1
|
Fu M, Liu S, Che Y, Cui D, Deng Z, Li Y, Zou X, Kong X, Chen G, Zhang M, Liu Y, Wang X, Liu W, Liu D, Geng S, Li A, Mao L. Genome-editing of a circadian clock gene TaPRR95 facilitates wheat peduncle growth and heading date. J Genet Genomics 2024; 51:1101-1110. [PMID: 38849110 DOI: 10.1016/j.jgg.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
Plant height and heading date are important agronomic traits in wheat (Triticum aestivum L.) that affect final grain yield. In wheat, knowledge of pseudo-response regulator (PRR) genes on agronomic traits is limited. Here, we identify a wheat TaPRR95 gene by genome-wide association studies to be associated with plant height. Triple allele mutant plants produced by CRISPR/Cas9 show increased plant height, particularly the peduncle, with an earlier heading date. The longer peduncle is mainly caused by the increased cell elongation at its upper section, whilst the early heading date is accompanied by elevated expression of flowering genes, such as TaFT and TaCO1. A peduncle-specific transcriptome analysis reveals up-regulated photosynthesis genes and down-regulated IAA/Aux genes for auxin signaling in prr95aabbdd plants that may act as a regulatory mechanism to promote robust plant growth. A haplotype analysis identifies a TaPRR95-B haplotype (Hap2) to be closely associated with reduced plant height and increased thousand-grain weight. Moreover, the Hap2 frequency is higher in cultivars than that in landraces, suggesting the artificial selection on the allele during wheat breeding. These findings suggest that TaPRR95 is a regulator for plant height and heading date, thereby providing an important target for wheat yield improvement.
Collapse
Affiliation(s)
- Mingxue Fu
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoshuai Liu
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuqing Che
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dada Cui
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhongyin Deng
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Li
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinyu Zou
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingchen Kong
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guoliang Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 610106, China
| | - Min Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 610106, China
| | - Yifan Liu
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Xiang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Wei Liu
- School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Danmei Liu
- School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Shuaifeng Geng
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Aili Li
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Long Mao
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Makhoul M, Schlichtermann RH, Ugwuanyi S, Weber SE, Voss-Fels KP, Stahl A, Zetzsche H, Wittkop B, Snowdon RJ, Obermeier C. Novel PHOTOPERIOD-1 gene variants associate with yield-related and root-angle traits in European bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:125. [PMID: 38727862 PMCID: PMC11087350 DOI: 10.1007/s00122-024-04634-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
KEY MESSAGE PHOTOPERIOD-1 homoeologous gene copies play a pivotal role in regulation of flowering time in wheat. Here, we show that their influence also extends to spike and shoot architecture and even impacts root development. The sequence diversity of three homoeologous copies of the PHOTOPERIOD-1 gene in European winter wheat was analyzed by Oxford Nanopore amplicon-based multiplex sequencing and molecular markers in a panel of 194 cultivars representing breeding progress over the past 5 decades. A strong, consistent association with an average 8% increase in grain yield was observed for the PpdA1-Hap1 haplotype across multiple environments. This haplotype was found to be linked in 51% of cultivars to the 2NS/2AS translocation, originally introduced from Aegilops ventricosa, which leads to an overestimation of its effect. However, even in cultivars without the 2NS/2AS translocation, PpdA1-Hap1 was significantly associated with increased grain yield, kernel per spike and kernel per m2 under optimal growth conditions, conferring a 4% yield advantage compared to haplotype PpdA1-Hap4. In contrast to Ppd-B1 and Ppd-D1, the Ppd-A1 gene exhibits novel structural variations and a high number of SNPs, highlighting the evolutionary changes that have occurred in this region over the course of wheat breeding history. Additionally, cultivars carrying the photoperiod-insensitive Ppd-D1a allele not only exhibit earlier heading, but also deeper roots compared to those with photoperiod-sensitive alleles under German conditions. PCR and KASP assays have been developed that can be effectively employed in marker-assisted breeding programs to introduce these favorable haplotypes.
