1
|
Liu Q, Li Y, Wu H, Zhang B, Liu C, Gao Y, Guo H, Zhao J. Hyphopodium-Specific Signaling Is Required for Plant Infection by Verticillium dahliae. J Fungi (Basel) 2023; 9:jof9040484. [PMID: 37108938 PMCID: PMC10143791 DOI: 10.3390/jof9040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
For successful colonization, fungal pathogens have evolved specialized infection structures to overcome the barriers present in host plants. The morphology of infection structures and pathogenic mechanisms are diverse according to host specificity. Verticillium dahliae, a soil-borne phytopathogenic fungus, generates hyphopodium with a penetration peg on cotton roots while developing appressoria, that are typically associated with leaf infection on lettuce and fiber flax roots. In this study, we isolated the pathogenic fungus, V. dahliae (VdaSm), from Verticillium wilt eggplants and generated a GFP-labeled isolate to explore the colonization process of VdaSm on eggplants. We found that the formation of hyphopodium with penetration peg is crucial for the initial colonization of VdaSm on eggplant roots, indicating that the colonization processes on eggplant and cotton share a similar feature. Furthermore, we demonstrated that the VdNoxB/VdPls1-dependent Ca2+ elevation activating VdCrz1 signaling is a common genetic pathway to regulate infection-related development in V. dahliae. Our results indicated that VdNoxB/VdPls1-dependent pathway may be a desirable target to develop effective fungicides, to protect crops from V. dahliae infection by interrupting the formation of specialized infection structures.
Collapse
Affiliation(s)
- Qingyan Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchao Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Hebei University, Baoding 071000, China
| | - Huawei Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Bosen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Chuanhui Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Gao
- Qilu Zhongke Academy of Modern Microbiology Technology, Jinan 250022, China
| | - Huishan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jianhua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Chethana KWT, Jayawardena RS, Chen YJ, Konta S, Tibpromma S, Phukhamsakda C, Abeywickrama PD, Samarakoon MC, Senwanna C, Mapook A, Tang X, Gomdola D, Marasinghe DS, Padaruth OD, Balasuriya A, Xu J, Lumyong S, Hyde KD. Appressorial interactions with host and their evolution. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00487-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Chethana KWT, Jayawardena RS, Chen YJ, Konta S, Tibpromma S, Abeywickrama PD, Gomdola D, Balasuriya A, Xu J, Lumyong S, Hyde KD. Diversity and Function of Appressoria. Pathogens 2021; 10:pathogens10060746. [PMID: 34204815 PMCID: PMC8231555 DOI: 10.3390/pathogens10060746] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Endophytic, saprobic, and pathogenic fungi have evolved elaborate strategies to obtain nutrients from plants. Among the diverse plant-fungi interactions, the most crucial event is the attachment and penetration of the plant surface. Appressoria, specialized infection structures, have been evolved to facilitate this purpose. In this review, we describe the diversity of these appressoria and classify them into two main groups: single-celled appressoria (proto-appressoria, hyaline appressoria, melanized (dark) appressoria) and compound appressoria. The ultrastructure of appressoria, their initiation, their formation, and their function in fungi are discussed. We reviewed the molecular mechanisms regulating the formation and function of appressoria, their strategies to evade host defenses, and the related genomics and transcriptomics. The current review provides a foundation for comprehensive studies regarding their evolution and diversity in different fungal groups.
Collapse
Affiliation(s)
- K. W. Thilini Chethana
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (R.S.J.); (Y.-J.C.); (S.K.); (P.D.A.); (D.G.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (R.S.J.); (Y.-J.C.); (S.K.); (P.D.A.); (D.G.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Yi-Jyun Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (R.S.J.); (Y.-J.C.); (S.K.); (P.D.A.); (D.G.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Sirinapa Konta
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (R.S.J.); (Y.-J.C.); (S.K.); (P.D.A.); (D.G.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Saowaluck Tibpromma
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Pranami D. Abeywickrama
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (R.S.J.); (Y.-J.C.); (S.K.); (P.D.A.); (D.G.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Beijing Key Laboratory of Environment Friendly Management on Diseases and Pests of North China Fruits, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Deecksha Gomdola
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (R.S.J.); (Y.-J.C.); (S.K.); (P.D.A.); (D.G.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Abhaya Balasuriya
- Department of Plant Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka;
| | - Jianping Xu
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada;
| | - Saisamorn Lumyong
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Kevin D. Hyde
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (R.S.J.); (Y.-J.C.); (S.K.); (P.D.A.); (D.G.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Correspondence:
| |
Collapse
|