teresa Millan
- Department of Genetics-ETSIAM, University of Córdoba, Campus de Rabanales, Córdoba, 14071, Spain
| | - Patricia Castro
- Department of Genetics-ETSIAM, University of Córdoba, Campus de Rabanales, Córdoba, 14071, Spain.
| | - Jose V Die
- Department of Genetics-ETSIAM, University of Córdoba, Campus de Rabanales, Córdoba, 14071, Spain
| |
Collapse
|
2
|
Hardy EC, Balcerowicz M. Untranslated yet indispensable-UTRs act as key regulators in the environmental control of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4314-4331. [PMID: 38394144 PMCID: PMC11263492 DOI: 10.1093/jxb/erae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
To survive and thrive in a dynamic environment, plants must continuously monitor their surroundings and adjust their development and physiology accordingly. Changes in gene expression underlie these developmental and physiological adjustments, and are traditionally attributed to widespread transcriptional reprogramming. Growing evidence, however, suggests that post-transcriptional mechanisms also play a vital role in tailoring gene expression to a plant's environment. Untranslated regions (UTRs) act as regulatory hubs for post-transcriptional control, harbouring cis-elements that affect an mRNA's processing, localization, translation, and stability, and thereby tune the abundance of the encoded protein. Here, we review recent advances made in understanding the critical function UTRs exert in the post-transcriptional control of gene expression in the context of a plant's abiotic environment. We summarize the molecular mechanisms at play, present examples of UTR-controlled signalling cascades, and discuss the potential that resides within UTRs to render plants more resilient to a changing climate.
Collapse
Affiliation(s)
- Emma C Hardy
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
| | - Martin Balcerowicz
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
| |
Collapse
|
3
|
Han L, Shen B, Wu X, Zhang J, Wen YJ. Compressed variance component mixed model reveals epistasis associated with flowering in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 14:1283642. [PMID: 38259933 PMCID: PMC10800901 DOI: 10.3389/fpls.2023.1283642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Introduction Epistasis is currently a topic of great interest in molecular and quantitative genetics. Arabidopsis thaliana, as a model organism, plays a crucial role in studying the fundamental biology of diverse plant species. However, there have been limited reports about identification of epistasis related to flowering in genome-wide association studies (GWAS). Therefore, it is of utmost importance to conduct epistasis in Arabidopsis. Method In this study, we employed Levene's test and compressed variance component mixed model in GWAS to detect quantitative trait nucleotides (QTNs) and QTN-by-QTN interactions (QQIs) for 11 flowering-related traits of 199 Arabidopsis accessions with 216,130 markers. Results Our analysis detected 89 QTNs and 130 pairs of QQIs. Around these loci, 34 known genes previously reported in Arabidopsis were confirmed to be associated with flowering-related traits, such as SPA4, which is involved in regulating photoperiodic flowering, and interacts with PAP1 and PAP2, affecting growth of Arabidopsis under light conditions. Then, we observed significant and differential expression of 35 genes in response to variations in temperature, photoperiod, and vernalization treatments out of unreported genes. Functional enrichment analysis revealed that 26 of these genes were associated with various biological processes. Finally, the haplotype and phenotypic difference analysis revealed 20 candidate genes exhibiting significant phenotypic variations across gene haplotypes, of which the candidate genes AT1G12990 and AT1G09950 around QQIs might have interaction effect to flowering time regulation in Arabidopsis. Discussion These findings may offer valuable insights for the identification and exploration of genes and gene-by-gene interactions associated with flowering-related traits in Arabidopsis, that may even provide valuable reference and guidance for the research of epistasis in other species.