Collapse
Affiliation(s)
- Manar Makhoul
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | | | - Samson Ugwuanyi
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Sven E Weber
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Kai P Voss-Fels
- Institute for Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Andreas Stahl
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, Quedlinburg, Germany
| | - Holger Zetzsche
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, Quedlinburg, Germany
| | - Benjamin Wittkop
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Obermeier
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
3
|
Qiao P, Li X, Liu D, Lu S, Zhi L, Rysbekova A, Chen L, Hu YG. Mining novel genomic regions and candidate genes of heading and flowering dates in bread wheat by SNP- and haplotype-based GWAS. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:76. [PMID: 37873506 PMCID: PMC10587053 DOI: 10.1007/s11032-023-01422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Bread wheat (Triticum aestivum L.) is a global staple crop vital for human nutrition. Heading date (HD) and flowering date (FD) are critical traits influencing wheat growth, development, and adaptability to diverse environmental conditions. A comprehensive study were conducted involving 190 bread wheat accessions to unravel the genetic basis of HD and FD using high-throughput genotyping and multi-environment field trials. Seven independent quantitative trait loci (QTLs) were identified to be significantly associated with HD and FD using two GWAS methods, which explained a proportion of phenotypic variance ranging from 1.43% to 9.58%. Notably, QTLs overlapping with known vernalization genes Vrn-D1 were found, validating their roles in regulating flowering time. Moreover, novel QTLs on chromosome 2A, 5B, 5D, and 7B associated with HD and FD were identified. The effects of these QTLs on HD and FD were confirmed in an additional set of 74 accessions across different environments. An increase in the frequency of alleles associated with early flowering in cultivars released in recent years was also observed, suggesting the influence of molecular breeding strategies. In summary, this study enhances the understanding of the genetic regulation of HD and FD in bread wheat, offering valuable insights into crop improvement for enhanced adaptability and productivity under changing climatic conditions. These identified QTLs and associated markers have the potential to improve wheat breeding programs in developing climate-resilient varieties to ensure food security. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01422-z.
Collapse
Affiliation(s)
- Pengfang Qiao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Xuan Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Dezheng Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Shan Lu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Lei Zhi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Aiman Rysbekova
- S. Seifullin Kazakh Agro-Technical University, Astana, Kazakhstan
| | - Liang Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Yin-gang Hu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Institute of Water-saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi China
| |
Collapse
|
4
|
Slafer GA, Casas AM, Igartua E. Sense in sensitivity: difference in the meaning of photoperiod-insensitivity between wheat and barley. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad128. [PMID: 37021554 DOI: 10.1093/jxb/erad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Indexed: 06/19/2023]
Abstract
The description of long photoperiod sensitivity in wheat and barley is a cause of confusion for researchers working in these crops, usually accustomed to free exchange of physiological and genetic knowledge of such similar crops. Indeed, wheat and barley scientists customarily quote studies of either crop species when researching one of them. Among their numerous similarities the main gene controlling that response is the same in both crops (PPD1; PPD-H1 in barley and PPD-D1 in hexaploid wheat). However, the photoperiod responses are different: (i) the main dominant allele inducing shorter time to anthesis is the insensitive allele in wheat (Ppd-D1a) but the sensitive allele in barley (Ppd-H1) (i.e. sensitivity to photoperiod produces opposite effects on time to heading in wheat and barley), (ii) the main "insensitive" allele in wheat, Ppd-D1a, does confer insensitivity, whilst that of barley reduces the sensitivity but still responds to photoperiod. The different behaviour of PPD1 genes in wheat and barley is put in a common framework based on the similarities and differences of the molecular bases of their mutations, which include polymorphism at gene expression levels, copy number variation, and sequence of coding regions. This common perspective sheds light on a source on confusion for cereal researchers, and prompts us to recommend accounting for the photoperiod sensitivity status of the plant materials when doing research on genetic control of phenology. Finally, we provide advice to facilitate the management of natural PPD1 diversity in breeding programs and suggest targets for further modification through gene editing, based on mutual knowledge on the two crops.
Collapse
Affiliation(s)
- Gustavo A Slafer
- Department of Crop and Forest Sciences University of Lleida and AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain
- ICREA, Catalonian Institution for Research and Advanced Studies, Spain
| | - Ana M Casas
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD, CSIC, Avda. Montañana 1005, E-50059 Zaragoza, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD, CSIC, Avda. Montañana 1005, E-50059 Zaragoza, Spain
| |
Collapse
|
5
|
Ayoub Khan M, Dongru K, Yifei W, Ying W, Penghui A, Zicheng W. Characterization of WRKY Gene Family in Whole-Genome and Exploration of Flowering Improvement Genes in Chrysanthemum lavandulifolium. FRONTIERS IN PLANT SCIENCE 2022; 13:861193. [PMID: 35557735 PMCID: PMC9087852 DOI: 10.3389/fpls.2022.861193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/02/2022] [Indexed: 05/27/2023]
Abstract
Chrysanthemum is a well-known ornamental plant with numerous uses. WRKY is a large family of transcription factors known for a variety of functions ranging from stress resistance to plant growth and development. Due to the limited research on the WRKY family in chrysanthemums, we examined them for the first time in Chrysanthemum lavandulifolium. A total of 138 ClWRKY genes were identified, which were classified into three groups. Group III in C. lavandulifolium contains 53 members, which is larger than group III of Arabidopsis. The number of introns varied from one to nine in the ClWRKY gene family. The "WRKYGQK" motif is conserved in 118 members, while other members showed slight variations. AuR and GRE responsive cis-acting elements were located in the promoter region of WRKY members, which are important for plant development and flowering induction. In addition, the W box was present in most genes; the recognition site for the WRKY gene may play a role in autoregulation and cross-regulation. The expression of the most variable 19 genes in terms of different parameters was observed at different stages. Among them, 10 genes were selected due to the presence of CpG islands, while nine genes were selected based on their close association with important Arabidopsis genes related to floral traits. ClWRKY36 and ClWRKY45 exhibit differential expression at flowering stages in the capitulum, while methylation is detected in three genes, including ClWRKY31, ClWRKY100, and ClWRKY129. Our results provide a basis for further exploration of WRKY members to find their functions in plant growth and development, especially in flowering traits.
