1
|
Lai X, Yu M, Cheng CP, Lai EM. Distinct strategies of diguanylate cyclase domain proteins on inhibition of virulence and interbacterial competition by agrobacteria. mBio 2025; 16:e0003925. [PMID: 40243313 PMCID: PMC12077199 DOI: 10.1128/mbio.00039-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Diguanylate cyclases (DGCs) synthesize bis-(3',5')-cyclic diguanylic acid (c-di-GMP), a critical bacterial second messenger that coordinates diverse biological processes. Agrobacterium tumefaciens, a plant pathogen causing crown gall disease, relies on type IV secretion system for pathogenesis and type VI secretion system (T6SS) for interbacterial competition. Our study identified two putative DGCs, named diguanylate cyclase domain proteins regulating virulences A and B (DcvA and DcvB), that negatively regulate virulence through distinct mechanisms. DcvA suppresses virulence by targeting the VirA/VirG two-component system downstream of VirA. This inhibition is independent of c-di-GMP levels. DcvB positively regulates biofilm formation, inhibits T6SS-mediated interbacterial competition, and suppresses virulence via the ChvG/ChvI two-component system downstream of ChvG. These effects are dependent on its cyclase activity and the associated increase in intracellular c-di-GMP levels. These findings suggest that DcvA and DcvB control virulence and interbacterial competition using different mechanisms in Agrobacterium. DcvA suppresses virulence, independent of c-di-GMP, and DcvB enhances global c-di-GMP concentration to promote biofilm formation and inhibits virulence and T6SS antibacterial activity. The findings provide understanding of how DGC domain proteins orchestrate complex regulatory networks to balance virulence, biofilm formation, and interbacterial competition, enabling them to adapt to changing environments.IMPORTANCEBacteria produce second messengers, such as c-di-GMP, to regulate various cellular processes, including biofilm formation, virulence, and bacterial antagonism. Diguanylate cyclases (DGCs) catalyze the biosynthesis of c-di-GMP and function to cope with changing environments through targeting specific effector proteins. In this study, we uncover that phytopathogenic agrobacteria deploy two DGC domain proteins to suppress virulence and interbacterial competition through two different regulatory pathways. One exhibits the DGC activity, enhancing global c-di-GMP concentration to elevate biofilm formation and inhibit virulence and antibacterial activity, while the other specifically suppresses virulence, independent of c-di-GMP biosynthesis. Our findings provide new insight into the distinct regulatory mechanisms of DGC domain proteins on regulating virulence and interbacterial competition, highlighting potential new strategies for controlling Agrobacterium pathogenicity.
Collapse
Affiliation(s)
- Xuan Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Institute of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Manda Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chiu-Ping Cheng
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Institute of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Roca Paixao JF, Déléris A. Epigenetic control of T-DNA during transgenesis and pathogenesis. PLANT PHYSIOLOGY 2024; 197:kiae583. [PMID: 39498848 DOI: 10.1093/plphys/kiae583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 11/07/2024]
Abstract
Mobile elements known as T-DNAs are transferred from pathogenic Agrobacterium to plants and reprogram the host cell to form hairy roots or tumors. Disarmed nononcogenic T-DNAs are extensively used to deliver transgenes in plant genetic engineering. Such T-DNAs were the first known targets of RNA silencing mechanisms, which detect foreign RNA in plant cells and produce small RNAs that induce transcript degradation. These T-DNAs can also be transcriptionally silenced by the deposition of epigenetic marks such as DNA methylation and the dimethylation of lysine 9 (H3K9me2) in plants. Here, we review the targeting and the roles of RNA silencing and DNA methylation on T-DNAs in transgenic plants as well as during pathogenesis. In addition, we discuss the crosstalk between T-DNAs and genome-wide changes in DNA methylation during pathogenesis. We also cover recently discovered regulatory phenomena, such as T-DNA suppression and RNA silencing-independent and epigenetic-independent mechanisms that can silence T-DNAs. Finally, we discuss the implications of findings on T-DNA silencing for the improvement of plant genetic engineering.