Collapse
Affiliation(s)
- Le Han
- College of Science, Nanjing Agricultural University, Nanjing, China
| | - Bolin Shen
- College of Science, Nanjing Agricultural University, Nanjing, China
| | - Xinyi Wu
- College of Science, Nanjing Agricultural University, Nanjing, China
| | - Jin Zhang
- College of Science, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yang-Jun Wen
- College of Science, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Wang D, Hao X, Xu L, Zhao M, Wang C, Yu X, Kong Y, Lu M, Zhou G, Chai G, Tang X. Fine-tuning brassinosteroid biosynthesis via 3'UTR-dependent decay of CPD mRNA modulates wood formation in Populus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1852-1858. [PMID: 37203882 DOI: 10.1111/jipb.13509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/18/2023] [Indexed: 05/20/2023]
Abstract
Brassinosteroids (BRs) are plant hormones that regulate wood formation in trees. Currently, little is known about the post-transcriptional regulation of BR synthesis. Here, we show that during wood formation, fine-tuning BR synthesis requires 3'UTR-dependent decay of Populus CONSTITUTIVE PHOTOMORPHOGENIC DWARF 1 (PdCPD1). Overexpression of PdCPD1 or its 3' UTR fragment resulted in a significant increase of BR levels and inhibited secondary growth. In contrast, transgenic poplars repressing PdCPD1 3' UTR expression displayed moderate levels of BR and promoted wood formation. We show that the Populus GLYCINE-RICH RNA-BINDING PROTEIN 1 (PdGRP1) directly binds to a GU-rich element in 3' UTR of PdCPD1, leading to its mRNA decay. We thus provide a post-transcriptional mechanism underlying BRs synthesis during wood formation, which may be useful for genetic manipulation of wood biomass in trees.
Collapse
Affiliation(s)
- Dian Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoning Hao
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Li Xu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengyan Zhao
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Congpeng Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xihao Yu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yingzhen Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengzhu Lu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Gongke Zhou
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guohua Chai
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xianfeng Tang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
5
|
Cuerda-Gil D, Hung YH, Panda K, Slotkin RK. A plant tethering system for the functional study of protein-RNA interactions in vivo. PLANT METHODS 2022; 18:75. [PMID: 35658900 PMCID: PMC9166424 DOI: 10.1186/s13007-022-00907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The sorting of RNA transcripts dictates their ultimate post-transcriptional fates, such as translation, decay or degradation by RNA interference (RNAi). This sorting of RNAs into distinct fates is mediated by their interaction with RNA-binding proteins. While hundreds of RNA binding proteins have been identified, which act to sort RNAs into different pathways is largely unknown. Particularly in plants, this is due to the lack of reliable protein-RNA artificial tethering tools necessary to determine the mechanism of protein action on an RNA in vivo. Here we generated a protein-RNA tethering system which functions on an endogenous Arabidopsis RNA that is tracked by the quantitative flowering time phenotype. Unlike other protein-RNA tethering systems that have been attempted in plants, our system circumvents the inadvertent triggering of RNAi. We successfully in vivo tethered a protein epitope, deadenylase protein and translation factor to the target RNA, which function to tag, decay and boost protein production, respectively. We demonstrated that our tethering system (1) is sufficient to engineer the downstream fate of an RNA, (2) enables the determination of any protein's function upon recruitment to an RNA, and (3) can be used to discover new interactions with RNA-binding proteins.
Collapse
Affiliation(s)
- Diego Cuerda-Gil
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Yu-Hung Hung
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Kaushik Panda
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, MO, USA.
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
6
|
Chen Q, Tian F, Cheng T, Jiang J, Zhu G, Gao Z, Lin H, Hu J, Qian Q, Fang X, Chen F. Translational repression of FZP mediated by CU-rich element/OsPTB interactions modulates panicle development in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1319-1331. [PMID: 35293072 DOI: 10.1111/tpj.15737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Panicle development is an important determinant of the grain number in rice. A thorough characterization of the molecular mechanism underlying panicle development will lead to improved breeding of high-yielding rice varieties. Frizzy Panicle (FZP), a critical gene for panicle development, is regulated by OsBZR1 and OsARFs at the transcriptional stage. However, the translational modulation of FZP has not been reported. We reveal that the CU-rich elements (CUREs) in the 3' UTR of the FZP mRNA are crucial for efficient FZP translation. The knockout of CUREs in the FZP 3' UTR or the over-expression of the FZP 3' UTR fragment containing CUREs resulted in an increase in FZP mRNA translation efficiency. Moreover, the number of secondary branches (NSB) and the grain number per panicle (GNP) decreased in the transformed rice plants. The CUREs in the 3' UTR of FZP mRNA were verified as the targets of the polypyrimidine tract-binding proteins OsPTB1 and OsPTB2 in rice. Both OsPTB1 and OsPTB2 were highly expressed in young panicles. The knockout of OsPTB1/2 resulted in an increase in the FZP translational efficiency and a decrease in the NSB and GNP. Furthermore, the over-expression of OsPTB1/2 decreased the translation of the reporter gene fused to FZP 3' UTR in vivo and in vitro. These results suggest that OsPTB1/2 can mediate FZP translational repression by interacting with CUREs in the 3' UTR of FZP mRNA, leading to changes in the NSB and GNP. Accordingly, in addition to transcriptional regulation, FZP expression is also fine-tuned at the translational stage during rice panicle development.