Collapse
|
6
|
Fait VI, Balashova IA. Distribution of Photoperiod-Insensitive Alleles Ppd-D1a, Ppd-B1a, and Ppd-B1c in Winter Common Wheat Cultivars (Triticum aestivum L.) of Various Origin. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722020049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Compatible interaction of Brachypodium distachyon and endophytic fungus Microdochium bolleyi. PLoS One 2022; 17:e0265357. [PMID: 35286339 PMCID: PMC8920291 DOI: 10.1371/journal.pone.0265357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
Brachypodium distachyon is a useful model organism for studying interaction of cereals with phytopathogenic fungi. The present study tested the possibility of a compatible interaction of B. distachyon with the endophytic fungus Microdochium bolleyi originated from wheat roots. There was evaluated the effect of this endophytic fungus on the intensity of the attack by pathogen Fusarium culmorum in B. distachyon and wheat, and also changes in expression of genes (in B. distachyon: BdChitinase1, BdPR1-5, BdLOX3, BdPAL, BdEIN3, and BdAOS; and in wheat: TaB2H2(chitinase), TaPR1.1, TaLOX, TaPAL, TaEIN2, and TaAOS) involved in defence against pathogens. Using light microscopy and newly developed specific primers was found to be root colonization of B. distachyon by the endophyte M. bolleyi. B. distachyon plants, as well as wheat inoculated with M. bolleyi showed significantly weaker symptoms on leaves from infection by fungus F. culmorum than did plants without the endophyte. Expression of genes BdPR1-5, BdChitinase1, and BdLOX3 in B. distachyon and of TaPR1.1 and TaB2H2 in wheat was upregulated after infection with F. culmorum. M. bolleyi-mediated resistance in B. distachyon was independent of the expression of the most tested genes. Taken together, the results of the present study show that B. distachyon can be used as a model host system for endophytic fungus M. bolleyi.
Collapse
|
8
|
Wu Y, Liu J, Hu G, Xue H, Xu H, Zhao C, Qin R, Cui F, Sun H. Functional Analysis of the "Green Revolution" Gene Photoperiod-1 and Its Selection Trends During Bread Wheat Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:745411. [PMID: 34858454 PMCID: PMC8631784 DOI: 10.3389/fpls.2021.745411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Flowering is central to the transformation of plants from vegetative growth to reproductive growth. The circadian clock system enables plants to sense the changes in the external environment and to modify the growth and development process at an appropriate time. Photoperiod-1 (Ppd-1), which is controlled by the output signal of the circadian clock, has played an important role in the wheat "Green Revolution." In the current study, we systematically studied the relationship between Ppd-1 haplotypes and both wheat yield- and quality-related traits, using genome-wide association analysis and transgenic strategies, and found that highly appropriate haplotypes had been selected in the wheat breeding programs. Genome-wide association analysis showed that Ppd-1 is associated with significant differences in yield-related traits in wheat, including spike length (SL), heading date (HD), plant height (PH), and thousand-grain weight (TGW). Ppd-1-Hapl-A1 showed increased SL by 4.72-5.93%, whereas Ppd-1-Hapl-B1 and Ppd-1-Hapl-D1 displayed earlier HD by 0.58-0.75 and 1.24-2.93%, respectively, decreased PH by 5.64-13.08 and 13.62-27.30%, respectively, and increased TGW by 4.89-10.94 and 11.12-21.45%, respectively. Furthermore, the constitutive expression of the Ppd-D1 gene in rice significantly delayed heading date and resulted in reduced plant height, thousand-grain weight, grain width (GW), and total protein content. With reference to 40years of data from Chinese wheat breeding, it was found that the appropriate haplotypes Ppd-1-Hapl-A1, Ppd-1-Hapl-B1, and Ppd-1-Hapl-D1 had all been subjected to directional selection, and that their distribution frequencies had increased from 26.09, 60.00, and 52.00% in landraces to 42.55, 93.62, and 96.23% in wheat cultivars developed in the 2010s. A Ppd-B1 methylation molecular marker was also developed to assist molecular wheat breeding. This research is of significance for fully exploring the function of the Ppd-1 gene and its genetic resource diversity, to effectively use the most appropriate haplotypes and to improve crop yield and sustainability.