Collapse
Affiliation(s)
- Joaquin Felipe Roca Paixao
- Université Paris-Saclay, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Angélique Déléris
- Université Paris-Saclay, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Gilmore MC, Yadav AK, Espaillat A, Gust AA, Williams MA, Brown PJB, Cava F. A peptidoglycan N-deacetylase specific for anhydroMurNAc chain termini in Agrobacterium tumefaciens. J Biol Chem 2024; 300:105611. [PMID: 38159848 PMCID: PMC10838918 DOI: 10.1016/j.jbc.2023.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
During growth, bacteria remodel and recycle their peptidoglycan (PG). A key family of PG-degrading enzymes is the lytic transglycosylases, which produce anhydromuropeptides, a modification that caps the PG chains and contributes to bacterial virulence. Previously, it was reported that the polar-growing Gram-negative plant pathogen Agrobacterium tumefaciens lacks anhydromuropeptides. Here, we report the identification of an enzyme, MdaA (MurNAc deacetylase A), which specifically removes the acetyl group from anhydromuropeptide chain termini in A. tumefaciens, resolving this apparent anomaly. A. tumefaciens lacking MdaA accumulates canonical anhydromuropeptides, whereas MdaA was able to deacetylate anhydro-N-acetyl muramic acid in purified sacculi that lack this modification. As for other PG deacetylases, MdaA belongs to the CE4 family of carbohydrate esterases but harbors an unusual Cys residue in its active site. MdaA is conserved in other polar-growing bacteria, suggesting a possible link between PG chain terminus deacetylation and polar growth.
Collapse
Affiliation(s)
- Michael C Gilmore
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Akhilesh K Yadav
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India; Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Akbar Espaillat
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Andrea A Gust
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Michelle A Williams
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden.
| |
Collapse
|
4
|
Liu Y, Xu Z, Chen L, Xun W, Shu X, Chen Y, Sun X, Wang Z, Ren Y, Shen Q, Zhang R. Root colonization by beneficial rhizobacteria. FEMS Microbiol Rev 2024; 48:fuad066. [PMID: 38093453 PMCID: PMC10786197 DOI: 10.1093/femsre/fuad066] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Rhizosphere microbes play critical roles for plant's growth and health. Among them, the beneficial rhizobacteria have the potential to be developed as the biofertilizer or bioinoculants for sustaining the agricultural development. The efficient rhizosphere colonization of these rhizobacteria is a prerequisite for exerting their plant beneficial functions, but the colonizing process and underlying mechanisms have not been thoroughly reviewed, especially for the nonsymbiotic beneficial rhizobacteria. This review systematically analyzed the root colonizing process of the nonsymbiotic rhizobacteria and compared it with that of the symbiotic and pathogenic bacteria. This review also highlighted the approaches to improve the root colonization efficiency and proposed to study the rhizobacterial colonization from a holistic perspective of the rhizosphere microbiome under more natural conditions.
Collapse
Affiliation(s)
- Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Lin Chen
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, 1 Shuizha West Road, Beijing 102300, P.R. China
| | - Weibing Xun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Xia Shu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, P.R. China
| | - Yu Chen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Xinli Sun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Zhengqi Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Yi Ren
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Ruifu Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| |
Collapse
|
5
|
Construction of a Transposon Mutant Library in the Pathogen Agrobacterium tumefaciens C58 and Identification of Genes Involved in Gall Niche Exploitation and Colonization. Methods Mol Biol 2022; 2605:209-226. [PMID: 36520396 DOI: 10.1007/978-1-0716-2871-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Agrobacterium tumefaciens is a plant pathogen that causes crown gall disease on a wide range of host species by transferring and integrating a part of its own DNA (T-DNA) into the plant genome. The genes responsible of the above-mentioned processes are well characterized. However, a large number of the mechanisms involved in exploitation and colonization of the galls (also named plant tumors) remain unknown. Due to recent development of "transposon-sequencing" (Tn-Seq) techniques, a high-throughput screening and identification of the different genes involved in such mechanisms is now possible. In this chapter, we describe the detailed methodology used to construct a transposon library in A. tumefaciens and to conduct a Tn-Seq approach to discover genes involved in plant tumor exploitation and colonization.
