1
|
Li H, Meng F, Leng Y. Biodegradation of 1,2,4-trimethylbenzene in seawater using Rhodomonas sp. JZB-2: Performance, kinetics, and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125278. [PMID: 40199224 DOI: 10.1016/j.jenvman.2025.125278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/10/2025]
Abstract
Recently, marine ecosystems have been threatened by an accidental spill of C9 aromatics, particularly 1,2,4-trimethylbenzene (1,2,4-TMB), due to its high proportion in C9 aromatics. Microalgae-mediated bioremediation is a promising approach for pollutant removal owing to its eco-friendliness and carbon sequestration potential. In this study, the marine Cryptophyta Rhodomonas sp. JZB-2 demonstrated the ability to completely degrade 1-40 mg/L of 1,2,4-TMB within 6 days, showcasing its advantage in degrading 1,2,4-TMB at high concentrations compared to other microorganisms in the literature. Transcriptomics and proteomics analysis showed that several enzymes involved in 1,2,4-TMB degradation were significantly upregulated: hydroxylase (JmjC domain), iron/manganese-superoxide dismutase, and alcohol dehydrogenase etc. A new insight of biodegradation mechanism was elucidated that 1,2,4-TMB was initially oxidized by hydroxylase (JmjC domain) to 2,3,6-trimethylphenol, a process accelerated by the overexpression of iron/manganese-superoxide dismutase. Subsequently, 2,3,6-trimethylphenol was further degraded into 5-methylhexanoic acid via alcohol dehydrogenase and other short-chain dehydrogenases. Notably, the degradation products were less toxic than the parent compound (1,2,4-TMB). This study highlights the potential of Rhodomonas sp. JZB-2 for bioremediation of seawater contaminated with 1,2,4-TMB.
Collapse
Affiliation(s)
- Haiping Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Yu Leng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
2
|
Lee Chang KJ, Gorron Gomez E, Ebrahimie E, Dehcheshmeh MM, Frampton DMF, Zhou XR. Transcriptomic Signature of Lipid Production in Australian Aurantiochytrium sp. TC20. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:43. [PMID: 39912956 PMCID: PMC11802676 DOI: 10.1007/s10126-025-10415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025]
Abstract
Aurantiochytrium not only excels in producing long-chain polyunsaturated fatty acids such as docosahexaenoic acid for humans, but it is also a source of essential fatty acids with minimal impacts on wild fisheries and is vital in the transfer of atmospheric carbon to oceanic carbon sinks and cycles. This study aims to unveil the systems biology of lipid production in the Australian Aurantiochytrium sp. TC20 by comparing the transcriptomic profiles under optimal growth conditions with increased fatty acid production from the early (Day 1) to late exponential growth phase (Day 3). Particular attention was paid to 227 manually annotated genes involved in lipid metabolism, such as FAS (fatty acid synthetase) and subunits of polyunsaturated fatty acids (PUFA) synthase. PCA analysis showed that differentially expressed genes, related to lipid metabolism, efficiently discriminated Day 3 samples from Day 1, highlighting the key robustness of the developed lipid-biosynthesis signature. Highly significant (pFDR < 0.01) upregulation of polyunsaturated fatty acid synthase subunit B (PFAB) involved in fatty acid synthesis, lipid droplet protein (TLDP) involved in TAG-synthesis, and phosphoglycerate mutase (PGAM-2) involved in glycolysis and gluconeogenesis were observed. KEGG enrichment analysis highlighted significant enrichment of the biosynthesis of unsaturated fatty acids (pFDR < 0.01) and carbon metabolism pathways (pFDR < 0.01). This study provides a comprehensive overview of the transcriptional landscape of Australian Aurantiochytrium sp. TC20 in the process of fatty acid production.
Collapse
Affiliation(s)
| | | | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA, 5371, Australia
- School of Biosciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Manijeh Mohammadi Dehcheshmeh
- Genomics Research Platform, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | | | - Xue-Rong Zhou
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia
| |
Collapse
|
3
|
Wood PL, Kunigelis SC. Copepod Lipidomics: Fatty Acid Substituents of Structural Lipids in Labidocerca aestiva, a Dominant Species in the Food Chain of the Apalachicola Estuary of the Gulf of Mexico. Life (Basel) 2024; 15:43. [PMID: 39859983 PMCID: PMC11766502 DOI: 10.3390/life15010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Zooplanktonic copepods represent a major biological mass in the marine food chain that can be affected by climate change. Monitoring the health of this critical biomass is essential for increasing our understanding of the impact of environmental changes on marine environments. Since the lipidomes of marine organisms are known to adapt to alterations in pH, temperature, and availability of metabolic precursors, lipidomics is one technology that can be used for monitoring copepod adaptations. Among the key lipid parameters that can be monitored are the fatty acid substituents of glycerolipids and glycerophospholipids. We utilized high-resolution tandem mass spectrometry (≤2 ppm mass error) to characterize the fatty acid substituents of triacylglycerols, glycerophosphocholines, ceramides, and sphingomyelins of Labidocerca aestiva. This included monitoring for furan fatty acid substituents, a family of fatty acids unique to marine organisms. These data will contribute to establishing a lipid database of the fatty acid substituents of essential structural lipids. The key findings were that polyunsaturated fatty acids (PUFAs) were only major substituents in glycerophosphocholines with 36 to 44 carbons. Triacylglycerols, ceramides, and sphingomyelins contained minimal PUFA substituents. Furan fatty acids were limited to mono- and di-acylglycerols. In summary, we have built a baseline database of the fatty acid substituents of key structural lipids in Labidocerca aestiva. With this database, we will next evaluate potential seasonal changes in these lipid substituents and long-term effects of climate change.
Collapse
Affiliation(s)
- Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN 37752, USA
| | - Stan C. Kunigelis
- Imaging and Analysis Center, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN 37752, USA;
| |
Collapse
|
4
|
Huelsmann M, Schubert OT, Ackermann M. A framework for understanding collective microbiome metabolism. Nat Microbiol 2024; 9:3097-3109. [PMID: 39604625 DOI: 10.1038/s41564-024-01850-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/10/2024] [Indexed: 11/29/2024]
Abstract
Microbiome metabolism underlies numerous vital ecosystem functions. Individual microbiome members often perform partial catabolism of substrates or do not express all of the metabolic functions required for growth. Microbiome members can complement each other by exchanging metabolic intermediates and cellular building blocks to achieve a collective metabolism. We currently lack a mechanistic framework to explain why microbiome members adopt partial metabolism and how metabolic functions are distributed among them. Here we argue that natural selection for proteome efficiency-that is, performing essential metabolic fluxes at a minimal protein investment-explains partial metabolism of microbiome members, which underpins the collective metabolism of microbiomes. Using the carbon cycle as an example, we discuss motifs of collective metabolism, the conditions under which these motifs increase the proteome efficiency of individuals and the metabolic interactions they result in. In summary, we propose a mechanistic framework for how collective metabolic functions emerge from selection on individuals.
Collapse
Affiliation(s)
- Matthias Huelsmann
- Department of Environmental Systems Science, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland.
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland.
- PharmaBiome AG, Schlieren, Switzerland.
| | - Olga T Schubert
- Department of Environmental Systems Science, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Martin Ackermann
- Department of Environmental Systems Science, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
5
|
Lee TCH, Lam W, Tam NFY, Xu SJL, Lee CL, Lee FWF. Proteomic insights of interaction between ichthyotoxic dinoflagellate Karenia mikimotoi and algicidal bacteria Maribacter dokdonensis. MARINE POLLUTION BULLETIN 2024; 209:117227. [PMID: 39500172 DOI: 10.1016/j.marpolbul.2024.117227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/12/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024]
Abstract
Omics technology has been employed in recent research on algicidal bacteria, but previous transcriptomic studies mainly focused on bacteria or algae, neglecting their interaction. This study explores interactions between algicidal bacterium Maribacter dokdonesis P4 and target alga Karenia mikimotoi KMHK using proteomics. Proteomics responses of KMHK after co-culture with P4 in separate compartments of the transwell for 8 and 24 h were evaluated using tandem mass tags (TMT) proteomics, and changes of P4 proteomics were also assessed. Results indicated that essential metabolic processes of KMHK were disrupted after 8 h co-culture with P4. Disturbance of oxidative phosphorylation in mitochondria and electron transport chain in chloroplast raised oxidative stress, leading to endoplasmic reticulum stress and cytoskeleton collapse, and eventual death of KMHK cells. Iron complex outer-membrane receptor protein in P4 was upregulated after co-culture with KMHK for 24 h, suggesting P4 might secrete ferric siderophores, a potential algicidal substance.
Collapse
Affiliation(s)
| | - Winnie Lam
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong.
| | - Nora Fung-Yee Tam
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | | | - Chak-Lam Lee
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong.
| | - Fred Wang-Fat Lee
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| |
Collapse
|
6
|
Ugya AY, Hasan DB, Ari HA, Sheng Y, Chen H, Wang Q. Antibiotic synergistic effect surge bioenergy potential and pathogen resistance of Chlorella variabilis biofilm. ENVIRONMENTAL RESEARCH 2024; 259:119521. [PMID: 38960350 DOI: 10.1016/j.envres.2024.119521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Tetracycline (TC) and ciprofloxacin (CF) induce a synergistic effect that alters the biochemical composition, leading to a decrease in the growth and photosynthetic efficiency of microalgae. But the current study provides a novel insight into stress-inducing techniques that trigger a change in macromolecules, leading to an increase in the bioenergy potential and pathogen resistance of Chlorella variabilis biofilm. The study revealed that in a closed system, a light intensity of 167 μmol/m2/s causes 93.5% degradation of TC and 16% degradation of CF after 7 days of exposure, hence availing the products for utilization by C. variabilis biofilm. The resistance to pathogens invasion was linked to 85% and 40% increase in the expression level of photosystem II oxygen-evolving enhancer protein 3 (PsbQ), and mitogen activated kinase (MAK) respectively. The results also indicate that a surge in light intensity triggers 49% increase in the expression level of lysophosphatidylcholine (LPC) (18:2), which is an important lipidomics that can easily undergo transesterification into bioenergy. The thermogravimetric result indicates that the biomass sample of C. variabilis biofilm cultivated under light intensity of 167 μmol/m2/s produces a higher residual mass of 45.5% and 57.5 under air and inert conditions, respectively. The Fourier transform infrared (FTIR) indicates a slight shift in the major functional groups, while the energy-dispersive X-ray spectroscopy (SEM-EDS) and X-ray fluorescence (XRF) indicate clear differences in the morphology and elemental composition of the biofilm biomass in support of the increase bioenergy potential of C. variabilis biofilm. The current study provides a vital understanding of a innovative method of cultivation of C. variabilis biofilm, which is resistant to pathogens and controls the balance between fatty acid and TAG synthesis leading to surge in bioenergy potential and environmental sustainability.