Collapse
Affiliation(s)
- Qiong Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Fa'an Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tingting Cheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun'e Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanlin Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Haiyan Lin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiaohua Fang
- Genetic Resource R&D Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chang Zhou, 213001, China
| | - Fan Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| |
Collapse
|
7
|
Ravi S, Campagna G, Della Lucia MC, Broccanello C, Bertoldo G, Chiodi C, Maretto L, Moro M, Eslami AS, Srinivasan S, Squartini A, Concheri G, Stevanato P. SNP Alleles Associated With Low Bolting Tendency in Sugar Beet. FRONTIERS IN PLANT SCIENCE 2021; 12:693285. [PMID: 34322145 PMCID: PMC8311237 DOI: 10.3389/fpls.2021.693285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
The identification of efficient molecular markers related to low bolting tendency is a priority in sugar beet (Beta vulgaris L.) breeding. This study aimed to identify SNP markers associated with low bolting tendency by establishing a genome-wide association study. An elaborate 3-year field trial comprising 13 sugar beet lines identified L14 as the one exhibiting the lowest bolting tendency along with an increased survival rate after autumnal sowing. For SNP discovery following phenotyping, contrasting phenotypes of 24 non-bolting and 15 bolting plants of the L14 line were sequenced by restriction site-associated DNA sequencing (RAD-seq). An association model was established with a set of 10,924 RAD-based single nucleotide polymorphism (SNP) markers. The allelic status of the most significantly associated SNPs ranked based on their differential allelic status between contrasting phenotypes (p < 0.01) was confirmed on three different validation datasets comprising diverse sugar beet lines and varieties adopting a range of SNP detection technologies. This study has led to the identification of SNP_36780842 and SNP_48607347 linked to low bolting tendency and can be used for marker-assisted breeding and selection in sugar beet.
Collapse
Affiliation(s)
- Samathmika Ravi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Giovanni Campagna
- Cooperativa Produttori Agricoli Società Cooperativa Agricola (COPROB), Minerbio, Italy
| | - Maria Cristina Della Lucia
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Chiara Broccanello
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Giovanni Bertoldo
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Claudia Chiodi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Laura Maretto
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Matteo Moro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Azam Sadat Eslami
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | | | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Giuseppe Concheri
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| |
Collapse
|
8
|
Xu R, Guo Y, Peng S, Liu J, Li P, Jia W, Zhao J. Molecular Targets and Biological Functions of cAMP Signaling in Arabidopsis. Biomolecules 2021; 11:biom11050688. [PMID: 34063698 PMCID: PMC8147800 DOI: 10.3390/biom11050688] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/11/2023] Open
Abstract
Cyclic AMP (cAMP) is a pivotal signaling molecule existing in almost all living organisms. However, the mechanism of cAMP signaling in plants remains very poorly understood. Here, we employ the engineered activity of soluble adenylate cyclase to induce cellular cAMP elevation in Arabidopsis thaliana plants and identify 427 cAMP-responsive genes (CRGs) through RNA-seq analysis. Induction of cellular cAMP elevation inhibits seed germination, disturbs phytohormone contents, promotes leaf senescence, impairs ethylene response, and compromises salt stress tolerance and pathogen resistance. A set of 62 transcription factors are among the CRGs, supporting a prominent role of cAMP in transcriptional regulation. The CRGs are significantly overrepresented in the pathways of plant hormone signal transduction, MAPK signaling, and diterpenoid biosynthesis, but they are also implicated in lipid, sugar, K+, nitrate signaling, and beyond. Our results provide a basic framework of cAMP signaling for the community to explore. The regulatory roles of cAMP signaling in plant plasticity are discussed.