Collapse
Affiliation(s)
- Yongzhen Wu
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Jiahui Liu
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Guimei Hu
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Huixian Xue
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Huiyuan Xu
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Chunhua Zhao
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Ran Qin
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Fa Cui
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Han Sun
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| |
Collapse
|
9
|
Ai Y, Jing S, Cheng Z, Song B, Xie C, Liu J, Zhou J. DNA methylation affects photoperiodic tuberization in potato (Solanum tuberosum L.) by mediating the expression of genes related to the photoperiod and GA pathways. HORTICULTURE RESEARCH 2021; 8:181. [PMID: 34465755 PMCID: PMC8408180 DOI: 10.1038/s41438-021-00619-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Overcoming short-day-dependent tuberization to adapt to long-day conditions is critical for the widespread geographical success of potato. The genetic pathways of photoperiodic tuberization are similar to those of photoperiodic flowering. DNA methylation plays an important role in photoperiodic flowering. However, little is known about how DNA methylation affects photoperiodic tuberization in potato. Here, we verified the effect of a DNA methylation inhibitor on photoperiodic tuberization and compared the DNA methylation levels and differentially methylated genes (DMGs) in the photoperiodic tuberization process between photoperiod-sensitive and photoperiod-insensitive genotypes, aiming to dissect the role of DNA methylation in the photoperiodic tuberization of potato. We found that a DNA methylation inhibitor could promote tuber initiation in strict short-day genotypes. Whole-genome DNA methylation sequencing showed that the photoperiod-sensitive and photoperiod-insensitive genotypes had distinct DNA methylation modes in which few differentially methylated genes were shared. Transcriptome analysis confirmed that the DNA methylation inhibitor regulated the expression of the key genes involved in the photoperiod and GA pathways to promote tuber initiation in the photoperiod-sensitive genotype. Comparison of the DNA methylation levels and transcriptome levels identified 52 candidate genes regulated by DNA methylation that were predicted to be involved in photoperiodic tuberization. Our findings provide a new perspective for understanding the relationship between photoperiod-dependent and GA-regulated tuberization. Uncovering the epigenomic signatures of these pathways will greatly enhance potato breeding for adaptation to a wide range of environments.
Collapse
Affiliation(s)
- Yanjun Ai
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei, 430070, China
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Vocational College of Bio-Technology, Wuhan, Hubei, 430070, China
| | - Shenglin Jing
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei, 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhengnan Cheng
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei, 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Botao Song
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei, 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei, 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jun Liu
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei, 430070, China
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jun Zhou
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei, 430070, China.
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
10
|
Ma L, Yi D, Yang J, Liu X, Pang Y. Genome-Wide Identification, Expression Analysis and Functional Study of CCT Gene Family in Medicago truncatula. PLANTS 2020; 9:plants9040513. [PMID: 32316208 PMCID: PMC7238248 DOI: 10.3390/plants9040513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/01/2023]
Abstract
The control of flowering time has an important impact on biomass and the environmental adaption of legumes. The CCT (CO, COL and TOC1) gene family was elucidated to participate in the molecular regulation of flowering in plants. We identified 36 CCT genes in the M. truncatula genome and they were classified into three distinct subfamilies, PRR (7), COL (11) and CMF (18). Synteny and phylogenetic analyses revealed that CCT genes occurred before the differentiation of monocot and dicot, and CCT orthologous genes might have diversified among plants. The diverse spatial-temporal expression profiles indicated that MtCCT genes could be key regulators in flowering time, as well as in the development of seeds and nodules in M. truncatula. Notably, 22 MtCCT genes with typical circadian rhythmic variations suggested their different responses to light. The response to various hormones of MtCCT genes demonstrated that they participate in plant growth and development via varied hormones dependent pathways. Moreover, six MtCCT genes were dramatically induced by salinity and dehydration treatments, illustrating their vital roles in the prevention of abiotic injury. Collectively, our study provides valuable information for the in-depth investigation of the molecular mechanism of flowering time in M. truncatula, and it also provides candidate genes for alfalfa molecular breeding with ideal flowering time.
Collapse
Affiliation(s)
- Lin Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (D.Y.); (J.Y.); (X.L.)
| | - Dengxia Yi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (D.Y.); (J.Y.); (X.L.)
| | - Junfeng Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (D.Y.); (J.Y.); (X.L.)
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Xiqiang Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (D.Y.); (J.Y.); (X.L.)
- Department of Grassland Science, China Agriculture University, Beijing 100193, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (D.Y.); (J.Y.); (X.L.)