Collapse
Affiliation(s)
- Adamu Yunusa Ugya
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, China; Department of Environmental Management, Kaduna State University, Kaduna State, Nigeria
| | - Diya'uddeen Basheer Hasan
- Centre for Energy Research and Training (CERT), Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | | | - Yangyang Sheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, China.
| |
Collapse
|
7
|
Wan H, Wang K, Luo X, Zhang C, Deng K, Lin S, Xie J, Luo Q, Lei X, Ding L. Algal-mediated nitrogen removal and sustainability of algal-derived dissolved organic matter supporting denitrification. BIORESOURCE TECHNOLOGY 2024; 407:131083. [PMID: 38972430 DOI: 10.1016/j.biortech.2024.131083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Algae-mediated nitrogen removal from low carbon vs. nitrogen (C/N) wastewater techniques has garnered significant attention due to its superior autotrophic assimilation properties. This study investigated the ammonium-N removal potential of four algae species from low C/N synthetic wastewater. Results showed that 95 % and 99 % of ammonium-N are eliminated at initial concentrations of 11.05 ± 0.98 mg/L and 42.51 ± 2.20 mg/L with little nitrate and nitrite accumulation. The compositions of secreted algal-derived dissolved organic matter varied as C/N decreased and showed better bioavailability for nitrate-N removal by Pseudomonas sp. SZF15 without pre-oxidation, achieving an efficiency of 99 %. High-throughput sequencing revealed that the aquatic microbial communities, dominated by Scenedesmus, Kalenjinia, and Micractinium, remain relatively stable across different C/N, aligning with the underlying metabolic pathways. These findings may provide valuable insights into the sustainable elimination of multiple nitrogen contaminants from low C/N wastewater.
Collapse
Affiliation(s)
- Huiqin Wan
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Kangpeng Wang
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xianxin Luo
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Chao Zhang
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Kai Deng
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Shusen Lin
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jingming Xie
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Qi Luo
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xu Lei
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Lin Ding
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|
8
|
Chen Z, Xiong JQ. Recovery mechanism of a microalgal species, Chlorella sp. from toxicity of doxylamine: Physiological and biochemical changes, and transcriptomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134752. [PMID: 38815390 DOI: 10.1016/j.jhazmat.2024.134752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Ubiquitous distribution of pharmaceutical contaminants in environment has caused unexpected adverse effects on ecological organisms; however, how microorganisms recover from their toxicities remains largely unknown. In this study, we comprehensively investigated the effect of a representative pollutant, doxylamine (DOX) on a freshwater microalgal species, Chlorella sp. by analyzing the growth patterns, biochemical changes (total chlorophyll, carotenoid, carbohydrate, protein, and antioxidant enzymes), and transcriptomics. We found toxicity of DOX on Chlorella sp. was mainly caused by disrupting synthesis of ribosomes in nucleolus, and r/t RNA binding and processing. Intriguingly, additional bicarbonate enhanced the toxicity of DOX with decreasing the half-maximum effective concentrations from 15.34 mg L-1 to 4.63 mg L-1, which can be caused by inhibiting fatty acid oxidation and amino acid metabolism. Microalgal cells can recover from this stress via upregulating antioxidant enzymatic activities to neutralize oxidative stresses, and photosynthetic pathways and nitrogen metabolism to supply more energies and cellular signaling molecules. This study extended our understanding on how microalgae can recover from chemical toxicity, and also emphasized the effect of environmental factors on the toxicity of these contaminants on aquatic microorganisms.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Haide, Ocean University of China, Laoshan Campus, Qingdao, Shandong 266003, China
| | - Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Yushan Road 5, Qingdao, Shandong 266003, China.
| |
Collapse
|
9
|
Pérez-Pérez ME, Mallén-Ponce MJ, Odriozola-Gil Y, Rubio A, Salas JJ, Martínez-Force E, Pérez-Pulido AJ, Crespo JL. Lipid turnover through lipophagy in the newly identified extremophilic green microalga Chlamydomonas urium. THE NEW PHYTOLOGIST 2024; 243:284-298. [PMID: 38730535 DOI: 10.1111/nph.19811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
Autophagy is a central degradative pathway highly conserved among eukaryotes, including microalgae, which remains unexplored in extremophilic organisms. In this study, we described and characterized autophagy in the newly identified extremophilic green microalga Chlamydomonas urium, which was isolated from an acidic environment. The nuclear genome of C. urium was sequenced, assembled and annotated in order to identify autophagy-related genes. Transmission electron microscopy, immunoblotting, metabolomic and photosynthetic analyses were performed to investigate autophagy in this extremophilic microalga. The analysis of the C. urium genome revealed the conservation of core autophagy-related genes. We investigated the role of autophagy in C. urium by blocking autophagic flux with the vacuolar ATPase inhibitor concanamycin A. Our results indicated that inhibition of autophagic flux in this microalga resulted in a pronounced accumulation of triacylglycerols and lipid droplets (LDs). Metabolomic and photosynthetic analyses indicated that C. urium cells with impaired vacuolar function maintained an active metabolism. Such effects were not observed in the neutrophilic microalga Chlamydomonas reinhardtii. Inhibition of autophagic flux in C. urium uncovered an active recycling of LDs through lipophagy, a selective autophagy pathway for lipid turnover. This study provided the metabolic basis by which extremophilic algae are able to catabolize lipids in the vacuole.
Collapse
Affiliation(s)
- María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-Universidad de Sevilla), 41092, Sevilla, Spain
| | - Manuel J Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-Universidad de Sevilla), 41092, Sevilla, Spain
| | - Yosu Odriozola-Gil
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-Universidad de Sevilla), 41092, Sevilla, Spain
| | - Alejandro Rubio
- Centro Andaluz de Biología del Desarrollo (CABD, UPO-CSIC-JA), Faculty of Experimental Sciences (Genetics Department), University Pablo de Olavide, 41013, Sevilla, Spain
| | - Joaquín J Salas
- Instituto de la Grasa (CSIC), Ctra Utrera Km1, Ed. 46, 41013, Sevilla, Spain
| | | | - Antonio J Pérez-Pulido
- Centro Andaluz de Biología del Desarrollo (CABD, UPO-CSIC-JA), Faculty of Experimental Sciences (Genetics Department), University Pablo de Olavide, 41013, Sevilla, Spain
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-Universidad de Sevilla), 41092, Sevilla, Spain
| |
Collapse
|
10
|
Wei Q, Yuan T, Li Z, Zhao D, Wang C, Yang G, Tang W, Ma X. Investigating cultivation strategies for enhancing protein content in Auxenochlorella pyrenoidosa FACHB-5. BIORESOURCE TECHNOLOGY 2024; 402:130828. [PMID: 38734260 DOI: 10.1016/j.biortech.2024.130828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
This study investigated the influence of yeast extract addition, carbon source, and photoperiod on the growth dynamics of Auxenochlorella pyrenoidosa FACHB-5. Employing response surface methodology, the culture strategy was optimized, resulting in the following optimal conditions: yeast extract addition at 0.75 g L-1, glucose concentration of 0.83 g L-1, and a photoperiod set at Light: Dark = 18 h: 6 h. Under these conditions, the biomass reached 1.76 g L-1 with a protein content of 750.00 g L-1, containing 40 % of essential amino acids, representing a 1.52-fold increase. Proteomic analysis revealed that the targeted cultivation strategy up-regulated genes involved in microalgal protein synthesis. The combined effect of yeast extract and glucose enhanced both the glutamine synthetase-glutamate synthetase mechanism and the free amino acid content.
Collapse
Affiliation(s)
- Qun Wei
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi Nanning 530004, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment
| | - Ting Yuan
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Zhuang Li
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Dan Zhao
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Canmei Wang
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Gairen Yang
- Forestry College of Guangxi University, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, No. 100 Daxue Road, Nanning 530004, PR China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi Nanning 530004, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment.
| |
Collapse
|
11
|
Rawindran H, Alam MM, Sahrin NT, Raksasat R, Leong WH, Liew CS, Supramaniam U, Lim JW, Usman A, Tong WY, Suresh S, Khoo KS. Recent advancements in harnessing biodiesel from microalgae through attached growth systems. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2024; 58:103205. [DOI: 10.1016/j.bcab.2024.103205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
12
|
Mora-Godínez S, Senés-Guerrero C, Pacheco A. De novo transcriptome and lipidome analysis of Desmodesmus abundans under model flue gas reveals adaptive changes after ten years of acclimation to high CO2. PLoS One 2024; 19:e0299780. [PMID: 38758755 PMCID: PMC11101044 DOI: 10.1371/journal.pone.0299780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 02/14/2024] [Indexed: 05/19/2024] Open
Abstract
Microalgae's ability to mitigate flue gas is an attractive technology that can valorize gas components through biomass conversion. However, tolerance and growth must be ideal; therefore, acclimation strategies are suggested. Here, we compared the transcriptome and lipidome of Desmodesmus abundans strains acclimated to high CO2 (HCA) and low CO2 (LCA) under continuous supply of model flue gas (MFG) and incomplete culture medium (BG11-N-S). Initial growth and nitrogen consumption from MFG were superior in strain HCA, reaching maximum productivity a day before strain LCA. However, similar productivities were attained at the end of the run, probably because maximum photobioreactor capacity was reached. RNA-seq analysis during exponential growth resulted in 16,435 up-regulated and 4,219 down-regulated contigs in strain HCA compared to LCA. Most differentially expressed genes (DEGs) were related to nucleotides, amino acids, C fixation, central carbon metabolism, and proton pumps. In all pathways, a higher number of up-regulated contigs with a greater magnitude of change were observed in strain HCA. Also, cellular component GO terms of chloroplast and photosystems, N transporters, and secondary metabolic pathways of interest, such as starch and triacylglycerols (TG), exhibited this pattern. RT-qPCR confirmed N transporters expression. Lipidome analysis showed increased glycerophospholipids in strain HCA, while LCA exhibited glycerolipids. Cell structure and biomass composition also revealed strains differences. HCA possessed a thicker cell wall and presented a higher content of pigments, while LCA accumulated starch and lipids, validating transcriptome and lipidome data. Overall, results showed significant differences between strains, where characteristic features of adaptation and tolerance to high CO2 might be related to the capacity to maintain a higher flux of internal C, regulate intracellular acidification, active N transporters, and synthesis of essential macromolecules for photosynthetic growth.
