1
|
Lin Z, Shu J, Qin Y, Cao D, Deng J, Yang P. Identification of Proteoforms Related to Nelumbo nucifera Flower Petaloid Through Proteogenomic Strategy. Proteomes 2025; 13:4. [PMID: 39846635 PMCID: PMC11755666 DOI: 10.3390/proteomes13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/14/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Nelumbo nucifera is an aquatic plant with a high ornamental value due to its flower. Despite the release of several versions of the lotus genome, its annotation remains inefficient, which makes it difficult to obtain a more comprehensive knowledge when -omic studies are applied to understand the different biological processes. Focusing on the petaloid of the lotus flower, we conducted a comparative proteomic analysis among five major floral organs. The proteogenomic strategy was applied to analyze the mass spectrometry data in order to dig out novel proteoforms that are involved in the petaloids of the lotus flower. The results revealed that a total of 4863 proteins corresponding to novel genes were identified, with 227 containing single amino acid variants (SAAVs), and 72 originating from alternative splicing (AS) genes. In addition, a range of post-translational modifications (PTMs) events were also identified in lotus. Through functional annotation and homology analysis with 24 closely related plant species, we identified five candidate proteins associated with floral organ development, which were not identified by ordinary proteomic analysis. This study not only provides new insights into understanding the mechanism of petaloids in lotus but is also helpful in identifying new proteoforms to improve the annotation of the lotus genome.
Collapse
Affiliation(s)
- Zhongyuan Lin
- Marine and Agricultural Biotechnology Laboratory, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; (Y.Q.); (D.C.)
| | - Jiantao Shu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430026, China;
| | - Yu Qin
- Marine and Agricultural Biotechnology Laboratory, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; (Y.Q.); (D.C.)
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingding Cao
- Marine and Agricultural Biotechnology Laboratory, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; (Y.Q.); (D.C.)
| | - Jiao Deng
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430026, China;
| |
Collapse
|
2
|
Paul M, Tanskanen J, Jääskeläinen M, Chang W, Dalal A, Moshelion M, Schulman AH. Drought and recovery in barley: key gene networks and retrotransposon response. FRONTIERS IN PLANT SCIENCE 2023; 14:1193284. [PMID: 37377802 PMCID: PMC10291200 DOI: 10.3389/fpls.2023.1193284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/09/2023] [Indexed: 06/29/2023]
Abstract
Introduction During drought, plants close their stomata at a critical soil water content (SWC), together with making diverse physiological, developmental, and biochemical responses. Methods Using precision-phenotyping lysimeters, we imposed pre-flowering drought on four barley varieties (Arvo, Golden Promise, Hankkija 673, and Morex) and followed their physiological responses. For Golden Promise, we carried out RNA-seq on leaf transcripts before and during drought and during recovery, also examining retrotransposon BARE1expression. Transcriptional data were subjected to network analysis. Results The varieties differed by their critical SWC (ϴcrit), Hankkija 673 responding at the highest and Golden Promise at the lowest. Pathways connected to drought and salinity response were strongly upregulated during drought; pathways connected to growth and development were strongly downregulated. During recovery, growth and development pathways were upregulated; altogether, 117 networked genes involved in ubiquitin-mediated autophagy were downregulated. Discussion The differential response to SWC suggests adaptation to distinct rainfall patterns. We identified several strongly differentially expressed genes not earlier associated with drought response in barley. BARE1 transcription is strongly transcriptionally upregulated by drought and downregulated during recovery unequally between the investigated cultivars. The downregulation of networked autophagy genes suggests a role for autophagy in drought response; its importance to resilience should be further investigated.