Collapse
|
6
|
Molecular Mechanisms and Applications of N-Acyl Homoserine Lactone-Mediated Quorum Sensing in Bacteria. Molecules 2022; 27:molecules27217584. [PMID: 36364411 PMCID: PMC9654057 DOI: 10.3390/molecules27217584] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Microbial biodiversity includes biotic and abiotic components that support all life forms by adapting to environmental conditions. Climate change, pollution, human activity, and natural calamities affect microbial biodiversity. Microbes have diverse growth conditions, physiology, and metabolism. Bacteria use signaling systems such as quorum sensing (QS) to regulate cellular interactions via small chemical signaling molecules which also help with adaptation under undesirable survival conditions. Proteobacteria use acyl-homoserine lactone (AHL) molecules as autoinducers to sense population density and modulate gene expression. The LuxI-type enzymes synthesize AHL molecules, while the LuxR-type proteins (AHL transcriptional regulators) bind to AHLs to regulate QS-dependent gene expression. Diverse AHLs have been identified, and the diversity extends to AHL synthases and AHL receptors. This review comprehensively explains the molecular diversity of AHL signaling components of Pseudomonas aeruginosa, Chromobacterium violaceum, Agrobacterium tumefaciens, and Escherichia coli. The regulatory mechanism of AHL signaling is also highlighted in this review, which adds to the current understanding of AHL signaling in Gram-negative bacteria. We summarize molecular diversity among well-studied QS systems and recent advances in the role of QS proteins in bacterial cellular signaling pathways. This review describes AHL-dependent QS details in bacteria that can be employed to understand their features, improve environmental adaptation, and develop broad biomolecule-based biotechnological applications.
Collapse
|
7
|
Wang YH, Kong WL, Zhu ML, Dai Y, Wu XQ. Colonization by the Mycorrhizal Helper Bacillus pumilus HR10 Is Enhanced During the Establishment of Ectomycorrhizal Symbiosis Between Hymenochaete sp. Rl and Pinus thunbergii. Front Microbiol 2022; 13:818912. [PMID: 35330763 PMCID: PMC8940532 DOI: 10.3389/fmicb.2022.818912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
There are complex interactions between mycorrhizal helper bacteria (MHBs) and ectomycorrhizal (ECM) fungi, with MHBs promoting mycorrhizal synthesis and ECM fungi regulating plant rhizobacterial colonization, diversity, and function. In this study, to investigate whether the ECM fungus Hymenochaete sp. Rl affects the survival and colonization of the MHB strain Bacillus pumilus HR10 in the rhizosphere, the biomass of B. pumilus HR10 was measured in the rhizosphere and mycorrhizosphere. In addition, extracts of Hymenochaete sp. Rl and Pinus thunbergii were evaluated for their effect on B. pumilus HR10 colonization (growth, sporulation, biofilm formation, extracellular polysaccharide and extracellular protein contents, flagellar motility, and expression of colonization-related genes). The results showed that inoculation of Hymenochaete sp. Rl significantly increased the biomass of B. pumilus HR10 in the rhizosphere; however, while extracts of Hymenochaete sp. Rl and P. thunbergii did not affect the biomass or spore formation of HR10, they did affect its biofilm formation, extracellular polysaccharide and extracellular protein production, and flagellar motility. Furthermore, the addition of symbiont extracts affected the expression of chemotaxis-related genes in HR10. When the extracts were added separately, the expression of srf genes in HR10 increased; when the extracts were added simultaneously, the expression of the flagellin gene fliG in HR10 increased, but there was no significant effect on the expression of srf genes, consistent with the results on biofilm production. Thus, Hymenochaete sp. Rl and P. thunbergii roots had a positive effect on colonization by B. pumilus HR10 at the rhizosphere level through their secretions.
Collapse
Affiliation(s)
- Ya-Hui Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Mei-Ling Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Yun Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
8
|