Collapse
Affiliation(s)
- Shirley Mora-Godínez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Monterrey, Nuevo Leon, Mexico
| | | | - Adriana Pacheco
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Monterrey, Nuevo Leon, Mexico
| |
Collapse
|
13
|
Zhao T, Ma A, Huang Z, Liu Z, Sun Z, Zhu L, Chang H. pparβ regulates lipid catabolism by mediating acox and cpt-1 genes in Scophthalmus maximus under heat stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:295-305. [PMID: 38386263 DOI: 10.1007/s10695-024-01313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/28/2024] [Indexed: 02/23/2024]
Abstract
Peroxisome proliferator-activated receptor β (pparβ) is a key gene-regulating lipid metabolism pathway, but its function in turbot remains unclear. In this study, the CDS of pparβ was cloned from kidney for the first time. The CDS sequence length was 1533 bp encoding 510 amino acids. Structural analysis showed that the pparβ protein contained a C4 zinc finger and HOLI domain, suggesting that the pparβ gene of turbot has high homology with the PPAR gene of other species. The high expression patterns of pparβ, acox, and cpt-1 at high temperatures, as shown through qPCR, indicated that high temperatures activated the transcriptional activity of pparβ and increased the activity of the acox and cpt-1 genes. The expression of acox and cpt-1 was significantly inhibited when pparβ was downregulated using RNAi technology and inhibitor treatments, suggesting that pparβ positively regulated acox and cpt-1 expression at high temperatures and, thus, modulates lipid catabolism activity. These results demonstrate that pparβ is involved in the regulation of lipid metabolism at high temperatures and expand a new perspective for studying the regulation of lipid metabolism in stress environments of teleost.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Fisheries, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Aijun Ma
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China.
| | - Zhihui Huang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
| | - Zhifeng Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
| | - Zhibin Sun
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
| | - Liguang Zhu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
| | - Haowen Chang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
| |
Collapse
|
14
|
Wang R, Li J, Zhang F, Miao X. Non-Tandem CCCH-Type Zinc-Finger Protein CpZF_CCCH1 Improves Fatty Acid Desaturation and Stress Tolerance in Chlamydomonas reinhardtii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37910392 DOI: 10.1021/acs.jafc.3c05511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The properties and nutritional value of microalgal bioproducts depend significantly on fatty acid desaturation, which is generally modulated by manipulating the culture conditions or associated gene expressions. Here, we investigated the role of CpZF_CCCH1, a non-tandem CCCH-type zinc-finger (non-TZF) protein, in elevating polyunsaturated fatty acid (PUFA) content (11.00-16.36%) in Chlamydomonas reinhardtii. Through lipidomic and flow cytometry analyses, we observed reduced triacylglycerol accumulation (7.01-21.15%) and elevated levels of membrane lipids containing PUFAs (7.81-46.18%) in C. reinhardtii overexpressing CpZF_CCCH1. Additionally, overexpression of nucleus-located CpZF_CCCH1 downregulated genes associated with triacylglycerol assembly and lipid turnover from 2.00- to 2.90-fold, likely by binding to GCN4 motif and promoter of 3-phosphate-glycerol acyltransferase. Furthermore, overexpression of CpZF_CCCH1 alleviated reactive oxygen species levels by 59.28-73.26% and enhanced stress tolerance under adverse conditions. These findings expanded the roles of non-TZF proteins in lipid metabolism, opening new avenues for metabolic engineering to enhance the nutritional value and stress tolerance of microalgae and agricultural crops.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junhao Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Pan M, Wang Y, Krömer JO, Zhu X, Lin MKTH, Angelidaki I. A Coculture of Photoautotrophs and Hydrolytic Heterotrophs Enables Efficient Upcycling of Starch from Wastewater toward Biomass-Derived Products: Synergistic Interactions Impacting Metabolism of the Consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15523-15532. [PMID: 37792456 DOI: 10.1021/acs.est.3c05321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Even with particular interest in sustainable development, due to the limited types of bioavailable carbon sources that could support heterotrophic/mixotrophic growth, microalgae-derived products still suffer from inconsistent yield and high costs. This study demonstrates a successful cocultivation of the photoautotroph Chlorella vulgaris with a hydrolytic-enzyme-abundant heterotroph, Saccharomycopsis fibuligera, enabling efficient starch upcycling from water/wastewater toward enhancing microalgae-dominant biomass and lipid production. The enzymatic activities of S. fibuligera contributed to the hydrolysis of starch into glucose, generating a 7-fold higher biomass through mixotrophic/heterotrophic growth of C. vulgaris. Further, scanning transmission electron microscopy (STEM) and quantitative analysis suggested a significantly induced accumulation of lipids in C. vulgaris. Results of meta-transcriptomics revealed the critical regulatory role of illumination in interaction shifting. Gene expression for glycolysis and lipid biosynthesis of C. vulgaris were highly activated during dark periods. Meanwhile, during illumination periods, genes coding for glucoamylase and the sulfur-related activities in S. fibuligera were significantly upregulated, leading to induced starch hydrolysis and potential increased competition for sulfur utilization, respectively. This study indicates that hydrolytic organisms could collaborate to make starch bioavailable for nonhydrolytic microalgae, thus broadening the substrate spectrum and making starch a novel biotechnological feedstock for microalgae-derived products, e.g., biofuels or single-cell protein.
Collapse
Affiliation(s)
- Minmin Pan
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, UFZ, Leipzig 04318, Germany
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby DK-2899, Denmark
| | - Yiru Wang
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Jens O Krömer
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, UFZ, Leipzig 04318, Germany
| | - Xinyu Zhu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby DK-2899, Denmark
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Marie Karen Tracy Hong Lin
- National Center for Nanofabrication and Characterization, Technical University of Denmark, Lyngby DK-2899, Denmark
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby DK-2899, Denmark
| |
Collapse
|
16
|
Murison V, Hérault J, Côme M, Guinio S, Lebon A, Chamot C, Bénard M, Galas L, Schoefs B, Marchand J, Bardor M, Ulmann L. Comparison of two Phaeodactylum tricornutum ecotypes under nitrogen starvation and resupply reveals distinct lipid accumulation strategies but a common degradation process. FRONTIERS IN PLANT SCIENCE 2023; 14:1257500. [PMID: 37810403 PMCID: PMC10556672 DOI: 10.3389/fpls.2023.1257500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Introduction Phaeodactylum tricornutum is a model species frequently used to study lipid metabolism in diatoms. When exposed to a nutrient limitation or starvation, diatoms are known to accumulate neutral lipids in cytoplasmic lipid droplets (LDs). Those lipids are produced partly de novo and partly from the recycle of plastid membrane lipids. Under a nitrogen resupply, the accumulated lipids are catabolized, a phenomenon about which only a few data are available. Various strains of P. tricornutum have been isolated around the world that may differ in lipid accumulation patterns. Methods To get further information on this topic, two genetically distant ecotypes of P. tricornutum (Pt1 and Pt4) have been cultivated under nitrogen deprivation during 11 days followed by a resupply period of 3 days. The importance of cytoplasmic LDs relative to the plastid was assessed by a combination of confocal laser scanning microscopy and cell volume estimation using bright field microscopy pictures. Results and discussion We observed that in addition to a basal population of small LDs (0.005 μm3 to 0.7 μm3) present in both strains all along the experiment, Pt4 cells immediately produced two large LDs (up to 12 μm3 after 11 days) while Pt1 cells progressively produced a higher number of smaller LDs (up to 7 μm3 after 11 days). In this work we showed that, in addition to intracellular available space, lipid accumulation may be limited by the pre-starvation size of the plastid as a source of membrane lipids to be recycled. After resupplying nitrogen and for both ecotypes, a fragmentation of the largest LDs was observed as well as a possible migration of LDs to the vacuoles that would suggest an autophagic degradation. Altogether, our results deepen the understanding of LDs dynamics and open research avenues for a better knowledge of lipid degradation in diatoms.
Collapse
Affiliation(s)
- Victor Murison
- Biology of Organisms, Stress, Health and Environment, IUT Département Génie Biologique, Le Mans Université, IUML-FR 3473 CNRS, Laval, France
| | - Josiane Hérault
- Biology of Organisms, Stress, Health and Environment, IUT Département Génie Biologique, Le Mans Université, IUML-FR 3473 CNRS, Laval, France
| | - Martine Côme
- Biology of Organisms, Stress, Health and Environment, IUT Département Génie Biologique, Le Mans Université, IUML-FR 3473 CNRS, Laval, France
| | - Sabrina Guinio
- Biology of Organisms, Stress, Health and Environment, IUT Département Génie Biologique, Le Mans Université, IUML-FR 3473 CNRS, Laval, France
| | - Alexis Lebon
- Université de Rouen Normandie, INSERM, CNRS, HeRacLeS US51 UAR2026, PRIMACEN, Rouen, France
| | - Christophe Chamot
- Université de Rouen Normandie, INSERM, CNRS, HeRacLeS US51 UAR2026, PRIMACEN, Rouen, France
| | - Magalie Bénard
- Université de Rouen Normandie, INSERM, CNRS, HeRacLeS US51 UAR2026, PRIMACEN, Rouen, France
| | - Ludovic Galas
- Université de Rouen Normandie, INSERM, CNRS, HeRacLeS US51 UAR2026, PRIMACEN, Rouen, France
| | - Benoît Schoefs
- Biology of Organisms, Stress, Health and Environment, UFR Sciences et Techniques, Le Mans Université, IUML-FR 3473 CNRS, Le Mans, France
| | - Justine Marchand
- Biology of Organisms, Stress, Health and Environment, UFR Sciences et Techniques, Le Mans Université, IUML-FR 3473 CNRS, Le Mans, France
| | - Muriel Bardor
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen, France
| | - Lionel Ulmann
- Biology of Organisms, Stress, Health and Environment, IUT Département Génie Biologique, Le Mans Université, IUML-FR 3473 CNRS, Laval, France
| |
Collapse
|
17
|
Bouchnak I, Coulon D, Salis V, D’Andréa S, Bréhélin C. Lipid droplets are versatile organelles involved in plant development and plant response to environmental changes. FRONTIERS IN PLANT SCIENCE 2023; 14:1193905. [PMID: 37426978 PMCID: PMC10327486 DOI: 10.3389/fpls.2023.1193905] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Since decades plant lipid droplets (LDs) are described as storage organelles accumulated in seeds to provide energy for seedling growth after germination. Indeed, LDs are the site of accumulation for neutral lipids, predominantly triacylglycerols (TAGs), one of the most energy-dense molecules, and sterol esters. Such organelles are present in the whole plant kingdom, from microalgae to perennial trees, and can probably be found in all plant tissues. Several studies over the past decade have revealed that LDs are not merely simple energy storage compartments, but also dynamic structures involved in diverse cellular processes like membrane remodeling, regulation of energy homeostasis and stress responses. In this review, we aim to highlight the functions of LDs in plant development and response to environmental changes. In particular, we tackle the fate and roles of LDs during the plant post-stress recovery phase.