- Correspondence: ; Tel.: +86-10-6287-6460
| |
Collapse
|
11
|
Sun H, Zhang W, Wu Y, Gao L, Cui F, Zhao C, Guo Z, Jia J. The Circadian Clock Gene, TaPRR1, Is Associated With Yield-Related Traits in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2020; 11:285. [PMID: 32226438 PMCID: PMC7080851 DOI: 10.3389/fpls.2020.00285] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 02/25/2020] [Indexed: 05/24/2023]
Abstract
Timing of flowering is crucial for the transformation from vegetative to reproductive growth in the important food crop, wheat (Triticum aestivum L.). The circadian clock is a central part of photoperiod regulation, with Pseudo-Response Regulators (PRRs) representing key components of circadian networks. However, little is known about the effects of PRR family members on yield-related traits in crop plants. In this study, we identified polymorphisms and haplotypes of TaPRR1, demonstrating that natural variations in TaPRR1 are associated with significant differences in yield-related traits including heading date, plant height and thousand grain weight. TaPRR1-6A-Hapla showed an earlier heading date, advanced by 0.9 to 1.7%. TaPRR1-6B-Hapla and TaPRR1-6D-Hapla displayed reduced plant height and increased thousand grain weight of up to 13.3 to 26.4% and 6.3 to 17.3%, respectively. Subcellular localization and transcriptional activity analysis showed that TaPRR1 is a nuclear localization protein with transcriptional activity controlled by an IR domain. The expression profiles of TaPRR1 genes over a 48-h period were characterized by circadian rhythms, which had two peaks under both short- and long- day conditions. In addition, geographical distribution analysis indicated higher distribution frequencies of TaPRR1-6A-Hapla, TaPRR1-6B-Haplb, and TaPRR1-6D-Haplb in different agro-ecological production zones. Furthermore, analysis of molecular variance of the distribution frequency of TaPRR1 haplotypes suggested significant differences in haplotype distribution frequency between landraces and modern cultivars. Our study provides a basis for in-depth understanding of TaPRR1 function on yield-related traits in wheat, as well as establishing theoretical guidance for wheat molecular marker-assisted breeding.
Collapse
Affiliation(s)
- Han Sun
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Wenping Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongzhen Wu
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Lifeng Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fa Cui
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Chunhua Zhao
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Zhiai Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jizeng Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Antalová Z, Bleša D, Martinek P, Matušinsky P. Transcriptional analysis of wheat seedlings inoculated with Fusarium culmorum under continual exposure to disease defence inductors. PLoS One 2020; 15:e0224413. [PMID: 32045412 PMCID: PMC7012390 DOI: 10.1371/journal.pone.0224413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/18/2020] [Indexed: 01/16/2023] Open
Abstract
A facultative parasite of cereals, Fusarium culmorum is a soil-, air- and seed-borne fungus causing foot and root rot, fusarium seedling blight, and especially Fusarium head blight, a spike disease leading to decreased yield and mycotoxin contamination of grain. In the present study, we tested changes in expression of wheat genes (B2H2, ICS, PAL, and PR2) involved in defence against diseases. We first compared expression of the analysed genes in seedlings of non-inoculated and artificially inoculated wheat (variety Bohemia). The second part of the experiment compared expression of these genes in seedlings grown under various treatment conditions. These treatments were chosen to determine the effects of prochloraz, sodium bicarbonate, ergosterol, aescin and potassium iodide on expression of the analysed defence genes. In addition to the inoculated and non-inoculated cultivar Bohemia, we additionally examined two other varieties of wheat with contrasting resistance to Fusarium sp. infection. These were the blue aleurone layer variety Scorpion that is susceptible to Fusarium sp. infection and variety V2-49-17 with yellow endosperm and partial resistance to Fusarium sp. infection. In this manner, we were able to compare potential effects of inductors upon defence gene expression among three varieties with different susceptibility to infection but also between inoculated and non-inoculated seedlings of a single variety. The lowest infection levels were detected in the sodium bicarbonate treatment. Sodium bicarbonate had not only negative influence on Fusarium growth but also positively affected expression of plant defence genes. Expression of the four marker genes shown to be important in plant defence was significantly affected by the treatments. The greatest upregulation in comparison to the water control was identified under all treatments for the B2H2 gene. Only expression of PAL under the ergosterol and prochloraz treatments were not statistically significant.