Phenotypic and Molecular-Phylogenetic Analyses Reveal Distinct Features of Crown Gall-Associated Xanthomonas Strains. Microbiol Spectr 2022; 10:e0057721. [PMID: 35107322 PMCID: PMC8809331 DOI: 10.1128/spectrum.00577-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In summer 2019, widespread occurrence of crown gall disease caused by Agrobacterium spp. was observed on commercially grown ornamental plants in southern Iran. Beside agrobacteria, pale yellow-pigmented Gram-negative strains resembling the members of Xanthomonas were also associated with crown gall tissues on weeping fig (Ficus benjamina) and Amaranthus sp. plants. The purpose of the present study was to characterize the crown gall-associated Xanthomonas strains using plant inoculation assays, molecular-phylogenetic analyses, and comparative genomics approaches. Pathogenicity tests showed that the Xanthomonas strains did not induce disease symptoms on their host of isolation. However, the strains induced hypersensitive reaction on tobacco, geranium, melon, squash, and tomato leaves via leaf infiltration. Multilocus sequence analysis suggested that the strains belong to clade IA of Xanthomonas, phylogenetically close to Xanthomonas translucens, X. theicola, and X. hyacinthi. Average nucleotide identity and digital DNA-DNA hybridization values between the whole-genome sequences of the strains isolated in this study and reference Xanthomonas strains are far below the accepted thresholds for the definition of prokaryotic species, signifying that these strains could be defined as two new species within clade IA of Xanthomonas. Comparative genomics showed that the strains isolated from crown gall tissues are genetically distinct from X. translucens, as almost all the type III secretion system genes and type III effectors are lacking in the former group. The data obtained in this study provide novel insight into the breadth of genetic diversity of crown gall-associated bacteria and pave the way for research on gall-associated Xanthomonas-plant interactions. IMPORTANCE Tumorigenic agrobacteria—members of the bacterial family Rhizobiaceae—cause crown gall and hairy root diseases on a broad range of plant species. These bacteria are responsible for economic losses in nurseries of important fruit trees and ornamental plants. The microclimate of crown gall and their accompanying microorganisms has rarely been studied for the microbial diversity and population dynamics of gall-associated bacteria. Here, we employed a series of biochemical tests, pathogenicity assays, and molecular-phylogenetic analyses, supplemented with comparative genomics, to elucidate the biological features, taxonomic position, and genomic repertories of five crown gall-associated Xanthomonas strains isolated from weeping fig and Amaranthus sp. plants in Iran. The strains investigated in this study induced hypersensitive reactions (HR) on geranium, melon, squash, tobacco, and tomato leaves, while they were nonpathogenic on their host of isolation. Phylogenetic analyses and whole-genome-sequence-based average nucleotide identity (ANI)/digital DNA-DNA hybridization (dDDH) calculations suggested that the Xanthomonas strains isolated from crown gall tissues belong to two taxonomically unique clades closely related to the clade IA species of the genus, i.e., X. translucens, X. hyacinthi, and X. theicola.
Collapse
|
9
|
Torres M, Jiquel A, Jeanne E, Naquin D, Dessaux Y, Faure D. Agrobacterium tumefaciens fitness genes involved in the colonization of plant tumors and roots. THE NEW PHYTOLOGIST 2022; 233:905-918. [PMID: 34655498 DOI: 10.1111/nph.17810] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Agrobacterium tumefaciens colonizes the galls (plant tumors) it causes, and the roots of host and nonhost plants. Transposon-sequencing (Tn-Seq) was used to discover A.tumefaciens genes involved in reproductive success (fitness genes) on Solanum lycopersicum and Populus trichocarpa tumors and S.lycopersicum and Zea mays roots. The identified fitness genes represent 3-8% of A. tumefaciens genes and contribute to carbon and nitrogen metabolism, synthesis and repair of DNA, RNA and proteins and envelope-associated functions. Competition assays between 12 knockout mutants and wild-type confirmed the involvement of 10 genes (trpB, hisH, metH, cobN, ntrB, trxA, nrdJ, kamA, exoQ, wbbL) in A.tumefaciens fitness under both tumor and root conditions. The remaining two genes (fecA, noxA) were important in tumors only. None of these mutants was nonpathogenic, but four (hisH, trpB, exoQ, ntrB) exhibited impaired virulence. Finally, we used this knowledge to search for chemical and biocontrol treatments that target some of the identified fitness pathways and report reduced tumorigenesis and impaired establishment of A.tumefaciens on tomato roots using tannic acid or Pseudomonas protegens, which affect iron assimilation. This work revealed A.tumefaciens pathways that contribute to its competitive survival in plants and highlights a strategy to identify plant protection approaches against this pathogen.