Collapse
Affiliation(s)
- Imen Bouchnak
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| | - Denis Coulon
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| | - Vincent Salis
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sabine D’Andréa
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Claire Bréhélin
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| |
Collapse
|
18
|
Shu Q, Pan Y, Hu H. CGI-58 Protein Acts as a Positive Regulator of Triacylglycerol Accumulation in Phaeodactylum tricornutum. J Microbiol Biotechnol 2023; 33:242-250. [PMID: 36524337 PMCID: PMC9998212 DOI: 10.4014/jmb.2209.09029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Comparative gene identification-58 (CGI-58) is an activating protein of triacylglycerol (TAG) lipase. It has a variety of catalytic activities whereby it may play different roles in diverse organisms. In this study, a homolog of CGI-58 in Phaeodactylum tricornutum (PtCGI-58) was identified. PtCGI-58 was localized in mitochondria by GFP fusion protein analysis, which is different from the reported subcellular localization of CGI-58 in animals and plants. Respectively, PtCGI-58 overexpression resulted in increased neutral lipid content and TAG accumulation by 42-46% and 21-32%. Likewise, it also increased the relative content of eicosapentaenoic acid (EPA), and in particular, the EPA content in TAGs almost doubled. Transcript levels of genes involved in de novo fatty acid synthesis and mitochondrial β-oxidation were significantly upregulated in PtCGI-58 overexpression strains compared with wild-type cells. Our findings suggest that PtCGI-58 may mediate the breakdown of lipids in mitochondria and the recycling of acyl chains derived from mitochondrial β-oxidation into TAG biosynthesis. Moreover, this study potentially illuminates new functions for CGI-58 in lipid homeostasis and provides a strategy to enrich EPA in algal TAGs.
Collapse
Affiliation(s)
- Qin Shu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yufang Pan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| |
Collapse
|
19
|
Murison V, Hérault J, Schoefs B, Marchand J, Ulmann L. Bioinformatics-Based Screening Approach for the Identification and Characterization of Lipolytic Enzymes from the Marine Diatom Phaeodactylum tricornutum. Mar Drugs 2023; 21:md21020125. [PMID: 36827166 PMCID: PMC9964374 DOI: 10.3390/md21020125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Oleaginous diatoms accumulate lipids of biotechnological interest when exposed to nutrient stress conditions such as nitrogen starvation. While accumulation mechanisms are well-known and have been engineered to improve lipid production, degradation mechanisms remain poorly investigated in diatoms. Identifying lipid-degrading enzymes is the initial step to understanding the catabolic processes. In this study, an in silico screening of the genome of Phaeodactylum tricornutum led to the identification of 57 putative triacylglycerol lipases (EC 3.1.1.3) grouped in 4 families. Further analysis revealed the presence of conserved domains and catalytic residues of lipases. Physico-chemical characteristics and subcellular localization predictions highlighted that a majority of these putative proteins are hydrophilic and cytosolic, suggesting they could be recruited to lipid droplets directly from the cytosol. Among the 57 identified putative proteins, three lipases were identified as possibly involved in lipophagy due to a potential vacuolar localization. The expression of the mRNA corresponding to the 57 proteins was then searched in 3 transcriptomic datasets obtained under nitrogen starvation. Nine genes were highly regulated and were considered as encoding enzymes with a probable important function in lipid catabolism. A tertiary structure prediction of these nine candidates yielded eight functional 3D models. Among those, two downregulated enzymes, Phatr3_J54974 and Phatr3_EG00720, were highlighted as good targets for future functional genomics and purification studies to investigate their role in lipid degradation.
Collapse
Affiliation(s)
- Victor Murison
- BiOSSE, Biology of Organisms: Stress, Health, Environment, Département Génie Biologique, Institut Universitaire de Technologie, Le Mans Université, F-53020 Laval, France
| | - Josiane Hérault
- BiOSSE, Biology of Organisms: Stress, Health, Environment, Département Génie Biologique, Institut Universitaire de Technologie, Le Mans Université, F-53020 Laval, France
| | - Benoît Schoefs
- BiOSSE, Biology of Organisms: Stress, Health, Environment, UFR Sciences et Techniques, Le Mans Université, F-72085 Le Mans, France
| | - Justine Marchand
- BiOSSE, Biology of Organisms: Stress, Health, Environment, UFR Sciences et Techniques, Le Mans Université, F-72085 Le Mans, France
| | - Lionel Ulmann
- BiOSSE, Biology of Organisms: Stress, Health, Environment, Département Génie Biologique, Institut Universitaire de Technologie, Le Mans Université, F-53020 Laval, France
- Correspondence:
| |
Collapse
|
20
|
Lu H, Liu K, Zhang H, Xie X, Ge Y, Chi Z, Xue S, Kong F, Ohama T. Enhanced triacyclglycerols and starch synthesis in Chlamydomonas stimulated by the engineered biodegradable nanoparticles. Appl Microbiol Biotechnol 2023; 107:971-983. [PMID: 36622426 DOI: 10.1007/s00253-023-12366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/17/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023]
Abstract
Microalgae are promising feedstock for renewable fuels. The accumulation of oils in microalgae can be enhanced by nanoparticle exposure. However, the nanoparticles employed in previous studies are mostly non-biodegradable, which hinders nanoparticles developing as promising approach for biofuel production. We recently reported the engineered resin nanoparticles (iBCA-NPs), which were found to be biodegradable in this study. When the cells of green microalga Chlamydomonas reinhardtii were exposed to the iBCA-NPs for 1 h, the cellular triacyclglycerols (TAG) and starch contents increased by 520% and 60% than that in the control. The TAG production improved by 1.8-fold compared to the control without compromised starch production. Additionally, the content of total fatty acids increased by 1.3-fold than that in control. Furthermore, we found that the iBCA-NPs addition resulted in increased cellular reactive oxygen species (ROS) content and upregulated the activities of antioxidant enzymes. The relative expressions of the key genes involved in TAG and starch biosynthesis were also upregulated. Overall, our results showed that short exposure of the iBCA-NPs dramatically enhances TAG and starch accumulation in Chlamydomonas, which probably resulted from prompt upregulated expression of the key genes in lipid and starch metabolic pathways that were triggered by over-accumulated ROS. This study reported a useful approach to enhance energy-rich reserve accumulation in microalgae. KEY POINTS: 1. The first attempt to increase oil and starch in microalgae by biodegradable NPs. 2. The biodegradability of iBCA-NPs by the BOD test was more than 50% after 28 days. 3. The iBCA-NPs induce more energy reserves than that of previously reported NPs.
Collapse
Affiliation(s)
- Han Lu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Keqing Liu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Hao Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Xi Xie
- Dalian Key Laboratory of Genetic Resources for Marine Shellfish, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Yunlong Ge
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Song Xue
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Fantao Kong
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Takeshi Ohama
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami-City, 782-8502, Japan
| |
Collapse
|
21
|
Co-Expression of Lipid Transporters Simultaneously Enhances Oil and Starch Accumulation in the Green Microalga Chlamydomonas reinhardtii under Nitrogen Starvation. Metabolites 2023; 13:metabo13010115. [PMID: 36677040 PMCID: PMC9866645 DOI: 10.3390/metabo13010115] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Lipid transporters synergistically contribute to oil accumulation under normal conditions in microalgae; however, their effects on lipid metabolism under stress conditions are unknown. Here, we examined the effect of the co-expression of lipid transporters, fatty acid transporters, (FAX1 and FAX2) and ABC transporter (ABCA2) on lipid metabolism and physiological changes in the green microalga Chlamydomonas under nitrogen (N) starvation. The results showed that the TAG content in FAX1-FAX2-ABCA2 over-expressor (OE) was 2.4-fold greater than in the parental line. Notably, in FAX1-FAX2-ABCA2-OE, the major membrane lipids and the starch and cellular biomass content also significantly increased compared with the control lines. Moreover, the expression levels of genes directly involved in TAG, fatty acid, and starch biosynthesis were upregulated. FAX1-FAX2-ABCA2-OE showed altered photosynthesis activity and increased ROS levels during nitrogen (N) deprivation. Our results indicated that FAX1-FAX2-ABCA2 overexpression not only enhanced cellular lipids but also improved starch and biomass contents under N starvation through modulation of lipid and starch metabolism and changes in photosynthesis activity. The strategy developed here could also be applied to other microalgae to produce FA-derived energy-rich and value-added compounds.