Collapse
Affiliation(s)
- Ruqiang Xu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-0371-6778-5095
| | - Yanhui Guo
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Song Peng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Jinrui Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Panyu Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Wenjing Jia
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Junheng Zhao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| |
Collapse
|
9
|
Burjoski V, Reddy ASN. The Landscape of RNA-Protein Interactions in Plants: Approaches and Current Status. Int J Mol Sci 2021; 22:2845. [PMID: 33799602 PMCID: PMC7999938 DOI: 10.3390/ijms22062845] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022] Open
Abstract
RNAs transmit information from DNA to encode proteins that perform all cellular processes and regulate gene expression in multiple ways. From the time of synthesis to degradation, RNA molecules are associated with proteins called RNA-binding proteins (RBPs). The RBPs play diverse roles in many aspects of gene expression including pre-mRNA processing and post-transcriptional and translational regulation. In the last decade, the application of modern techniques to identify RNA-protein interactions with individual proteins, RNAs, and the whole transcriptome has led to the discovery of a hidden landscape of these interactions in plants. Global approaches such as RNA interactome capture (RIC) to identify proteins that bind protein-coding transcripts have led to the identification of close to 2000 putative RBPs in plants. Interestingly, many of these were found to be metabolic enzymes with no known canonical RNA-binding domains. Here, we review the methods used to analyze RNA-protein interactions in plants thus far and highlight the understanding of plant RNA-protein interactions these techniques have provided us. We also review some recent protein-centric, RNA-centric, and global approaches developed with non-plant systems and discuss their potential application to plants. We also provide an overview of results from classical studies of RNA-protein interaction in plants and discuss the significance of the increasingly evident ubiquity of RNA-protein interactions for the study of gene regulation and RNA biology in plants.
Collapse
Affiliation(s)
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
10
|
Nan N, Wang J, Shi Y, Qian Y, Jiang L, Huang S, Liu Y, Wu Y, Liu B, Xu Z. Rice plastidial NAD-dependent malate dehydrogenase 1 negatively regulates salt stress response by reducing the vitamin B6 content. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:172-184. [PMID: 31161713 PMCID: PMC6920159 DOI: 10.1111/pbi.13184] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 05/05/2023]
Abstract
Salinity is an important environmental factor that adversely impacts crop growth and productivity. Malate dehydrogenases (MDHs) catalyse the reversible interconversion of malate and oxaloacetate using NAD(H)/NADP(H) as a cofactor and regulate plant development and abiotic stress tolerance. Vitamin B6 functions as an essential cofactor in enzymatic reactions involved in numerous cellular processes. However, the role of plastidial MDH in rice (Oryza sativa) in salt stress response by altering vitamin B6 content remains unknown. In this study, we identified a new loss-of-function osmdh1 mutant displaying salt stress-tolerant phenotype. The OsMDH1 was expressed in different tissues of rice plants including leaf, leaf sheath, panicle, glume, bud, root and stem and was induced in the presence of NaCl. Transient expression of OsMDH1-GFP in rice protoplasts showed that OsMDH1 localizes to chloroplast. Transgenic rice plants overexpressing OsMDH1 (OsMDH1OX) displayed a salt stress-sensitive phenotype. Liquid chromatography-mass spectrometry (LC-MS) metabolic profiling revealed that the amount of pyridoxine was significantly reduced in OsMDH1OX lines compared with the NIP plants. Moreover, the pyridoxine content was higher in the osmdh1 mutant and lower in OsMDH1OX plants than in the NIP plants under the salt stress, indicating that OsMDH1 negatively regulates salt stress-induced pyridoxine accumulation. Furthermore, genome-wide RNA-sequencing (RNA-seq) analysis indicated that ectopic expression of OsMDH1 altered the expression level of genes encoding key enzymes of the vitamin B6 biosynthesis pathway, possibly reducing the level of pyridoxine. Together, our results establish a novel, negative regulatory role of OsMDH1 in salt stress tolerance by affecting vitamin B6 content of rice tissues.