Collapse
Affiliation(s)
- Zuzana Antalová
- Department of Plant Breeding and Genetics, Agrotest Fyto, Ltd, Kroměříž, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Dominik Bleša
- Department of Plant Pathology, Agrotest Fyto, Ltd, Kroměříž, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Martinek
- Department of Plant Breeding and Genetics, Agrotest Fyto, Ltd, Kroměříž, Czech Republic
| | - Pavel Matušinsky
- Department of Plant Pathology, Agrotest Fyto, Ltd, Kroměříž, Czech Republic
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
- * E-mail:
| |
Collapse
|
13
|
Complex relationship between DNA methylation and gene expression due to Lr28 in wheat-leaf rust pathosystem. Mol Biol Rep 2019; 47:1339-1360. [DOI: 10.1007/s11033-019-05236-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/08/2019] [Accepted: 12/07/2019] [Indexed: 11/26/2022]
|
14
|
Tirnaz S, Batley J. DNA Methylation: Toward Crop Disease Resistance Improvement. TRENDS IN PLANT SCIENCE 2019; 24:1137-1150. [PMID: 31604599 DOI: 10.1016/j.tplants.2019.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 05/23/2023]
Abstract
Crop diseases, in conjunction with climate change, are a major threat to global crop production. DNA methylation is an epigenetic mark and is involved in plants' biological processes, including development, stress adaptation, and genome evolution. By providing a new source of variation, DNA methylation introduces novel direction to both scientists and breeders with its potential in disease resistance enhancement. Here, we discuss the impact of pathogen-induced DNA methylation modifications on a host's transcriptome reprogramming and genome stability, as part of the plant's defense mechanisms. We also highlight the knowledge gaps that need to be investigated for understanding the entire role of DNA methylation in plant pathogen interactions. This will ultimately assist breeders toward improving resistance and decreasing yield losses.
Collapse
Affiliation(s)
- Soodeh Tirnaz
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
15
|
Nishimura K, Moriyama R, Katsura K, Saito H, Takisawa R, Kitajima A, Nakazaki T. The early flowering trait of an emmer wheat accession (Triticum turgidum L. ssp. dicoccum) is associated with the cis-element of the Vrn-A3 locus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2037-2053. [PMID: 29961103 DOI: 10.1007/s00122-018-3131-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
We identified a novel allele of the Vrn-A3 gene that is associated with an early flowering trait in wheat. This trait is caused by a cis-element GATA box in Vrn-A3. To identify novel flowering genes in wheat, we investigated days from germination to heading (DGH) in tetraploid wheat accessions. We found that the tetraploid variety Triticum turgidum L. ssp. dicoccum (TN26) harbors unknown genes that surpass the earliness effect of the early flowering allele Ppd-A1a harbored by TN28 (T. turgidum L. ssp. turgidum conv. pyramidale). Using recombinant inbred lines resulting from a cross between TN26 and TN28, we performed a quantitative trait locus (QTL) analysis for DGH. We identified a QTL for earliness in TN26 on chromosome 7AS, the chromosome on which Vrn-A3 is located. By sequence analysis for the Vrn-A3 locus in both TN26 and TN28, we identified a 7-bp insertion that included a cis-element GATA box sequence at the promoter region of the Vrn-A3 locus of TN26. Based on an expression analysis using sister lines for Vrn-A3, we suggest that the early flowering trait of TN26 was caused by the GATA box in Vrn-A3. In addition, we identified tetraploid wheat as a useful genetic resource for wheat breeding.
Collapse
Affiliation(s)
- Kazusa Nishimura
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa, 619-0218, Kyoto, Japan
| | - Ryuji Moriyama
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa, 619-0218, Kyoto, Japan
- JX Nippon Oil and Gas Exploration Corporation, 1-1-2, Otemachi, Chiyoda, Tokyo, 100-8163, Japan
| | - Keisuke Katsura
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Hiroki Saito
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa, 619-0218, Kyoto, Japan
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, 1091-1 Maezato-Kawarabaru, Ishigaki, 907-0002, Okinawa, Japan
| | - Rihito Takisawa
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa, 619-0218, Kyoto, Japan
| | - Akira Kitajima
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa, 619-0218, Kyoto, Japan
| | - Tetsuya Nakazaki
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa, 619-0218, Kyoto, Japan.
| |
Collapse
|
16
|
Zhang X, Liu G, Zhang L, Xia C, Zhao T, Jia J, Liu X, Kong X. Fine Mapping of a Novel Heading Date Gene, TaHdm605, in Hexaploid Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1059. [PMID: 30073013 PMCID: PMC6058285 DOI: 10.3389/fpls.2018.01059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/29/2018] [Indexed: 05/20/2023]
Abstract
The heading date is critical in determining the adaptability of plants to specific natural environments. Molecular characterization of the wheat genes that regulate heading not only enhances our understanding of the mechanisms underlying wheat heading regulation but also benefits wheat breeding programs by improving heading phenotypes. In this study, we characterized a late heading date mutant, m605, obtained by ethyl methanesulfonate (EMS) mutation. Compared with its wild-type parent, YZ4110, m605 was at least 7 days late in heading when sown in autumn. This late heading trait was controlled by a single recessive gene named TaHdm605. Genetic mapping located the TaHdm605 locus between the molecular markers cfd152 and barc42 on chromosome 3DL using publicly available markers and then further mapped this locus to a 1.86 Mb physical genomic region containing 26 predicted genes. This fine genetic and physical mapping will be helpful for the future map-based cloning of TaHdm605 and for breeders seeking to engineer changes in the wheat heading date trait.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xu Liu
- *Correspondence: Xu Liu, ; Xiuying Kong,
| | | |
Collapse
|
17
|
|
18
|
Wang M, Wang S, Liang Z, Shi W, Gao C, Xia G. From Genetic Stock to Genome Editing: Gene Exploitation in Wheat. Trends Biotechnol 2017; 36:160-172. [PMID: 29102241 DOI: 10.1016/j.tibtech.2017.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/01/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
Abstract
Bread wheat (Triticum aestivum) ranks as one of our most important staple crops. However, its hexaploid nature has complicated our understanding of the genetic bases underlying many of its traits. Historically, functional genetic studies in wheat have focused on identifying natural variations and have contributed to assembling and enriching its genetic stock. Recently, mold-breaking advances in whole genome sequencing, exome-capture based mutant libraries, and genome editing have revolutionized strategies for genetic research in wheat. We review new trends in wheat functional genetic studies along with germplasm conservation and innovation, including the relevance of genetic stocks, and the application of sequencing-based mutagenesis and genome editing. We also highlight the potential of multiplex genome editing toolkits in addressing species-specific challenges in wheat.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China; State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; These authors contributed equally to this work
| | - Shubin Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China; These authors contributed equally to this work
| | - Zhen Liang
- State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China.