Collapse
Affiliation(s)
- Maitry Paul
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Jaakko Tanskanen
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
- Production Systems, Natural Resources Institute Finland (LUKE), Helsinki, Finland
| | - Marko Jääskeläinen
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Wei Chang
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Ahan Dalal
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Menachem Moshelion
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alan H. Schulman
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
- Production Systems, Natural Resources Institute Finland (LUKE), Helsinki, Finland
| |
Collapse
|
3
|
Park M, Williams DS, Turpin ZM, Wiggins ZJ, Tsolova VM, Onokpise OU, Bass HW. Differential nuclease sensitivity profiling uncovers a drought responsive change in maize leaf chromatin structure for two large retrotransposon derivatives, Uloh and Vegu. PLANT DIRECT 2021; 5:e337. [PMID: 34430792 PMCID: PMC8365550 DOI: 10.1002/pld3.337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/19/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Plant chromatin dynamics are generally recognized as playing a role in the genomic response to environmental stress. Although stress-induced transcriptional activities of LTR-retrotransposons have been reported, whether the stress response can be detected at the level of chromatin structure for LTR-retrotransposons is largely unknown. Using differential nuclease sensitivity profiling, we identified that two out of 29 maize LTR-retrotransposon families change their chromatin structure in response to drought stress in leaf tissue. The two LTR-retrotransposon families, uloh and vegu, are classified as nonautonomous LTR-retrotransposons. Differently from other families, the chromatin structure of these two families shifted from more open in normal conditions to more closed following drought stress. Although uloh and vegu lack sequence similarity, most of them shared an intriguing feature of having a new and uncharacterized insertion of a DNA sequence near one side of an LTR. In the uloh family, nine members with a strong drought response also exhibited a drought-induced reduction of published H3K4me3 histone modification in the inserted DNA region, implicating this modification in the chromatin structural changes. Our results provide new insight into how LTR-retrotransposons can alter their chromatin structure following stress response in plants.
Collapse
Affiliation(s)
- Minkyu Park
- Center for Viticulture and Small Fruit ResearchFlorida A&M UniversityTallahasseeFloridaUSA
| | - Delvin S. Williams
- College of Agriculture and Food SciencesFlorida A&M UniversityTallahasseeFloridaUSA
| | - Zachary M. Turpin
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | | | - Violeta M. Tsolova
- Center for Viticulture and Small Fruit ResearchFlorida A&M UniversityTallahasseeFloridaUSA
| | | | - Hank W. Bass
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
4
|
Yañez-Santos AM, Paz RC, Paz-Sepúlveda PB, Urdampilleta JD. Full-length LTR retroelements in Capsicum annuum revealed a few species-specific family bursts with insertional preferences. Chromosome Res 2021; 29:261-284. [PMID: 34086192 DOI: 10.1007/s10577-021-09663-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/01/2023]
Abstract
Capsicum annuum is a species that has undergone an expansion of the size of its genome caused mainly by the amplification of repetitive DNA sequences, including mobile genetic elements. Based on information obtained from sequencing the genome of pepper, the estimated fraction of retroelements is approximately 81%, and previous results revealed an important contribution of lineages derived from Gypsy superfamily. However, the dynamics of the retroelements in the C. annuum genome is poorly understood. In this way, the present work seeks to investigate the phylogenetic diversity and genomic abundance of the families of autonomous (complete and intact) LTR retroelements from C. annuum and inspect their distribution along its chromosomes. In total, we identified 1151 structurally full-length retroelements (340 Copia; 811 Gypsy) grouped in 124 phylogenetic families in the base of their retrotranscriptase. All the evolutive lineages of LTR retroelements identified in plants were present in pepper; however, three of them comprise 83% of the entire LTR retroelements population, the lineages Athila, Del/Tekay, and Ale/Retrofit. From them, only three families represent 70.8% of the total number of the identified retroelements. A massive family-specific wave of amplification of two of them occurred in the last 0.5 Mya (GypsyCa_16; CopiaCa_01), whereas the third is more ancient and occurred 3.0 Mya (GypsyCa_13). Fluorescent in situ hybridization performed with family and lineage-specific probes revealed contrasting patterns of chromosomal affinity. Our results provide a database of the populations LTR retroelements specific to C. annuum genome. The most abundant families were analyzed according to chromosome insertional preferences, suppling useful tools to the design of retroelement-based markers specific to the species.
Collapse
Affiliation(s)
- Anahí Mara Yañez-Santos
- CIGEOBIO (FCEFyN, UNSJ/CONICET), Av. Ignacio de la Roza 590 (Oeste), J5402DCS, Rivadavia, San Juan, Argentina.,Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Rosalía Cristina Paz
- CIGEOBIO (FCEFyN, UNSJ/CONICET), Av. Ignacio de la Roza 590 (Oeste), J5402DCS, Rivadavia, San Juan, Argentina.