Collapse
Affiliation(s)
- Nan Nan
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Yuejie Shi
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Yangwen Qian
- Biogle Genome Editing CenterChangzhouJiangsu ProvinceChina
| | - Long Jiang
- School of AgronomyJilin College of Agricultural Science & TechnologyJilinChina
| | - Shuangzhan Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Zheng‐Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| |
Collapse
|
11
|
Tyagi S, Sri T, Singh A, Mayee P, Shivaraj SM, Sharma P, Singh A. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 influences flowering time, lateral branching, oil quality, and seed yield in Brassica juncea cv. Varuna. Funct Integr Genomics 2018; 19:43-60. [DOI: 10.1007/s10142-018-0626-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 01/18/2023]
|
12
|
Fudge JB, Lee RH, Laurie RE, Mysore KS, Wen J, Weller JL, Macknight RC. Medicago truncatula SOC1 Genes Are Up-regulated by Environmental Cues That Promote Flowering. FRONTIERS IN PLANT SCIENCE 2018; 9:496. [PMID: 29755488 PMCID: PMC5934494 DOI: 10.3389/fpls.2018.00496] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/03/2018] [Indexed: 05/20/2023]
Abstract
Like Arabidopsis thaliana, the flowering of the legume Medicago truncatula is promoted by long day (LD) photoperiod and vernalization. However, there are differences in the molecular mechanisms involved, with orthologs of two key Arabidopsis thaliana regulators, FLOWERING LOCUS C (FLC) and CONSTANS (CO), being absent or not having a role in flowering time function in Medicago. In Arabidopsis, the MADS-box transcription factor gene, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (AtSOC1), plays a key role in integrating the photoperiodic and vernalization pathways. In this study, we set out to investigate whether the Medicago SOC1 genes play a role in regulating flowering time. Three Medicago SOC1 genes were identified and characterized (MtSOC1a-MtSOC1c). All three MtSOC1 genes, when heterologously expressed, were able to promote earlier flowering of the late-flowering Arabidopsis soc1-2 mutant. The three MtSOC1 genes have different patterns of expression. However, consistent with a potential role in flowering time regulation, all three MtSOC1 genes are expressed in the shoot apex and are up-regulated in the shoot apex of plants in response to LD photoperiods and vernalization. The up-regulation of MtSOC1 genes was reduced in Medicago fta1-1 mutants, indicating that they are downstream of MtFTa1. Insertion mutant alleles of Medicago soc1b do not flower late, suggestive of functional redundancy among Medicago SOC1 genes in promoting flowering.
Collapse
Affiliation(s)
- Jared B. Fudge
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Robyn H. Lee
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Rebecca E. Laurie
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Kirankumar S. Mysore
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK, United States
| | - Jiangqi Wen
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK, United States
| | - James L. Weller
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Richard C. Macknight
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- New Zealand Institute for Plant and Food Research Ltd., University of Otago, Dunedin, New Zealand
- *Correspondence: Richard C. Macknight,
| |
Collapse
|
13
|
Munusamy P, Zolotarov Y, Meteignier LV, Moffett P, Strömvik MV. De novo computational identification of stress-related sequence motifs and microRNA target sites in untranslated regions of a plant translatome. Sci Rep 2017; 7:43861. [PMID: 28276452 PMCID: PMC5343461 DOI: 10.1038/srep43861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/31/2017] [Indexed: 01/24/2023] Open
Abstract
Gene regulation at the transcriptional and translational level leads to diversity in phenotypes and function in organisms. Regulatory DNA or RNA sequence motifs adjacent to the gene coding sequence act as binding sites for proteins that in turn enable or disable expression of the gene. Whereas the known DNA and RNA binding proteins range in the thousands, only a few motifs have been examined. In this study, we have predicted putative regulatory motifs in groups of untranslated regions from genes regulated at the translational level in Arabidopsis thaliana under normal and stressed conditions. The test group of sequences was divided into random subgroups and subjected to three de novo motif finding algorithms (Seeder, Weeder and MEME). In addition to identifying sequence motifs, using an in silico tool we have predicted microRNA target sites in the 3′ UTRs of the translationally regulated genes, as well as identified upstream open reading frames located in the 5′ UTRs. Our bioinformatics strategy and the knowledge generated contribute to understanding gene regulation during stress, and can be applied to disease and stress resistant plant development.