Collapse
|
22
|
Sahoo S, Dehury B, Narang PK, Raina V, Misra N, Suar M. Comprehensive sequence and structure analysis of algal lipid catabolic enzyme Triacylglycerol lipase: an in silico study to vitalize the development of optimum engineered strains with high lipid productivity. J Biomol Struct Dyn 2022; 40:11989-12007. [PMID: 34415234 DOI: 10.1080/07391102.2021.1967194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microalgae as an alternative renewable resource for biofuel production have captured much significance. Nonetheless, its economic viability is a field of major concern for researchers. Unraveling the lipid catabolic pathway and gaining insights into the sequence-structural features of its primary functioning enzyme, Triacylglycerol lipase, will impart valuable information to target microalgae for augmented lipid content. In the present study, a genome-wide comparative study on putative Triacylglycerol lipase (TAGL) enzyme from algal species belonging to varied phylogenetic lineages was performed. The comprehensive sequence analysis revealed that TAGL comprises of three distinct conserved domains, such as, Patatin, Class III Lipase, and Abhydro_lipase, and also confirmed the ubiquitous presence of GXSXG motif in the sequences analyzed. In the absence of a crystal structure of algal TAGL till date, we developed the first 3D model of patatin domain of TAGL from an oleaginous microalga, Phaedactylum tricornutum, employing homology modeling, docking and molecular dynamic simulations methods. The domain-substrate complex having the low-ranking docking score revealed the binding of palmitic acid to the TAGL patatin domain surface with strong hydrogen bond interactions. The simulation results implied that the substrate-complexed patatin domain and the free enzyme adopted a more stable conformation after 40 ns. This is the first ever attempt to provide in-silico insights into the structural and dynamical insights on catalytic mechanism of the TAGL patatin domain. Subsequently, these findings aided our understanding on their structural stability, folding mechanism and protein-substrate interactions, which could be further utilized to design site-specific mutagenic experiments for engineering microalgal strains.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Susrita Sahoo
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Budheswar Dehury
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Parminder Kaur Narang
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India.,SGTB Khalsa College, Delhi University, Delhi, India
| | - Vishakha Raina
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India.,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India.,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| |
Collapse
|
23
|
Chen Z, Qiu S, Li M, Xu S, Ge S. Effect of free ammonia shock on Chlorella sp. in wastewater: Concentration-dependent activity response and enhanced settleability. WATER RESEARCH 2022; 226:119305. [PMID: 36332297 DOI: 10.1016/j.watres.2022.119305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The unstable microbial activity and unsatisfactory settling performance impede the development and implementation of microalgal wastewater treatment, especially in high-ammonium wastewater in the presence of free ammonia (FA). The shock of FA due to the nutrient fluctuation in wastewater was demonstrated as the primary stress factor suppressing microalgal activities. Recent study has clearly revealed the inhibition mechanism of FA at a specific high level (110.97 mg/L) by inhibiting the genetic information processing, photosynthesis, and nutrient metabolism. However, the effects of various FA shock concentrations on microalgal activities and settling performance remain unknown, limiting the wastewater bioremediation efficiencies improvement and the process development. Herein, a concentration-dependent shock FA (that was employed on microalgae during their exponential growth stages) effect on microalgal growth and photosynthesis was observed. Results showed that the studied five FA shock concentrations ranging from 25 to 125 mg/L significantly inhibited biomass production by 14.7-57.0%, but sharp reductions in photosynthesis with the 36.0-49.0% decreased Fv/Fm values were only observed when FA concentration was above 75.0 mg/L. On the other hand, FA shock enhanced microalgal settling efficiency by 12.8-fold, which was believed to be due to the stimulated intra- and extracellular protein contents and thereby the enhanced extracellular polymer substances (EPS) secretion. Specifically, FA shock induced 40.2 ± 2.3% higher cellular protein content at the cost of the decreased carbohydrates (22.6 ± 1.3%) and fatty acid (39.0 ± 0.8%) contents, further improving the protein secretion by 1.21-fold and the EPS production by 40.2 ± 2.3%. These FA shock-induced variations in intra- and extracellular biomolecules were supported by the up-regulated protein processing and export at the assistance of excessive energy generated from fatty acid degradation and carbohydrates consumption. In addition, FA shock significantly decreased the biomass nutritional value as indicated by the 1.86-fold lower essential amino acid score and nearly 50% reduced essential to non-essential amino acids ratio, while slightly decreased the biodiesel quality. This study is expected to enrich the knowledge of microalgal activities and settling performance in response to fluctuant ammonium concentrations in wastewater and to promote the development of microalgal wastewater treatment.
Collapse
Affiliation(s)
- Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Shiling Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
24
|
Wang R, Miao X. Lipid turnover and SQUAMOSA promoter-binding proteins mediate variation in fatty acid desaturation under early nitrogen deprivation revealed by lipidomic and transcriptomic analyses in Chlorella pyrenoidosa. FRONTIERS IN PLANT SCIENCE 2022; 13:987354. [PMID: 36247620 PMCID: PMC9558234 DOI: 10.3389/fpls.2022.987354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen deprivation induces variations in fatty acid desaturation in microalgae, which determines the performance of biodiesel and the nutritional value of bioproducts. However, the detailed scenario and the underlying regulatory mechanism remain unclear. In this study, we attempt to outline these scenario and mechanisms by performing biochemical, lipidomic, and transcriptomic analyses in Chlorella pyrenoidosa and functional characterization of transcription factors in Yarrowia lipolytica. We found that early nitrogen deprivation dramatically reduced fatty acid desaturation without increasing lipid content. The contents of palmitic acid (16:0) and oleic acid (18:1) dramatically increased to 2.14 and 2.87 times that of nitrogen repletion on the second day, respectively. Lipidomic analysis showed the transfer of polyunsaturated fatty acids from phospholipids and glycolipids to triacylglycerols, and an increase in lipid species with 16:0 or 18:1 under nitrogen deprivation conditions. Upregulated stearoyl-ACP desaturase and oleyl-ACP thioesterase promoted the synthesis of 18:1, but restricted acetyl-CoA supply revealed that it was the intensive lipid turnover instead of an attenuated Kennedy pathway that played an important role in the variation in fatty acid composition under early nitrogen deprivation. Finally, two differentially expressed SQUAMOSA promoter-binding proteins (SBPs) were heterologously expressed in Y. lipolytica, demonstrating their role in promoting the accumulation of total fatty acid and the reduction in fatty acid desaturation. These results revealed the crucial role of lipid turnover and SBPs in determining fatty acid desaturation under early nitrogen deprivation, opening new avenues for the metabolic engineering of fatty acid desaturation in microalgae.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Teh KY, Loh SH, Aziz A, Takahashi K, Toda T, Wahid MEA, Cha TS. Transcriptome analysis of mangrove-isolated Chlorella vulgaris UMT-M1 reveals insights for vigorous growth and lipid accumulation through reduced salinity. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
26
|
Enhanced β-carotene production in Dunaliella salina under relative high flashing light. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Bender ML, Zhu XG, Falkowski P, Ma F, Griffin K. On the rate of phytoplankton respiration in the light. PLANT PHYSIOLOGY 2022; 190:267-279. [PMID: 35652738 PMCID: PMC9434318 DOI: 10.1093/plphys/kiac254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The rate of algal and cyanobacterial respiration in the light is an important ecophysiological term that remains to be completely characterized and quantified. To address this issue, we exploited process-specific decarboxylation rates from flux balance analysis and isotopically nonstationary metabolic flux analysis. Our study, based on published data, suggested that decarboxylation is about 22% of net CO2 assimilation when the tricarboxylic acid cycle is completely open (characterized by the commitment of alpha ketoglutarate to amino acid synthesis and very low rates of succinate formation). This estimate was supported by calculating the decarboxylation rates required to synthesize the major components of biomass (proteins, lipids, and carbohydrates) at their typical abundance. Of the 22 CO2 molecules produced by decarboxylation (normalized to net assimilation = 100), approximately 13 were from pyruvate and 3 were from isocitrate. The remaining six units of decarboxylation were in the amino acid synthesis pathways outside the tricarboxylic acid cycle. A small additional flux came from photorespiration, decarboxylations of six phosphogluconate in the oxidative pentose phosphate pathway, and decarboxylations in the syntheses of lower-abundance compounds, including pigments and ribonucleic acids. This general approach accounted for the high decarboxylation rates in algae and cyanobacteria compared to terrestrial plants. It prompts a simple speculation for the origin of the Kok effect and helps constrain the photoautotrophic respiration rate, in the light, in the euphotic zone of the ocean and lakes.
Collapse
Affiliation(s)
| | - Xin-Guang Zhu
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Paul Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Fangfang Ma
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Kevin Griffin
- Department of Earth and Environmental Sciences, Columbia University, Palisades, New York 10964, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York 10027, USA
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA
| |
Collapse
|
28
|
Baroukh C, Mairet F, Bernard O. The paradoxes hidden behind the Droop model highlighted by a metabolic approach. FRONTIERS IN PLANT SCIENCE 2022; 13:941230. [PMID: 36072315 PMCID: PMC9442053 DOI: 10.3389/fpls.2022.941230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
We propose metabolic models for the haptophyte microalgae Tisochrysis lutea with different possible organic carbon excretion mechanisms. These models-based on the DRUM (Dynamic Reduction of Unbalanced Metabolism) methodology-are calibrated with an experiment of nitrogen starvation under day/night cycles, and then validated with nitrogen-limited chemostat culture under continuous light. We show that models including exopolysaccharide excretion offer a better prediction capability. It also gives an alternative mechanistic interpretation to the Droop model for nitrogen limitation, which can be understood as an accumulation of carbon storage during nitrogen stress, rather than the common belief of a nitrogen pool driving growth. Excretion of organic carbon limits its accumulation, which leads to a maximal C/N ratio (corresponding to the minimum Droop N/C quota). Although others phenomena-including metabolic regulations and dissipation of energy-are possibly at stake, excretion appears as a key component in our metabolic model, that we propose to include in the Droop model.
Collapse
Affiliation(s)
- Caroline Baroukh
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | | - Olivier Bernard
- Biocore, INRIA, Université Côte d'Azur, Sophia Antipolis, France
| |
Collapse
|
29
|
Zhao GH, Hu YY, Zeng X, Zhang M, Zhou Z, Qin L, Yin FW, Zhou DY, Shahidi F. sA direct and facile simultaneous quantification of non-polar and polar lipids in different species of marine samples using normal-phase HPLC–CAD. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
30
|
Shi M, Yu L, Shi J, Liu J. A conserved MYB transcription factor is involved in regulating lipid metabolic pathways for oil biosynthesis in green algae. THE NEW PHYTOLOGIST 2022; 235:576-594. [PMID: 35342951 DOI: 10.1111/nph.18119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Green algae can accumulate high levels of triacylglycerol (TAG), yet knowledge remains fragmented on the regulation of lipid metabolic pathways by transcription factors (TFs). Here, via bioinformatics and in vitro and in vivo analyses, we revealed the roles of a myeloblastosis (MYB) TF in regulating TAG accumulation in green algae. CzMYB1, an R2R3-MYB from Chromochloris zofingiensis, was transcriptionally upregulated upon TAG-inducing conditions and correlated well with many genes involved in the de novo fatty acid synthesis, fatty acid activation and desaturation, membrane lipid turnover, and TAG assembly. Most promoters of these genes were transactivated by CzMYB1 in the yeast one-hybrid assay and contained the binding elements CNGTTA that were recognized by CzMYB1 through the electrophoretic mobility shift assay. CrMYB1, a close homologue of CzMYB1 from Chlamydomonas reinhardtii that recognized similar elements for binding, also transcriptionally correlated with many lipid metabolic genes. Insertional disruption of CrMYB1 severely suppressed the transcriptional expression of CrMYB1, as well as of key lipogenic genes, and impaired TAG level considerably under stress conditions. Our results reveal that this MYB, conserved in green algae, is involved in regulating global lipid metabolic pathways for TAG biosynthesis and accumulation.