| | - Paula Beatriz Paz-Sepúlveda
- Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET) - Comisión de Investigaciones Científicas (CIC) - Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Juan Domingo Urdampilleta
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
5
|
Richert-Pöggeler KR, Vijverberg K, Alisawi O, Chofong GN, Heslop-Harrison JS(P, Schwarzacher T. Participation of Multifunctional RNA in Replication, Recombination and Regulation of Endogenous Plant Pararetroviruses (EPRVs). FRONTIERS IN PLANT SCIENCE 2021; 12:689307. [PMID: 34234799 PMCID: PMC8256270 DOI: 10.3389/fpls.2021.689307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/19/2021] [Indexed: 05/11/2023]
Abstract
Pararetroviruses, taxon Caulimoviridae, are typical of retroelements with reverse transcriptase and share a common origin with retroviruses and LTR retrotransposons, presumably dating back 1.6 billion years and illustrating the transition from an RNA to a DNA world. After transcription of the viral genome in the host nucleus, viral DNA synthesis occurs in the cytoplasm on the generated terminally redundant RNA including inter- and intra-molecule recombination steps rather than relying on nuclear DNA replication. RNA recombination events between an ancestral genomic retroelement with exogenous RNA viruses were seminal in pararetrovirus evolution resulting in horizontal transmission and episomal replication. Instead of active integration, pararetroviruses use the host DNA repair machinery to prevail in genomes of angiosperms, gymnosperms and ferns. Pararetrovirus integration - leading to Endogenous ParaRetroViruses, EPRVs - by illegitimate recombination can happen if their sequences instead of homologous host genomic sequences on the sister chromatid (during mitosis) or homologous chromosome (during meiosis) are used as template. Multiple layers of RNA interference exist regulating episomal and chromosomal forms of the pararetrovirus. Pararetroviruses have evolved suppressors against this plant defense in the arms race during co-evolution which can result in deregulation of plant genes. Small RNAs serve as signaling molecules for Transcriptional and Post-Transcriptional Gene Silencing (TGS, PTGS) pathways. Different populations of small RNAs comprising 21-24 nt and 18-30 nt in length have been reported for Citrus, Fritillaria, Musa, Petunia, Solanum and Beta. Recombination and RNA interference are driving forces for evolution and regulation of EPRVs.
Collapse
Affiliation(s)
- Katja R. Richert-Pöggeler
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
- *Correspondence: Katja R. Richert-Pöggeler,
| | - Kitty Vijverberg
- Naturalis Biodiversity Center, Evolutionary Ecology Group, Leiden, Netherlands
- Radboud University, Institute for Water and Wetland Research (IWWR), Nijmegen, Netherlands
| | - Osamah Alisawi
- Department of Plant Protection, Faculty of Agriculture, University of Kufa, Najaf, Iraq
| | - Gilbert N. Chofong
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - J. S. (Pat) Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
6
|
Sanchez DH, Gaubert H, Yang W. Evidence of developmental escape from transcriptional gene silencing in MESSI retrotransposons. THE NEW PHYTOLOGIST 2019; 223:950-964. [PMID: 31063594 DOI: 10.1111/nph.15896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/12/2019] [Indexed: 05/04/2023]
Abstract
Transposable elements (TEs) are ubiquitous genomic features. 'Copy-and-paste' long-terminal-repeat (LTR) retrotransposons have been particularly successful during evolution of the plant kingdom, representing a substantial proportion of genomes. For survival in copious numbers, these TEs may have evolved replicative mobilization strategies that circumvented hosts' epigenetic silencing. Stressful circumstances are known to trigger the majority of known mobilizing plant retrotransposons, leading to the idea that most are activated by environmental signals. However, previous research revealed that plant developmental programs include steps of silencing relaxation, suggesting that developmental signals may also be of importance for thriving parasitic elements. Here, we uncover an unusual family of giant LTR retrotransposons from the Solanum clade, named MESSI, with transcriptional competence in shoot apical meristems of tomato. Despite being recognized and targeted by the host epigenetic surveillance, this family is activated in specific meristematic areas fundamental for plant shoot development, which are involved in meristem formation and maintenance. Our work provides initial evidence that some retrotransposons may evolve developmentally associated escape strategies to overcome transcriptional gene silencing in vegetative tissues contributing to the host's next generation. This implies that not only environmental but also developmental signals could be exploited by selfish elements for survival within the plant kingdom.
