4
|
Kiss L, Vaghefi N, Bransgrove K, Dearnaley JDW, Takamatsu S, Tan YP, Marston C, Liu SY, Jin DN, Adorada DL, Bailey J, Cabrera de Álvarez MG, Daly A, Dirchwolf PM, Jones L, Nguyen TD, Edwards J, Ho W, Kelly L, Mintoff SJL, Morrison J, Németh MZ, Perkins S, Shivas RG, Smith R, Stuart K, Southwell R, Turaganivalu U, Váczy KZ, Blommestein AV, Wright D, Young A, Braun U. Australia: A Continent Without Native Powdery Mildews? The First Comprehensive Catalog Indicates Recent Introductions and Multiple Host Range Expansion Events, and Leads to the Re-discovery of Salmonomyces as a New Lineage of the Erysiphales. Front Microbiol 2020; 11:1571. [PMID: 32765452 PMCID: PMC7378747 DOI: 10.3389/fmicb.2020.01571] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023] Open
Abstract
In contrast to Eurasia and North America, powdery mildews (Ascomycota, Erysiphales) are understudied in Australia. There are over 900 species known globally, with fewer than currently 60 recorded from Australia. Some of the Australian records are doubtful as the identifications were presumptive, being based on host plant-pathogen lists from overseas. The goal of this study was to provide the first comprehensive catalog of all powdery mildew species present in Australia. The project resulted in (i) an up-to-date list of all the taxa that have been identified in Australia based on published DNA barcode sequences prior to this study; (ii) the precise identification of 117 specimens freshly collected from across the country; and (iii) the precise identification of 30 herbarium specimens collected between 1975 and 2013. This study confirmed 42 species representing 10 genera, including two genera and 13 species recorded for the first time in Australia. In Eurasia and North America, the number of powdery mildew species is much higher. Phylogenetic analyses of powdery mildews collected from Acalypha spp. resulted in the transfer of Erysiphe acalyphae to Salmonomyces, a resurrected genus. Salmonomyces acalyphae comb. nov. represents a newly discovered lineage of the Erysiphales. Another taxonomic change is the transfer of Oidium ixodiae to Golovinomyces. Powdery mildew infections have been confirmed on 13 native Australian plant species in the genera Acacia, Acalypha, Cephalotus, Convolvulus, Eucalyptus, Hardenbergia, Ixodia, Jagera, Senecio, and Trema. Most of the causal agents were polyphagous species that infect many other host plants both overseas and in Australia. All powdery mildews infecting native plants in Australia were phylogenetically closely related to species known overseas. The data indicate that Australia is a continent without native powdery mildews, and most, if not all, species have been introduced since the European colonization of the continent.
Collapse
Affiliation(s)
- Levente Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Niloofar Vaghefi
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Kaylene Bransgrove
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park, QLD, Australia
| | - John D. W. Dearnaley
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Susumu Takamatsu
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
- Laboratory of Plant Pathology, Faculty of Bioresources, Mie University, Tsu, Japan
| | - Yu Pei Tan
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park, QLD, Australia
| | - Craig Marston
- Science and Surveillance Group, Department of Agriculture, Water and the Environment, Brisbane, QLD, Australia
| | - Shu-Yan Liu
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Dan-Ni Jin
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Dante L. Adorada
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Jordan Bailey
- Plant Pathology & Mycology Herbarium, New South Wales Department of Primary Industries, Orange, NSW, Australia
| | | | - Andrew Daly
- Plant Health Diagnostic Service, New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Pamela Maia Dirchwolf
- Department of Plant Protection, Faculty of Agricultural Science, National University of the Northeast, Corrientes, Argentina
| | - Lynne Jones
- Science and Surveillance Group, Department of Agriculture, Water and the Environment, Brisbane, QLD, Australia
| | | | - Jacqueline Edwards
- Agriculture Victoria Research, Agriculture Victoria, Department of Jobs, Precincts and Regions, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Wellcome Ho
- New Zealand Ministry for Primary Industries, Auckland, New Zealand
| | - Lisa Kelly
- Department of Agriculture and Fisheries, Queensland Government, Toowoomba, QLD, Australia
| | - Sharl J. L. Mintoff
- Department of Primary Industry and Resources, Northern Territory Government, Darwin, NT, Australia
| | - Jennifer Morrison
- Science and Surveillance Group, Department of Agriculture, Water and the Environment, Brisbane, QLD, Australia
| | - Márk Z. Németh
- Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| | - Sandy Perkins
- Science and Surveillance Group, Department of Agriculture, Water and the Environment, Brisbane, QLD, Australia
| | - Roger G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park, QLD, Australia
| | - Reannon Smith
- Agriculture Victoria Research, Agriculture Victoria, Department of Jobs, Precincts and Regions, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Kara Stuart
- Ecosciences Precinct, Department of Agriculture and Fisheries, Dutton Park, QLD, Australia
| | - Ronald Southwell
- Science and Surveillance Group, Department of Agriculture, Water and the Environment, Sydney, NSW, Australia
| | | | - Kálmán Zoltán Váczy
- Food and Wine Research Institute, Eszterházy Károly University, Eger, Hungary
| | - Annie Van Blommestein
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Dominie Wright
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Anthony Young
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Uwe Braun
- Herbarium, Department of Geobotany and Botanical Garden, Institute for Biology, Martin Luther University, Halle (Saale), Germany
| |
Collapse
|
5
|
Løken SB, Skrede I, Schumacher T. The Helvella corium species aggregate in Nordic countries - phylogeny and species delimitation. Fungal Syst Evol 2020; 5:169-186. [PMID: 32467922 PMCID: PMC7250015 DOI: 10.3114/fuse.2020.05.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mycologists have always been curious about the elaborate morphotypes and shapes of species of the genus Helvella. The small, black, cupulate Helvella specimens have mostly been assigned to Helvella corium, a broadly defined morpho-species. Recent phylogenetic analyses, however, have revealed an aggregate of species hidden under this name. We performed a multispecies coalescent analysis to re-assess species limits and evolutionary relationships of the Helvella corium species aggregate in the Nordic countries. To achieve this, we used morphology and phylogenetic evidence from five loci – heat shock protein 90 (hsp), translation elongation factor 1-alpha (tef), RNA polymerase II (rpb2), and the 5.8S and large subunit (LSU) of the nuclear ribosomal DNA. All specimens under the name Helvella corium in the larger university fungaria of Norway, Sweden and Denmark were examined and barcoded, using partial hsp and/or rpb2 as the preferential secondary barcodes in Helvella. Additional fresh specimens were collected in three years (2015–2018) to obtain in vivo morphological data to aid in species discrimination. The H. corium species aggregate consists of seven phylogenetically distinct species, nested in three divergent lineages, i.e. H. corium, H. alpina and H. pseudoalpina sp. nov. in the /alpina-corium lineage, H. alpestris, H. macrosperma and H. nannfeldtii in the /alpestris-nannfeldtii lineage, and H. alpicola as a weakly supported sister to the /alpestris-nannfeldtii lineage. Among the seven species, the ribosomal loci expressed substantial variation in evolutionary rates, suggesting care in the use of these regions alone in delimitation of Helvella species. Altogether, 469 out of 496 available fungarium specimens were successfully barcoded.