Collapse
Affiliation(s)
- Marta Torres
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91190, France
| | - Audren Jiquel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91190, France
| | - Etienne Jeanne
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91190, France
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91190, France
| | - Yves Dessaux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91190, France
| | - Denis Faure
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91190, France
| |
Collapse
|
10
|
Zheng C, Yan C, Xie H, Huang L, Fu H, Zhang T, Huang Z. Preparation, properties, and degradation mechanism of thermosensitive self-degradation microgel. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.2010566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Cunchuan Zheng
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, The People’s Republic of China
| | - Chaozong Yan
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, The People’s Republic of China
| | - Hu Xie
- Xinjiang Oilfield Company’s first Gas Production, PetroChina Xinjiang Oilfield Company, Changji Hui Autonomous Prefecture, The People’s Republic of China
| | - Lamei Huang
- Research Institute of Exploration and Development, Tarim Oilfield Company, PetroChina, Tarim, The People’s Republic of China
| | - Haoran Fu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, The People’s Republic of China
| | - Tailiang Zhang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, The People’s Republic of China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, The People’s Republic of China
| | - Zhiyu Huang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, The People’s Republic of China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, The People’s Republic of China
| |
Collapse
|
11
|
Xu N, Yang Q, Yang X, Wang M, Guo M. Reconstruction and analysis of a genome-scale metabolic model for Agrobacterium tumefaciens. MOLECULAR PLANT PATHOLOGY 2021; 22:348-360. [PMID: 33433944 PMCID: PMC7865084 DOI: 10.1111/mpp.13032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/22/2020] [Accepted: 12/07/2020] [Indexed: 05/20/2023]
Abstract
The plant pathogen Agrobacterium tumefaciens causes crown gall disease and is a widely used tool for generating transgenic plants owing to its virulence. The pathogenic process involves a shift from an independent to a living form within a host plant. However, comprehensive analyses of metabolites, genes, and reactions contributing to this complex process are lacking. To gain new insights about the pathogenicity from the viewpoints of physiology and cellular metabolism, a genome-scale metabolic model (GSMM) was reconstructed for A. tumefaciens. The model, referred to as iNX1344, contained 1,344 genes, 1,441 reactions, and 1,106 metabolites. It was validated by analyses of in silico cell growth on 39 unique carbon or nitrogen sources and the flux distribution of carbon metabolism. A. tumefaciens metabolic characteristics under three ecological niches were modelled. A high capacity to access and metabolize nutrients is more important for rhizosphere colonization than in the soil, and substantial metabolic changes were detected during the shift from the rhizosphere to tumour environments. Furthermore, by integrating transcriptome data for tumour conditions, significant alterations in central metabolic pathways and secondary metabolite metabolism were identified. Overall, the GSMM and constraint-based analysis could decode the physiological and metabolic features of A. tumefaciens as well as interspecific interactions with hosts, thereby improving our understanding of host adaptation and infection mechanisms.
Collapse
Affiliation(s)
- Nan Xu
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
| | - Qiyuan Yang
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
| | - Xiaojing Yang
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
| | - Mingqi Wang
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
| | - Minliang Guo
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
| |
Collapse
|
12
|
Faure D. Is there a unique integration mechanism of Agrobacterium T-DNA into a plant genome? THE NEW PHYTOLOGIST 2021; 229:2386-2388. [PMID: 33616946 DOI: 10.1111/nph.17184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article is a Commentary on Nishizawa‐Yokoi et al. (2021), 229: 2859–2872.
Collapse
Affiliation(s)
- Denis Faure
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Paris-Saclay University, 91 190, Gif-sur-Yvette, France
| |
Collapse
|
13
|
Generating asymmetry in a changing environment: cell cycle regulation in dimorphic alphaproteobacteria. Biol Chem 2020; 401:1349-1363. [DOI: 10.1515/hsz-2020-0235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022]
Abstract
AbstractWhile many bacteria divide by symmetric binary fission, some alphaproteobacteria have strikingly asymmetric cell cycles, producing offspring that differs significantly in their morphology and reproductive state. To establish this asymmetry, these species employ a complex cell cycle regulatory pathway based on two-component signaling cascades. At the center of this network is the essential DNA-binding response regulator CtrA, which acts as a transcription factor controlling numerous genes with cell cycle-relevant functions as well as a regulator of chromosome replication. The DNA-binding activity of CtrA is controlled at the level of both protein phosphorylation and stability, dependent on an intricate network of regulatory proteins, whose function is tightly coordinated in time and space. CtrA is differentially activated in the two (developing) offspring, thereby establishing distinct transcriptional programs that ultimately determine their distinct cell fates. Phase-separated polar microdomains of changing composition sequester proteins involved in the (in-)activation and degradation of CtrA specifically at each pole. In this review, we summarize the current knowledge of the CtrA pathway and discuss how it has evolved to regulate the cell cycle of morphologically distinct alphaproteobacteria.