Collapse
Affiliation(s)
- Diego H Sanchez
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Hervé Gaubert
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Weibing Yang
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| |
Collapse
|
7
|
Nakashima K, Tsuchiya M, Fukushima S, Abe J, Kanazawa A. Transcription of soybean retrotransposon SORE-1 is temporally upregulated in developing ovules. PLANTA 2018; 248:1331-1337. [PMID: 30209619 DOI: 10.1007/s00425-018-3005-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
MAIN CONCLUSION Transcription of soybean retrotransposon SORE-1 was temporally upregulated during ovule development. This transcriptional pattern was under intrinsic control conferred by the long terminal repeat of SORE-1. Transcriptionally active retrotransposons are capable of inducing random disruption of genes, providing a powerful tool for mutagenesis. Activation of retrotransposons in reproductive cells, in particular, can lead to heritable changes. Here, we examined developmental control of transcription of soybean retrotransposon SORE-1. Transgenic Arabidopsis plants that contain β-glucuronidase (GUS) reporter gene fused with the SORE-1 long terminal repeat (LTR) had GUS staining in the ovule. Quantitative analysis of transcripts in plants with this DNA construct and those with the full-length SORE-1 element indicated a temporal upregulation of SORE-1 transcription during ovule development. A comparable phenomenon was also observed in soybean plants that had a recent insertion of this element in the GmphyA2 gene. These results provide evidence that the temporal upregulation of SORE-1 in the reproductive organ is sufficiently controlled by its LTR and indicate that the intrinsic expression pattern of SORE-1 is consistent with its mutagenic property.
Collapse
Affiliation(s)
- Kenta Nakashima
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Mayumi Tsuchiya
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Sae Fukushima
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Jun Abe
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Akira Kanazawa
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan.
| |
Collapse
|
8
|
Duan X, Zhang W, Huang J, Hao L, Wang S, Wang A, Meng D, Zhang Q, Chen Q, Li T. PbWoxT1 mRNA from pear (Pyrus betulaefolia) undergoes long-distance transport assisted by a polypyrimidine tract binding protein. THE NEW PHYTOLOGIST 2016; 210:511-24. [PMID: 26661583 DOI: 10.1111/nph.13793] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/25/2015] [Indexed: 05/23/2023]
Abstract
Little is known about the mechanisms by which mRNAs are transported over long distances in the phloem between the rootstock and the scion in grafted woody plants. We identified an mRNA in the pear variety 'Du Li' (Pyrus betulaefolia) that was shown to be transportable in the phloem. It contains a WUSCHEL-RELATED HOMEOBOX (WOX) domain and was therefore named Wox Transport 1 (PbWoxT1). A 548-bp fragment of PbWoxT1 is critical in long-distance transport. PbWoxT1 is rich in CUCU polypyrimidine domains and its mRNAs interact with a polypyrimidine tract binding protein, PbPTB3. Furthermore, the expression of PbWoxT1 significantly increased in the stems of wild-type (WT) tobacco grafted onto the rootstocks of PbWoxT1 or PbPTB3 co-overexpressing lines, but this was not the case in WT plants grafted onto PbWoxT1 overexpressing rootstocks, suggesting that PbPTB3 mediates PbWoxT1 mRNA long-distance transport. We provide novel information that adds a new mechanism with which to explain the noncell-autonomous manner of WOX gene function, which enriches our understanding of how WOX genes work in fruit trees and other species.
Collapse
Affiliation(s)
- Xuwei Duan
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Wenna Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Jing Huang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Li Hao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Aide Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Dong Meng
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Qiulei Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Qiuju Chen
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
9
|
Grandbastien MA. LTR retrotransposons, handy hitchhikers of plant regulation and stress response. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:403-16. [DOI: 10.1016/j.bbagrm.2014.07.017] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 11/30/2022]
|
10
|
Schulman AH. Retrotransposon replication in plants. Curr Opin Virol 2013; 3:604-14. [PMID: 24035277 DOI: 10.1016/j.coviro.2013.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 12/31/2022]
Abstract
Retrotransposons comprise the bulk of large plant genomes, replicating via an RNA intermediate whereby the original, integrated element remains in place. Of the two main orders, the LTR retrotransposons considerably outnumber the LINEs. LINEs integrate into target sites simultaneously with the RNA transcript being copied into cDNA by target-primed reverse transcription. LTR retrotransposon replication is basically equivalent to the intracellular phase of retroviral life cycles. The envelope gene giving extracellular mobility to retroviruses is in fact widespread in plants and their retrotransposons. Evolutionary analyses of the retrotransposons and retroviruses suggest that both form an ancient monophyletic group. The particular adaptations of LTR retrotransposons to plant life cycles enabling their success remain to be clarified.
Collapse
Affiliation(s)
- Alan H Schulman
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland; Biotechnology and Food Research, MTT Agrifood Research Finland, Jokioinen FIN-31600, Finland.
| |
Collapse
|