| |
Collapse
|
19
|
Ivaničová Z, Valárik M, Pánková K, Trávníčková M, Doležel J, Šafář J, Milec Z. Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies. PLoS One 2017; 12:e0183745. [PMID: 28846721 PMCID: PMC5573275 DOI: 10.1371/journal.pone.0183745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 08/10/2017] [Indexed: 11/18/2022] Open
Abstract
The ability of plants to identify an optimal flowering time is critical for ensuring the production of viable seeds. The main environmental factors that influence the flowering time include the ambient temperature and day length. In wheat, the ability to assess the day length is controlled by photoperiod (Ppd) genes. Due to its allohexaploid nature, bread wheat carries the following three Ppd-1 genes: Ppd-A1, Ppd-B1 and Ppd-D1. While photoperiod (in)sensitivity controlled by Ppd-A1 and Ppd-D1 is mainly determined by sequence changes in the promoter region, the impact of the Ppd-B1 alleles on the heading time has been linked to changes in the copy numbers (and possibly their methylation status) and sequence changes in the promoter region. Here, we report that plants with the same number of Ppd-B1 copies may have different heading times. Differences were observed among F7 lines derived from crossing two spring hexaploid wheat varieties. Several lines carrying three copies of Ppd-B1 headed 16 days later than other plants in the population with the same number of gene copies. This effect was associated with changes in the gene expression level and methylation of the Ppd-B1 gene.
Collapse
Affiliation(s)
- Zuzana Ivaničová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ Olomouc, Czech Republic
| | - Miroslav Valárik
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ Olomouc, Czech Republic
| | | | - Martina Trávníčková
- Crop Research Institute, Drnovská 507, Prague, Czech Republic
- Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ Olomouc, Czech Republic
| | - Jan Šafář
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ Olomouc, Czech Republic
| | - Zbyněk Milec
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ Olomouc, Czech Republic
- * E-mail:
| |
Collapse
|
20
|
Fei Y, Xue Y, Du P, Yang S, Deng X. Expression analysis and promoter methylation under osmotic and salinity stress of TaGAPC1 in wheat (Triticum aestivum L). PROTOPLASMA 2017; 254:987-996. [PMID: 27488925 DOI: 10.1007/s00709-016-1008-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
Cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) catalyzes a key reaction in glycolysis and encoded by a multi-gene family which showed instability expression under abiotic stress. DNA methylation is an epigenetic modification that plays an important role in gene regulation in response to abiotic stress. The comprehension of DNA methylation at promoter region of TaGAPC1 can provide insights into the transcription regulation mechanisms of plant genes under abiotic stress. In this study, we cloned TaGAPC1 genes and its promoters from two wheat genomes, then investigated the expression patterns of TaGAPC1 under osmotic and salinity stress, and analyzed the promoter sequences. Moreover, the methylation patterns of promoters under stress were confirmed. Expression analysis indicated that TaGAPC1 was induced inordinately by stresses in two wheat genotypes with contrasting drought tolerance. Several stress-related cis-acting elements (MBS, DRE, GT1 and LTR et al.) were located in its promoters. Furthermore, the osmotic and salinity stress induced the demethylation of CG and CHG nucleotide in the promoter region of Changwu134. The methylation level of CHG and CHH in promoter of Zhengyin1 was always increased under stresses, and the CG contexts remained unchanged. The cytosine loci of stress-related cis-acting elements also showed different methylation changes in this process. These results provide insights into the relationship between promoter methylation and gene expression, promoting the function investigation of GAPC.