Collapse
Affiliation(s)
- Meicheng Shi
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Lihua Yu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Jianan Shi
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Jin Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
31
|
Dao O, Kuhnert F, Weber APM, Peltier G, Li-Beisson Y. Physiological functions of malate shuttles in plants and algae. TRENDS IN PLANT SCIENCE 2022; 27:488-501. [PMID: 34848143 DOI: 10.1016/j.tplants.2021.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Subcellular compartmentalization confers evolutionary advantage to eukaryotic cells but entails the need for efficient interorganelle communication. Malate functions as redox carrier and metabolic intermediate. It can be shuttled across membranes through translocators. The interconversion of malate and oxaloacetate mediated by malate dehydrogenases requires oxidation/reduction of NAD(P)H/NAD(P)+; therefore, malate trafficking serves to transport reducing equivalents and this is termed the 'malate shuttle'. Although the term 'malate shuttle' was coined more than 50 years ago, novel functions are still emerging. This review highlights recent findings on the functions of malate shuttles in photorespiration, fatty acid β-oxidation, interorganelle signaling and its putative role in CO2-concentrating mechanisms. We compare and contrast knowledge in plants and algae, thereby providing an evolutionary perspective on redox trafficking in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Ousmane Dao
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Franziska Kuhnert
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Gilles Peltier
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France.
| |
Collapse
|
32
|
Tang CH, Shi SH, Li HH, Lin CY, Wang WH. Lipid profiling of coral symbiosomes in response to copper-induced carbon limitation: A metabolic effect of algal symbionts on the host immune status. CHEMOSPHERE 2022; 293:133673. [PMID: 35063552 DOI: 10.1016/j.chemosphere.2022.133673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Copper micropollutants are known to constrain coral's assimilation of carbonate, affecting the carbon available to algal symbionts and thus inducing a light stress. However, little is known regarding the physiological relevance of lipid metabolism in coral symbiotic algae in a carbon-limited state. Membrane lipids exhibit multiple physicochemical properties that are collectively responsible for the dynamic structure of cells depending on the physiological demands of the circumstances. To gain insight into lipid metabolism's importance in this regard, glycerophosphocholine (GPC) profiling of symbiosomes in coral (Seriatopora caliendrum) exposed to environmentally relevant copper levels (2.2-7.5 μg/L) for 4 days was performed in this study. Notably, reducing the number of 22:6-processing GPCs and increasing that of lyso-GPCs likely addressed the demands of metabolizing excess light energy, such as affecting the membrane dynamics to promote mitochondrial uncoupling. The decrease in 22:6-processing GPCs additionally protected cellular membranes from elevated oxidative stress, reducing their susceptibility to peroxidation and offsetting oxidized lipid-induced effects on membrane dynamics. The change in plasmanylcholines specifically localized within the symbiosome membrane also met the membrane requirements for responding to oxidative stress conditions. Moreover, increasing the 20:4-possessing plasmanylcholines and lysoplasmanylcholines and reducing the 22:6-possessing plasmanylcholines likely resulted in an imbalance of the immune reaction, influencing the coral-algae symbiosis given the role of such plasmanylcholines in cell signaling. In summary, carbon limitations induced by copper enrichment lead to a shift in the membrane lipid profile of coral symbiosomes, accommodating themselves to light stress conditions while compromising the symbiosis's stability.
Collapse
Affiliation(s)
- Chuan-Ho Tang
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Shu-Han Shi
- Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Hsing-Hui Li
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental Health, National Taiwan University, Taipei City, Taiwan
| | - Wei-Hsien Wang
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
33
|
Nami F, Ferraz MJ, Bakkum T, Aerts JMFG, Pandit A. Real-Time NMR Recording of Fermentation and Lipid Metabolism Processes in Live Microalgae Cells. Angew Chem Int Ed Engl 2022; 61:e202117521. [PMID: 35103372 PMCID: PMC9305762 DOI: 10.1002/anie.202117521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/10/2022]
Abstract
Non-invasive and real-time recording of processes in living cells has been limited to detection of small cellular components such as soluble proteins and metabolites. Here we report a multiphase NMR approach using magic-angle spinning NMR to synchronously follow microbial processes of fermentation, lipid metabolism and structural dynamic changes in live microalgae cells. Chlamydomonas reinhardtii green algae were highly concentrated, introducing dark fermentation and anoxia conditions. Single-pulse NMR experiments were applied to obtain temperature-dependent kinetic profiles of the formed fermentation products. Through dynamics-based spectral editing NMR, simultaneous conversion of galactolipids into TAG and free fatty acids was observed and rapid loss of rigid lipid structures. This suggests that lipolysis under dark and anoxia conditions finally results in the breakdown of cell and organelle membranes, which could be beneficial for recovery of intracellular microbial useful products.
Collapse
Affiliation(s)
- Faezeh Nami
- Dept. of Solid-State NMRLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Maria Joao Ferraz
- Dept. of Medicinal BiochemistryLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Thomas Bakkum
- Dept. of Bio Organic SynthesisLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Johannes M. F. G. Aerts
- Dept. of Medicinal BiochemistryLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Anjali Pandit
- Dept. of Solid-State NMRLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
34
|
Nami F, Ferraz MJ, Bakkum T, Aerts JMFG, Pandit A. Real‐Time NMR Recording of Fermentation and Lipid Metabolism Processes in Live Microalgae Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Faezeh Nami
- Dept. of Solid-State NMR Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Maria Joao Ferraz
- Dept. of Medicinal Biochemistry Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Thomas Bakkum
- Dept. of Bio Organic Synthesis Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Johannes M. F. G. Aerts
- Dept. of Medicinal Biochemistry Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Anjali Pandit
- Dept. of Solid-State NMR Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
35
|
Xi Y, Zhang J, Kong F, Che J, Chi Z. Kinetic modeling and process analysis for photo-production of β-carotene in Dunaliella salina. BIORESOUR BIOPROCESS 2022; 9:4. [PMID: 38647742 PMCID: PMC10991233 DOI: 10.1186/s40643-022-00495-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/08/2022] [Indexed: 12/31/2022] Open
Abstract
Dunaliella salina is a green microalga with the great potential to generate natural β-carotene. However, the corresponding mathematical models to guide optimized production of β-carotene in Dunaliella salina (D. salina) are not yet available. In this study, dynamic models were proposed to simulate effects of environmental factors on cell growth and β-carotene production in D. salina using online monitoring system. Moreover, the identification model of the parameter variables was established, and an adaptive particle swarm optimization algorithm based on parameter sensitivity analysis was constructed to solve the premature problem of particle swarm algorithm. The proposed kinetic model is characterized by high accuracy and predictability through experimental verification, which indicates its competence for future process design, control, and optimization. Based on the model established in this study, the optimal environmental factors for both β-carotene production and microalgae growth were identified. The approaches created are potentially useful for microalga Dunaliella salina cultivation and high-value β-carotene production.
Collapse
Affiliation(s)
- Yimei Xi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jiali Zhang
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China
| | - Fantao Kong
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Jian Che
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
- Dalian Xinyulong Marine Biological Seed Technology Co. Ltd, Dalian, 116200, China.
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
36
|
Huang PW, Xu YS, Sun XM, Shi TQ, Gu Y, Ye C, Huang H. Development of an Efficient Gene Editing Tool in Schizochytrium sp. and Improving Its Lipid and Terpenoid Biosynthesis. Front Nutr 2022; 8:795651. [PMID: 34970583 PMCID: PMC8712325 DOI: 10.3389/fnut.2021.795651] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/24/2021] [Indexed: 01/04/2023] Open
Abstract
Schizochytrium sp. HX-308 is a marine microalga with fast growth and high lipid content, which has potential as microbial cell factories for lipid compound biosynthesis. It is significant to develop efficient genetic editing tool and discover molecular target in Schizochytrium sp. HX-308 for lipid compound biosynthesis. In this study, we developed an efficient gene editing tool in HX-308 which was mediated by Agrobacterium tumefaciens AGL-1. Results showed that the random integration efficiency reached 100%, and the homologous recombination efficiency reached about 30%. Furthermore, the metabolic pathway of lipid and terpenoid biosynthesis were engineered. Firstly, the acetyl-CoA c-acetyltransferase was overexpressed in HX-308 with a strong constitutive promoter. With the overexpression of acetyl-CoA c-acetyltransferase, more acetyl-CoA was used to synthesize terpenoids, and the production of squalene, β-carotene and astaxanthin was increased 5.4, 1.8, and 2.4 times, respectively. Interestingly, the production of saturated fatty acids and polyunsaturated fatty acids also changed. Moreover, three Acyl-CoA oxidase genes which catalyze the first step of β-oxidation were knocked out using homologous recombination. Results showed that the production of lipids increased in the three knock-out strains. Our results demonstrated that the A. tumefaciens-mediated transformation method will be of great use for the study of function genes, as well as developing Schizochytrium sp. as a strong cell factory for producing high value products.
Collapse
Affiliation(s)
- Peng-Wei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
37
|
Arora N, Philippidis GP. Unraveling metabolic alterations in Chlorella vulgaris cultivated on renewable sugars using time resolved multi-omics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149504. [PMID: 34426316 DOI: 10.1016/j.scitotenv.2021.149504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The inherent metabolic versatility of Chlorella vulgaris that enables it to metabolize both inorganic and organic carbon under various trophic modes of cultivation makes it a promising candidate for industrial applications. To shed light on the metabolic flexibility of this microalga, time resolved proteomic and metabolomic studies were conducted in three distinct trophic modes (autotrophic, heterotrophic, mixotrophic) at two growth stages (end of linear growth at 6 days and during nutrient deprivation at 10 days). Sweet sorghum bagasse (SSB) hydrolysate was supplied to the cultivation medium as a renewable source of organic carbon mainly in the form of glucose. Integrated multi-omics data showed improved nitrogen assimilation, re-allocation, and recycling and increased levels of photosystem II (PS II) proteins indicating effective cellular quenching of excess electrons during mixotrophy. As external addition of organic carbon (glucose) to the cultivation medium decreases the cell's dependence on photosynthesis, an upregulation in the mitochondrial electron transport chain was recorded that led to increased cellular energy generation and hence higher growth rates under mixotrophy. Moreover, upregulation of the lipid-packaging proteins caleosin and 14_3_3 domain-containing protein resulted in maximum expression during mixotrophy suggesting a strong correlation between lipid synthesis, stabilization, and assembly. Overall, cells cultivated under mixotrophy showed better nutrient stress tolerance and redox balancing leading to higher biomass and lipid production. The study offers a panoramic view of the microalga's metabolic flexibility and contributes to a deeper understanding of the altered biochemical pathways that can be exploited to enhance algal productivity and commercial potential.