Collapse
Affiliation(s)
- S B Løken
- Department of Biosciences, University of Oslo, P.O. Box 1066, 0316 Oslo, Norway
| | - I Skrede
- Department of Biosciences, University of Oslo, P.O. Box 1066, 0316 Oslo, Norway
| | - T Schumacher
- Department of Biosciences, University of Oslo, P.O. Box 1066, 0316 Oslo, Norway
| |
Collapse
|
6
|
Roy J, Mazel F, Sosa-Hernández MA, Dueñas JF, Hempel S, Zinger L, Rillig MC. The relative importance of ecological drivers of arbuscular mycorrhizal fungal distribution varies with taxon phylogenetic resolution. THE NEW PHYTOLOGIST 2019; 224:936-948. [PMID: 31355954 DOI: 10.1111/nph.16080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
The phylogenetic depth at which arbuscular mycorrhizal (AM) fungi harbor a coherent ecological niche is unknown, which has consequences for operational taxonomic unit (OTU) delineation from sequence data and the study of their biogeography. We tested how changes in AM fungi community composition across habitats (beta diversity) vary with OTU phylogenetic resolution. We inferred exact sequence variants (ESVs) to resolve phylotypes at resolutions finer than provided by traditional sequence clustering and analyzed beta diversity profiles up to order-level sequence clusters. At the ESV level, we detected the environmental predictors revealed with traditional OTUs or at higher genetic distances. However, the correlation between environmental predictors and community turnover steeply increased at a genetic distance of c. 0.03 substitutions per site. Furthermore, we observed a turnover of either closely or distantly related taxa (respectively at or above 0.03 substitutions per site) along different environmental gradients. This study suggests that different axes of AM fungal ecological niche are conserved at different phylogenetic depths. Delineating AM fungal phylotypes using DNA sequences should screen different phylogenetic resolutions to better elucidate the factors that shape communities and predict the fate of AM symbioses in a changing environment.
Collapse
Affiliation(s)
- Julien Roy
- Institut für Biologie, Ökologie der Pflanzen, Freie Universität Berlin, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Florent Mazel
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Moisés A Sosa-Hernández
- Institut für Biologie, Ökologie der Pflanzen, Freie Universität Berlin, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Juan F Dueñas
- Institut für Biologie, Ökologie der Pflanzen, Freie Universität Berlin, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Stefan Hempel
- Institut für Biologie, Ökologie der Pflanzen, Freie Universität Berlin, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Lucie Zinger
- Ecole Normale Supérieure, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), PSL Research University, F-75005, Paris, France
| | - Matthias C Rillig
- Institut für Biologie, Ökologie der Pflanzen, Freie Universität Berlin, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| |
Collapse
|
8
|
Thines M, Crous PW, Aime MC, Aoki T, Cai L, Hyde KD, Miller AN, Zhang N, Stadler M. Ten reasons why a sequence-based nomenclature is not useful for fungi anytime soon. IMA Fungus 2018; 9:177-183. [PMID: 30018878 PMCID: PMC6048572 DOI: 10.5598/imafungus.2018.09.01.11] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 11/08/2022] Open
Abstract
The large number of species still to be discovered in fungi, together with an exponentially growing number of environmental sequences that cannot be linked to known taxa, has fuelled the idea that it might be necessary to formally name fungi on the basis of sequence data only. Here we object to this idea due to several shortcomings of the approach, ranging from concerns regarding reproducibility and the violation of general scientific principles to ethical issues. We come to the conclusion that sequence-based nomenclature is potentially harmful for mycology as a discipline. Additionally, a classification based on sequences as types is not within reach anytime soon, because there is a lack of consensus regarding common standards due to the fast pace at which sequencing technologies develop.
Collapse
Affiliation(s)
- Marco Thines
- Goethe University, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, D-60483 Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | - Pedro W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - M. Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Takayuki Aoki
- Genetic Resources Center, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Andrew N. Miller
- Illinois Natural History Survey, University of Illinois, 1816 South Oak Street, Champaign, IL 61820, USA
| | - Ning Zhang
- Department of Plant Biology, Rutgers University, 59 Dudley Road, Foran Hall 201, New Brunswick, New Jersey 08901, USA
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz-Zentrum für Infektionsforschung, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| |
Collapse
|