Collapse
Affiliation(s)
- Ying Fei
- College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, People's Republic of China
| | - Yuanxia Xue
- College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, People's Republic of China
| | - Peixiu Du
- College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, People's Republic of China
| | - Shushen Yang
- College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, People's Republic of China.
| | - Xiping Deng
- Institute of Soil and Water Conservation, Chinese Academy of Sciences, 712100, Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
21
|
Genome-wide analysis of gene expression to distinguish photoperiod-dependent and -independent flowering in Brassicaceae. Genes Genomics 2017. [DOI: 10.1007/s13258-016-0487-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Zhang W, Zhao G, Gao L, Kong X, Guo Z, Wu B, Jia J. Functional Studies of Heading Date-Related Gene TaPRR73, a Paralog of Ppd1 in Common Wheat. FRONTIERS IN PLANT SCIENCE 2016; 7:772. [PMID: 27313595 PMCID: PMC4887500 DOI: 10.3389/fpls.2016.00772] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/17/2016] [Indexed: 05/29/2023]
Abstract
Photoperiod response-related genes play a crucial role in duration of the plant growth. In this study, we focused on TaPRR73, a paralog of "Green Revolution" gene Ppd1 (TaPRR37). We found that overexpression of the truncated TaPRR73 form lacking part of the N-terminal PR domain in transgenic rice promoted heading under long day conditions. Association analysis in common wheat verified that TaPRR73 was an important agronomic photoperiod response gene that significantly affected heading date and plant height; expression analysis proved that specific alleles of TaPRR73-A1 had highly expressed levels in earlier heading lines; the distribution of haplotypes indicated that one of these alleles had been selected in breeding programs. Our results demonstrated that TaPRR73 contributed to regulation of heading date in wheat and could be useful in wheat breeding and in broadening adaptation of the crop to new regions.
Collapse
Affiliation(s)
- Wenping Zhang
- Triticease Research Institute, Sichuan Agricultural UniversityChengdu, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Institute of Crop science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Guangyao Zhao
- National Key Facility of Crop Gene Resources and Genetic Improvement, Institute of Crop science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Lifeng Gao
- National Key Facility of Crop Gene Resources and Genetic Improvement, Institute of Crop science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xiuying Kong
- National Key Facility of Crop Gene Resources and Genetic Improvement, Institute of Crop science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhiai Guo
- National Key Facility of Crop Gene Resources and Genetic Improvement, Institute of Crop science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Bihua Wu
- Triticease Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Jizeng Jia
- National Key Facility of Crop Gene Resources and Genetic Improvement, Institute of Crop science, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
23
|
Würschum T, Boeven PHG, Langer SM, Longin CFH, Leiser WL. Multiply to conquer: Copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat. BMC Genet 2015. [PMID: 26219856 PMCID: PMC4518651 DOI: 10.1186/s12863-015-0258-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Copy number variation was found to be a frequent type of DNA polymorphism in the human genome often associated with diseases but its importance in crops and the effects on agronomic traits are still largely unknown. Results Here, we employed a large worldwide panel of 1110 winter wheat varieties to assess the frequency and the geographic distribution of copy number variants at the Photoperiod-B1 (Ppd-B1) and the Vernalization-A1 (Vrn-A1) loci as well as their effects on flowering time under field conditions. We identified a novel four copy variant of Vrn-A1 and based on the phylogenetic relationships among the lines show that the higher copy variants at both loci are likely to have arisen independently multiple times. In addition, we found that the frequency of the different copy number variants at both loci reflects the environmental conditions in the varieties’ region of origin and based on multi-location field trials show that Ppd-B1 copy number has a substantial effect on the fine-tuning of flowering time. Conclusions In conclusion, our results show the importance of copy number variation at Ppd-B1 and Vrn-A1 for the global adaptation of wheat making it a key factor for wheat success in a broad range of environments and in a wider context substantiate the significant role of copy number variation in crops. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0258-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Philipp H G Boeven
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Simon M Langer
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany. .,Current address: Bayer CropScience Aktiengesellschaft, European Wheat Breeding Center, 06466, Gatersleben, Germany.
| | - C Friedrich H Longin
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Willmar L Leiser
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
24
|
Wang M, Wang S, Xia G. From genome to gene: a new epoch for wheat research? TRENDS IN PLANT SCIENCE 2015; 20:380-387. [PMID: 25887708 DOI: 10.1016/j.tplants.2015.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
Genetic research for bread wheat (Triticum aestivum), a staple crop around the world, has been impeded by its complex large hexaploid genome that contains a high proportion of repetitive DNA. Recent advances in sequencing technology have now overcome these challenges and led to genome drafts for bread wheat and its progenitors as well as high-resolution transcriptomes. However, the exploitation of these data for identifying agronomically important genes in wheat is lagging behind. We review recent wheat genome sequencing achievements and focus on four aspects of strategies and future hotspots for wheat improvement: positional cloning, 'omics approaches, combining forward and reverse genetics, and epigenetics.
Collapse
Affiliation(s)
- Meng Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, P.R. China
| | - Shubin Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, P.R. China
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, P.R. China.
| |
Collapse
|