Collapse
Affiliation(s)
- Prabhakaran Munusamy
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Yevgen Zolotarov
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | | | - Peter Moffett
- Department of Biology, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Martina V Strömvik
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| |
Collapse
|
14
|
Sesma A, Castresana C, Castellano MM. Regulation of Translation by TOR, eIF4E and eIF2α in Plants: Current Knowledge, Challenges and Future Perspectives. FRONTIERS IN PLANT SCIENCE 2017; 8:644. [PMID: 28491073 PMCID: PMC5405063 DOI: 10.3389/fpls.2017.00644] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/10/2017] [Indexed: 05/06/2023]
Abstract
An important step in eukaryotic gene expression is the synthesis of proteins from mRNA, a process classically divided into three stages, initiation, elongation, and termination. Translation is a precisely regulated and conserved process in eukaryotes. The presence of plant-specific translation initiation factors and the lack of well-known translational regulatory pathways in this kingdom nonetheless indicate how a globally conserved process can diversify among organisms. The control of protein translation is a central aspect of plant development and adaptation to environmental stress, but the mechanisms are still poorly understood. Here we discuss current knowledge of the principal mechanisms that regulate translation initiation in plants, with special attention to the singularities of this eukaryotic kingdom. In addition, we highlight the major recent breakthroughs in the field and the main challenges to address in the coming years.
Collapse
Affiliation(s)
- Ane Sesma
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
- Departamento Biotecnología y Biología Vegetal, Universidad Politécnica de MadridMadrid, Spain
| | - Carmen Castresana
- Centro Nacional de Biotecnología – Consejo Superior de Investigaciones Científicas (CSIC)Madrid, Spain
| | - M. Mar Castellano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
- *Correspondence: M. Mar Castellano,
| |
Collapse
|
15
|
Aghamirzaie D, Collakova E, Li S, Grene R. CoSpliceNet: a framework for co-splicing network inference from transcriptomics data. BMC Genomics 2016; 17:845. [PMID: 27793091 PMCID: PMC5086072 DOI: 10.1186/s12864-016-3172-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/18/2016] [Indexed: 11/10/2022] Open
Abstract
Background Alternative splicing has been proposed to increase transcript diversity and protein plasticity in eukaryotic organisms, but the extent to which this is the case is currently unclear, especially with regard to the diversification of molecular function. Eukaryotic splicing involves complex interactions of splicing factors and their targets. Inference of co-splicing networks capturing these types of interactions is important for understanding this crucial, highly regulated post-transcriptional process at the systems level. Results First, several transcript and protein attributes, including coding potential of transcripts and differences in functional domains of proteins, were compared between splice variants and protein isoforms to assess transcript and protein diversity in a biological system. Alternative splicing was shown to increase transcript and function-related protein diversity in developing Arabidopsis embryos. Second, CoSpliceNet, which integrates co-expression and motif discovery at splicing regulatory regions to infer co-splicing networks, was developed. CoSpliceNet was applied to temporal RNA sequencing data to identify candidate regulators of splicing events and predict RNA-binding motifs, some of which are supported by prior experimental evidence. Analysis of inferred splicing factor targets revealed an unexpected role for the unfolded protein response in embryo development. Conclusions The methods presented here can be used in any biological system to assess transcript diversity and protein plasticity and to predict candidate regulators, their targets, and RNA-binding motifs for splicing factors. CoSpliceNet is freely available at http://delasa.github.io/co-spliceNet/. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3172-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Delasa Aghamirzaie
- Genetics, Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Eva Collakova
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Song Li
- Genetics, Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA, 24061, USA.,Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ruth Grene
- Genetics, Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA, 24061, USA.,Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
16
|
Tang Q, Guittard-Crilat E, Maldiney R, Habricot Y, Miginiac E, Bouly JP, Lebreton S. The mitogen-activated protein kinase phosphatase PHS1 regulates flowering in Arabidopsis thaliana. PLANTA 2016; 243:909-23. [PMID: 26721646 DOI: 10.1007/s00425-015-2447-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/14/2015] [Indexed: 05/13/2023]
Abstract
Arabidopsis PHS1, initially known as an actor of cytoskeleton organization, is a positive regulator of flowering in the photoperiodic and autonomous pathways by modulating both CO and FLC mRNA levels. Protein phosphorylation and dephosphorylation is a major type of post-translational modification, controlling many biological processes. In Arabidopsis thaliana, five genes encoding MAPK phosphatases (MKP)-like proteins have been identified. Among them, PROPYZAMIDE HYPERSENSITIVE 1 (PHS1) encoding a dual-specificity protein tyrosine phosphatase (DsPTP) has been shown to be involved in microtubule organization, germination and ABA-regulated stomatal opening. Here, we demonstrate that PHS1 also regulates flowering under long-day and short-day conditions. Using physiological, genetic and molecular approaches, we have shown that the late flowering phenotype of the knock-out phs1-5 mutant is linked to a higher expression of FLOWERING LOCUS C (FLC). In contrast, a decline of both CONSTANS (CO) and FLOWERING LOCUS T (FT) expression is observed in the knock-out phs1-5 mutant, especially at the end of the light period under long-day conditions when the induction of flowering occurs. We show that this partial loss of sensitivity to photoperiodic induction is independent of FLC. Our results thus indicate that PHS1 plays a dual role in flowering, in the photoperiodic and autonomous pathways, by modulating both CO and FLC mRNA levels. Our work reveals a novel actor in the complex network of the flowering regulation.