Collapse
Affiliation(s)
- Neha Arora
- Patel College of Global Sustainability, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.
| | - George P Philippidis
- Patel College of Global Sustainability, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.
| |
Collapse
|
38
|
Ferreira GF, Pessoa JGB, Ríos Pinto LF, Maciel Filho R, Fregolente LV. Mono- and diglyceride production from microalgae: Challenges and prospects of high-value emulsifiers. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Coordinating Carbon Metabolism and Cell Cycle of Chlamydomonasreinhardtii with Light Strategies under Nitrogen Recovery. Microorganisms 2021; 9:microorganisms9122480. [PMID: 34946081 PMCID: PMC8707240 DOI: 10.3390/microorganisms9122480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Nutrient supplementation is common in microalgae cultivation to enhance the accumulation of biomass and biofunctional products, while the recovery mechanism from nutrient starvation is less investigated. In this study, the influence of remodeled carbon metabolism on cell cycle progression was explored by using different light wavelengths under N-repletion and N-recovery. The results suggested that blue light enhanced cell enlargement and red light promoted cell division under N-repletion. On the contrary, blue light promoted cell division by stimulating cell cycle progression under N-recovery. This interesting phenomenon was ascribed to different carbon metabolisms under N-repletion and N-recovery. Blue light promoted the recovery of photosystem II and redirected carbon skeletons into proteins under N-recovery, which potentially accelerated cell recovery and cell cycle progression. Although red light also facilitated the recovery of photosystem II, it mitigated the degradation of polysaccharide and then arrested almost all the cells in the G1 phase. By converting light wavelengths at the 12 h of N-recovery with blue light, red and white lights were proved to increase biomass concentration better than continuous blue light. These results revealed different mechanisms of cell metabolism of Chlamydomonas reinhardtii during N-recovery and could be applied to enhance cell vitality of microalgae from nutrient starvation and boost biomass production.
Collapse
|
40
|
Genetic engineering of microalgae for enhanced lipid production. Biotechnol Adv 2021; 52:107836. [PMID: 34534633 DOI: 10.1016/j.biotechadv.2021.107836] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Microalgae have the potential to become microbial cell factories for lipid production. Their ability to convert sunlight and CO2 into valuable lipid compounds has attracted interest from cosmetic, biofuel, food and feed industries. In order to make microalgae-derived products cost-effective and commercially competitive, enhanced growth rates and lipid productivities are needed, which require optimization of cultivation systems and strain improvement. Advances in genetic tool development and omics technologies have increased our understanding of lipid metabolism, which has opened up possibilities for targeted metabolic engineering. In this review we provide a comprehensive overview on the developments made to genetically engineer microalgal strains over the last 30 years. We focus on the strategies that lead to an increased lipid content and altered fatty acid profile. These include the genetic engineering of the fatty acid synthesis pathway, Kennedy pathway, polyunsaturated fatty acid and triacylglycerol metabolisms and fatty acid catabolism. Moreover, genetic engineering of specific transcription factors, NADPH generation and central carbon metabolism, which lead to increase of lipid accumulation are also reviewed.
Collapse
|
41
|
Ayothi P, Muthu A, Shanmugam K. Iron and methyl jasmonate increase high-value PUFA production by elevating the expression of desaturase genes in marine microalga Isochrysis sp. J Appl Microbiol 2021; 132:2042-2053. [PMID: 34741377 DOI: 10.1111/jam.15356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022]
Abstract
AIM This study investigated the effect of several metabolic enhancers on the expression of fatty acid biosynthetic genes and their influence on the production of high-value PUFA in the marine microalgae Isochrysis sp., CASA CC 101. METHODS AND RESULTS The effect of the presence of iron (Fe), nicotinic acid (NIC), methyl jasmonate (MJ) and thidiazuron (TDZ) on the expression of the fatty acid desaturase genes Δ6Des, Δ5Des and Δ4Des was studied in cultures of the marine microalga Isochrysis sp., CASA CC 101. The production of high-value PUFA like γ-linolenic acid (GLA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) was correlated with these gene expressions. The results showed that MJ, Fe and TDZ significantly increased the lipid content than the control. MJ specifically up-regulated ∆6Des gene expression and thereby increased GLA production. Whereas Fe specifically increased ∆5Des gene expression and thereby increased EPA production. However, Fe and TDZ-treated cells effectively upregulated the expression of ∆4Des and increased the production of DHA when compared with control cells. CONCLUSIONS Our findings suggest that addition of Fe and MJ in the culture medium triggers the expression of PUFA biosynthetic genes, especially ∆6Des and ∆4Des, in marine microalga Isochrysis sp., CASA CC 101 their presence resulted in increased production of the PUFAs GLA, EPA and DHA. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows that the addition of Fe and MJ to the culture media of Isochrysis sp., CASA CC 101 results in up-regulation of its genes Δ4Des, Δ6Des and Δ5Des, and improves the production of PUFA. Therefore, the addition of Fe and MJ to the culture medium is useful to increase the production of high-value PUFA in Isochrysis sp., CASA CC 101 and also to the other micro algal species.
Collapse
Affiliation(s)
- Parthasarathy Ayothi
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, India
| | - Arumugam Muthu
- National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific & Industrial Research (CSIR), Industrial Estate PO, Thiruvananthapuram, Kerala, India
| | - Kathiresan Shanmugam
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| |
Collapse
|
42
|
Xing C, Li J, Lam SM, Yuan H, Shui G, Yang J. The role of glutathione-mediated triacylglycerol synthesis in the response to ultra-high cadmium stress in Auxenochlorella protothecoides. J Environ Sci (China) 2021; 108:58-69. [PMID: 34465437 DOI: 10.1016/j.jes.2021.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 06/13/2023]
Abstract
Under ultra-high cadmium (Cd) stress, large amounts of glutathione are produced in Auxenochlorella protothecoides UTEX 2341, and the lipid content increases significantly. Glutathione is the best reductant that can effectively remove Cd, but the relationship between lipid accumulation and the cellular response to Cd stress has not been ascertained. Integrating analyses of the transcriptomes and lipidomes, the mechanism of lipid accumulation to Cd tolerance were studied from the perspectives of metabolism, transcriptional regulation and protein glutathionylation. Under Cd stress, basic metabolic pathways, such as purine metabolism, translation and pre-mRNA splicing process, were inhibited, while the lipid accumulation pathway was significantly activated. Further analysis revealed that the transcription factors (TFs) and genes related to lipid accumulation were also activated. Analysis of the TF interaction sites showed that ABI5, MYB_rel and NF-YB could further regulate the expression of diacylglycerol acyltransferase through glutathionylation/deglutathionylation, which led to increase of the triacylglycerol (TAG) content. Lipidomes analysis showed that TAG could help maintain lipid homeostasis by adjusting its saturation/unsaturation levels. This study for the first time indicated that glutathione could activate TAG synthesis in microalga A. protothecoides, leading to TAG accumulation and glutathione accumulation under Cd stress. Therefore, the accumulation of TAG and glutathione can confer resistance to high Cd stress. This study provided insights into a new operation mode of TAG accumulation under heavy metal stress.
Collapse
Affiliation(s)
- Chao Xing
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinyu Li
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Lipidall Technologies Company Limited, Changzhou 213022, China
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
43
|
Li-Beisson Y, Kong F, Wang P, Lee Y, Kang BH. The disassembly of lipid droplets in Chlamydomonas. THE NEW PHYTOLOGIST 2021; 231:1359-1364. [PMID: 34028037 DOI: 10.1111/nph.17505] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Lipid droplets (LDs) are ubiquitous and specialized organelles in eukaryotic cells. Consisting of a triacylglycerol core surrounded by a monolayer of membrane lipids, LDs are decorated with proteins and have myriad functions, from carbon/energy storage to membrane lipid remodeling and signal transduction. The biogenesis and turnover of LDs are therefore tightly coordinated with cellular metabolic needs in a fluctuating environment. Lipid droplet turnover requires remodeling of the protein coat, lipolysis, autophagy and fatty acid β-oxidation. Several key components of these processes have been identified in Chlamydomonas (Chlamydomonas reinhardtii), including the major lipid droplet protein, a CXC-domain containing regulatory protein, the phosphatidylethanolamine-binding DTH1 (DELAYED IN TAG HYDROLYSIS1), two lipases and two enzymes involved in fatty acid β-oxidation. Here, we review LD turnover and discuss its physiological significance in Chlamydomonas, a major model green microalga in research on algal oil.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Aix-Marseille Univ, Saint Paul-Lez-Durance, 13108, France
| | - Fantao Kong
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Pengfei Wang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Youngsook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| |
Collapse
|
44
|
Zhang Y, Ye Y, Bai F, Liu J. The oleaginous astaxanthin-producing alga Chromochloris zofingiensis: potential from production to an emerging model for studying lipid metabolism and carotenogenesis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:119. [PMID: 33992124 PMCID: PMC8126118 DOI: 10.1186/s13068-021-01969-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/07/2021] [Indexed: 05/05/2023]
Abstract
The algal lipids-based biodiesel, albeit having advantages over plant oils, still remains high in the production cost. Co-production of value-added products with lipids has the potential to add benefits and is thus believed to be a promising strategy to improve the production economics of algal biodiesel. Chromochloris zofingiensis, a unicellular green alga, has been considered as a promising feedstock for biodiesel production because of its robust growth and ability of accumulating high levels of triacylglycerol under multiple trophic conditions. This alga is also able to synthesize high-value keto-carotenoids and has been cited as a candidate producer of astaxanthin, the strongest antioxidant found in nature. The concurrent accumulation of triacylglycerol and astaxanthin enables C. zofingiensis an ideal cell factory for integrated production of the two compounds and has potential to improve algae-based production economics. Furthermore, with the advent of chromosome-level whole genome sequence and genetic tools, C. zofingiensis becomes an emerging model for studying lipid metabolism and carotenogenesis. In this review, we summarize recent progress on the production of triacylglycerol and astaxanthin by C. zofingiensis. We also update our understanding in the distinctive molecular mechanisms underlying lipid metabolism and carotenogenesis, with an emphasis on triacylglycerol and astaxanthin biosynthesis and crosstalk between the two pathways. Furthermore, strategies for trait improvements are discussed regarding triacylglycerol and astaxanthin synthesis in C. zofingiensis.
Collapse
Affiliation(s)
- Yu Zhang
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Ying Ye
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Fan Bai
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
45
|
Pérez-Pérez ME, Lemaire SD, Crespo JL. The ATG4 protease integrates redox and stress signals to regulate autophagy. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3340-3351. [PMID: 33587749 DOI: 10.1093/jxb/erab063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Autophagy is a highly conserved degradative pathway that ensures cellular homeostasis through the removal of damaged or useless intracellular components including proteins, membranes, or even entire organelles. A main hallmark of autophagy is the biogenesis of autophagosomes, double-membrane vesicles that engulf and transport to the vacuole the material to be degraded and recycled. The formation of autophagosomes responds to integrated signals produced as a consequence of metabolic reactions or different types of stress and is mediated by the coordinated action of core autophagy-related (ATG) proteins. ATG4 is a key Cys-protease with a dual function in both ATG8 lipidation and free ATG8 recycling whose balance is crucial for proper biogenesis of the autophagosome. ATG4 is conserved in the green lineage, and its regulation by different post-translational modifications has been reported in the model systems Chlamydomonas reinhardtii and Arabidopsis. In this review, we discuss the major role of ATG4 in the integration of stress and redox signals that regulate autophagy in algae and plants.