Collapse
Affiliation(s)
- Qian Tang
- Adaptation des Plantes aux Contraintes Environnementales, Sorbonne Universités, UPMC Univ Paris 06, URF5, 75005, Paris, France
- Plant Biological Sciences Graduate Program, Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, 1970 Folwell Avenue, Saint Paul, MN, 55108, USA
| | - Emilie Guittard-Crilat
- Adaptation des Plantes aux Contraintes Environnementales, Sorbonne Universités, UPMC Univ Paris 06, URF5, 75005, Paris, France
| | - Régis Maldiney
- Adaptation des Plantes aux Contraintes Environnementales, Sorbonne Universités, UPMC Univ Paris 06, URF5, 75005, Paris, France
| | - Yvette Habricot
- Biologie du Développement, Sorbonne Universités, UPMC Univ. Paris 06, UMR 7622, 75005, Paris, France
- Biologie du Développement, CNRS, UMR 7622, 75005, Paris, France
| | - Emile Miginiac
- Adaptation des Plantes aux Contraintes Environnementales, Sorbonne Universités, UPMC Univ Paris 06, URF5, 75005, Paris, France
| | - Jean-Pierre Bouly
- Computational and Quantitative Biology, Sorbonne Universités, UPMC Univ. Paris 06, UMR 7238, 75005, Paris, France.
- Computational and Quantitative Biology, CNRS-UPMC UMR 7238, 15, rue de l'Ecole de Médecine, 75006, Paris, France.
| | - Sandrine Lebreton
- Adaptation des Plantes aux Contraintes Environnementales, Sorbonne Universités, UPMC Univ Paris 06, URF5, 75005, Paris, France
| |
Collapse
|
17
|
Unmasking alternative splicing inside protein-coding exons defines exitrons and their role in proteome plasticity. Genome Res 2015; 25:995-1007. [PMID: 25934563 PMCID: PMC4484396 DOI: 10.1101/gr.186585.114] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/30/2015] [Indexed: 11/25/2022]
Abstract
Alternative splicing (AS) diversifies transcriptomes and proteomes and is widely recognized as a key mechanism for regulating gene expression. Previously, in an analysis of intron retention events in Arabidopsis, we found unusual AS events inside annotated protein-coding exons. Here, we also identify such AS events in human and use these two sets to analyse their features, regulation, functional impact, and evolutionary origin. As these events involve introns with features of both introns and protein-coding exons, we name them exitrons (exonic introns). Though exitrons were detected as a subset of retained introns, they are clearly distinguishable, and their splicing results in transcripts with different fates. About half of the 1002 Arabidopsis and 923 human exitrons have sizes of multiples of 3 nucleotides (nt). Splicing of these exitrons results in internally deleted proteins and affects protein domains, disordered regions, and various post-translational modification sites, thus broadly impacting protein function. Exitron splicing is regulated across tissues, in response to stress and in carcinogenesis. Intriguingly, annotated intronless genes can be also alternatively spliced via exitron usage. We demonstrate that at least some exitrons originate from ancestral coding exons. Based on our findings, we propose a “splicing memory” hypothesis whereby upon intron loss imprints of former exon borders defined by vestigial splicing regulatory elements could drive the evolution of exitron splicing. Altogether, our studies show that exitron splicing is a conserved strategy for increasing proteome plasticity in plants and animals, complementing the repertoire of AS events.
Collapse
|