Collapse
Affiliation(s)
- María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Avda. Américo Vespucio, Sevilla, Spain
| | - Stéphane D Lemaire
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Avda. Américo Vespucio, Sevilla, Spain
| |
Collapse
|
46
|
Salvador López JM, Van Bogaert INA. Microbial fatty acid transport proteins and their biotechnological potential. Biotechnol Bioeng 2021; 118:2184-2201. [PMID: 33638355 DOI: 10.1002/bit.27735] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/08/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
Fatty acid metabolism has been widely studied in various organisms. However, fatty acid transport has received less attention, even though it plays vital physiological roles, such as export of toxic free fatty acids or uptake of exogenous fatty acids. Hence, there are important knowledge gaps in how fatty acids cross biological membranes, and many mechanisms and proteins involved in these processes still need to be determined. The lack of information is more predominant in microorganisms, even though the identification of fatty acids transporters in these cells could lead to establishing new drug targets or improvements in microbial cell factories. This review provides a thorough analysis of the current information on fatty acid transporters in microorganisms, including bacteria, yeasts and microalgae species. Most available information relates to the model organisms Escherichia coli and Saccharomyces cerevisiae, but transport systems of other species are also discussed. Intracellular trafficking of fatty acids and their transport through organelle membranes in eukaryotic organisms is described as well. Finally, applied studies and engineering efforts using fatty acids transporters are presented to show the applied potential of these transporters and to stress the need for further identification of new transporters and their engineering.
Collapse
Affiliation(s)
- José M Salvador López
- BioPort Group, Faculty of Bioscience Engineering, Centre for Synthetic Biology (CSB), Ghent University, Ghent, Belgium
| | - Inge N A Van Bogaert
- BioPort Group, Faculty of Bioscience Engineering, Centre for Synthetic Biology (CSB), Ghent University, Ghent, Belgium
| |
Collapse
|
47
|
Liu L, Sanchez-Arcos C, Pohnert G, Wei D. Untargeted Metabolomics Unveil Changes in Autotrophic and Mixotrophic Galdieria sulphuraria Exposed to High-Light Intensity. Int J Mol Sci 2021; 22:ijms22031247. [PMID: 33513853 PMCID: PMC7865508 DOI: 10.3390/ijms22031247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
The thermoacidophilic red alga Galdieria sulphuraria has been optimizing a photosynthetic system for low-light conditions over billions of years, thriving in hot and acidic endolithic habitats. The growth of G. sulphuraria in the laboratory is very much dependent on light and substrate supply. Here, higher cell densities in G. sulphuraria under high-light conditions were obtained, although reductions in photosynthetic pigments were observed, which indicated this alga might be able to relieve the effects caused by photoinhibition. We further describe an extensive untargeted metabolomics study to reveal metabolic changes in autotrophic and mixotrophic G. sulphuraria grown under high and low light intensities. The up-modulation of bilayer lipids, that help generate better-ordered lipid domains (e.g., ergosterol) and keep optimal membrane thickness and fluidity, were observed under high-light exposure. Moreover, high-light conditions induced changes in amino acids, amines, and amide metabolism. Compared with the autotrophic algae, higher accumulations of osmoprotectant sugars and sugar alcohols were recorded in the mixotrophic G. sulphuraria. This response can be interpreted as a measure to cope with stress due to the high concentration of organic carbon sources. Our results indicate how G. sulphuraria can modulate its metabolome to maintain energetic balance and minimize harmful effects under changing environments.
Collapse
Affiliation(s)
- Lu Liu
- School of Food Science and Engineering, South China University of Technology, Wushan Rd. 381, Guangzhou 510641, China;
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Carlos Sanchez-Arcos
- Aquatic Chemical Ecology, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany;
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany;
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany;
| | - Dong Wei
- School of Food Science and Engineering, South China University of Technology, Wushan Rd. 381, Guangzhou 510641, China;
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
- Correspondence: ; Tel.: +86-20-8711-3849
| |
Collapse
|
48
|
Ashtiani FR, Jalili H, Rahaie M, Sedighi M, Amrane A. Effect of mixed culture of yeast and microalgae on acetyl-CoA carboxylase and Glycerol-3-phosphate acyltransferase expression. J Biosci Bioeng 2020; 131:364-372. [PMID: 33341347 DOI: 10.1016/j.jbiosc.2020.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
In recent years, some studies have reported that co-culturing green algae and yeast improve lipid and biomass concentration. In this study, a co-culture of the oleaginous yeast Rhodotorula glutinis and the microalgae Chlorella vulgaris was consequently conducted with inoculation of microalga and yeast in growth and stationary phases, respectively. For the first time, the expression of two pivotal enzymes in fatty acids synthetic pathway, acetyl-CoA carboxylase and Glycerol-3-phosphate acyltransferase, was evaluated. To evaluate the synergistic impacts of the mixed culture on the enzymes expression, several co-culture models were designed, including the use of different ratio of microalgae to yeast or the use of residual cell-free medium of yeast; a positive impact on enzymes overexpression was shown in the case of the co-culture of the two microorganisms, and when the remaining cell-free medium of yeast was added to the microalgal culture. The results of in vitro co-culture demonstrated increased 6- and 5-fold of nervonic acid (C24:1) and behenic acid (C22:0) concentrations, respectively, in 2:1 microalgae to yeast co-culture as compared to the monoculture batches. Addition of yeast residual cell-free medium in the 2:1 ratio to the microalgal culture enhanced 9 and 6 times nervonic acid (C24:1) and behenic acid (C22:0) amounts, respectively.
Collapse
Affiliation(s)
- Fatemeh-Rezaee Ashtiani
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14395-1561, Iran
| | - Hasan Jalili
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14395-1561, Iran.
| | - Mahdi Rahaie
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14395-1561, Iran
| | - Mahsa Sedighi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Nanomedicine, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Abdeltif Amrane
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| |
Collapse
|
49
|
Jallet D, Xing D, Hughes A, Moosburner M, Simmons MP, Allen AE, Peers G. Mitochondrial fatty acid β-oxidation is required for storage-lipid catabolism in a marine diatom. THE NEW PHYTOLOGIST 2020; 228:946-958. [PMID: 32535932 DOI: 10.1111/nph.16744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 05/29/2020] [Indexed: 05/21/2023]
Abstract
Photoautotrophic growth in nature requires the accumulation of energy-containing molecules via photosynthesis during daylight to fuel nighttime catabolism. Many diatoms store photosynthate as the neutral lipid triacylglycerol (TAG). While the pathways of diatom fatty acid and TAG synthesis appear to be well conserved with plants, the pathways of TAG catabolism and downstream fatty acid β-oxidation have not been characterised in diatoms. We identified a putative mitochondria-targeted, bacterial-type acyl-CoA dehydrogenase (PtMACAD1) that is present in Stramenopile and Hacrobian eukaryotes, but not found in plants, animals or fungi. Gene knockout, protein-YFP tags and physiological assays were used to determine PtMACAD1's role in the diatom Phaeodactylum tricornutum. PtMACAD1 is located in the mitochondria. Absence of PtMACAD1 led to no consumption of TAG at night and slower growth in light : dark cycles compared with wild-type. Accumulation of transcripts encoding peroxisomal-based β-oxidation did not change in response to day : night cycles or to PtMACAD1 knockout. Mutants also hyperaccumulated TAG after the amelioration of N limitation. We conclude that diatoms utilise mitochondrial β-oxidation; this is in stark contrast to the peroxisomal-based pathways observed in plants and green algae. We infer that this pattern is caused by retention of catabolic pathways from the host during plastid secondary endosymbiosis.
Collapse
Affiliation(s)
- Denis Jallet
- Department of Biology, Colorado State University, 1878 Campus Delivery, 200 West Lake Street, Fort Collins, CO, 80523, USA
- Toulouse Biotechnology Institute, CNRS, INRAE, INSA, Université de Toulouse, Toulouse, 31077, France
| | - Denghui Xing
- Department of Biology, Colorado State University, 1878 Campus Delivery, 200 West Lake Street, Fort Collins, CO, 80523, USA
| | - Alexander Hughes
- Department of Biology, Colorado State University, 1878 Campus Delivery, 200 West Lake Street, Fort Collins, CO, 80523, USA
| | - Mark Moosburner
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Mark P Simmons
- Department of Biology, Colorado State University, 1878 Campus Delivery, 200 West Lake Street, Fort Collins, CO, 80523, USA
| | - Andrew E Allen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Graham Peers
- Department of Biology, Colorado State University, 1878 Campus Delivery, 200 West Lake Street, Fort Collins, CO, 80523, USA
| |
Collapse
|
50
|
Identification of Polyunsaturated Fatty Acids Synthesis Pathways in the Toxic Dinophyte Alexandrium minutum Using 13C-Labelling. Biomolecules 2020; 10:biom10101428. [PMID: 33050104 PMCID: PMC7600785 DOI: 10.3390/biom10101428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
The synthetic pathways responsible for the production of the polyunsaturated fatty acids 22:6n-3 and 20:5n-3 were studied in the Dinophyte Alexandrium minutum. The purpose of this work was to follow the progressive incorporation of an isotopic label (13CO2) into 11 fatty acids to better understand the fatty acid synthesis pathways in A. minutum. The Dinophyte growth was monitored for 54 h using high-frequency sampling. A. minutum presented a growth in two phases. A lag phase was observed during the first 30 h of development and had been associated with the probable temporary encystment of Dinophyte cells. An exponential growth phase was then observed after t30. A. minutum rapidly incorporated 13C into 22:6n-3, which ended up being the most 13C-enriched polyunsaturated fatty acid (PUFA) in this experiment, with a higher 13C atomic enrichment than 18:4n-3, 18:5n-3, 20:5n-3, and 22:5n-3. Overall, the 13C atomic enrichment (AE) was inversely proportional to number of carbons in n-3 PUFA. C18 PUFAs, 18:4n-3, and 18:5n-3, were indeed among the least 13C-enriched FAs during this experiment. They were assumed to be produced by the n-3 PUFA pathway. However, they could not be further elongated or desaturated to produce n-3 C20-C22 PUFA, because the AEs of the n-3 C18 PUFAs were lower than those of the n-3 C20-C22 PUFAs. Thus, the especially high atomic enrichment of 22:6n-3 (55.8% and 54.9% in neutral lipids (NLs) and polar lipids (PLs), respectively) led us to hypothesize that this major PUFA was synthesized by an O2-independent Polyketide Synthase (PKS) pathway. Another parallel PKS, independent of the one leading to 22:6n-3, was also supposed to produce 20:5n-3. The inverse order of the 13C atomic enrichment for n-3 PUFAs was also suspected to be related to the possible β-oxidation of long-chain n-3 PUFAs occurring during A. minutum encystment.
Collapse
|