Collapse
|
14
|
Uroz S, Courty PE, Oger P. Plant Symbionts Are Engineers of the Plant-Associated Microbiome. TRENDS IN PLANT SCIENCE 2019; 24:905-916. [PMID: 31288964 DOI: 10.1016/j.tplants.2019.06.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 05/09/2023]
Abstract
Plants interact throughout their lives with environmental microorganisms. These interactions determine plant development, nutrition, and fitness in a dynamic and stressful environment, forming the basis for the holobiont concept in which plants and plant-associated microbes are not considered as independent entities but as a single evolutionary unit. A primary open question concerns whether holobiont structure is shaped by its microbial members or solely by the plant. Current knowledge of plant-microbe interactions argues that the establishment of symbiosis directly and indirectly conditions the plant-associated microbiome. We propose to define the impact of the symbiont on the plant microbiome as the 'symbiosis cascade effect', in which the symbionts and their plant host jointly shape the plant microbiome.
Collapse
Affiliation(s)
- Stephane Uroz
- Institut National de la Recherche Agronomique (INRA) Unité Mixte de Recherche (UMR) 1136, Interactions Arbres-Microorganismes, F-54280, Champenoux, France; Université de Lorraine, UMR 1136, Interactions Arbres-Microorganismes, F-54500 Vandoeuvre-lès-, Nancy, France; INRA Unité de Recherche (UR) 1138, Biogéochimie des Écosystèmes Forestiers, F-54280, Champenoux, France.
| | - Pierre Emmanuel Courty
- Agroécologie, Institut National de la Recherche, Agronomique (INRA), AgroSup Dijon, Centre, National de la Recherche Scientifique (CNRS), Université de Bourgogne, INRA, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Phil Oger
- Université de Lyon, Institut National des Sciences Appliquées (INSA) de Lyon, CNRS UMR, 5240, Villeurbanne, France
| |
Collapse
|
15
|
Meyer T, Thiour-Mauprivez C, Wisniewski-Dyé F, Kerzaon I, Comte G, Vial L, Lavire C. Ecological Conditions and Molecular Determinants Involved in Agrobacterium Lifestyle in Tumors. FRONTIERS IN PLANT SCIENCE 2019; 10:978. [PMID: 31417593 PMCID: PMC6683767 DOI: 10.3389/fpls.2019.00978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/11/2019] [Indexed: 05/07/2023]
Abstract
The study of pathogenic agents in their natural niches allows for a better understanding of disease persistence and dissemination. Bacteria belonging to the Agrobacterium genus are soil-borne and can colonize the rhizosphere. These bacteria are also well known as phytopathogens as they can cause tumors (crown gall disease) by transferring a DNA region (T-DNA) into a wide range of plants. Most reviews on Agrobacterium are focused on virulence determinants, T-DNA integration, bacterial and plant factors influencing the efficiency of genetic transformation. Recent research papers have focused on the plant tumor environment on the one hand, and genetic traits potentially involved in bacterium-plant interactions on the other hand. The present review gathers current knowledge about the special conditions encountered in the tumor environment along with the Agrobacterium genetic determinants putatively involved in bacterial persistence inside a tumor. By integrating recent metabolomic and transcriptomic studies, we describe how tumors develop and how Agrobacterium can maintain itself in this nutrient-rich but stressful and competitive environment.
Collapse
Affiliation(s)
- Thibault Meyer
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Clémence Thiour-Mauprivez
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
- Biocapteurs-Analyses-Environment, Universite de Perpignan Via Domitia, Perpignan, France
- Laboratoire de Biodiversite et Biotechnologies Microbiennes, USR 3579 Sorbonne Universites (UPMC) Paris 6 et CNRS Observatoire Oceanologique, Paris, France
| | | | - Isabelle Kerzaon
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Gilles Comte
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Ludovic Vial
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Céline Lavire
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| |
Collapse
|
16
|
Diel B, Dequivre M, Wisniewski‐Dyé F, Vial L, Hommais F. A novel plasmid‐transcribed regulatory sRNA, QfsR, controls chromosomal polycistronic gene expression in
Agrobacterium fabrum. Environ Microbiol 2019; 21:3063-3075. [DOI: 10.1111/1462-2920.14704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/04/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Benjamin Diel
- Université de Lyon F‐69622 Lyon France
- Université Lyon 1 F‐69622 Villeurbanne France
- CNRSUMR 5240 Microbiologie Adaptation et Pathogénie F‐69622 Villeurbanne France
- CNRSUMR 5557 Ecologie Microbienne F‐69622 Villeurbanne France
- INRAUMR1418 Ecologie Microbienne F‐69622 Villeurbanne France
| | - Magali Dequivre
- Université de Lyon F‐69622 Lyon France
- Université Lyon 1 F‐69622 Villeurbanne France
- CNRSUMR 5240 Microbiologie Adaptation et Pathogénie F‐69622 Villeurbanne France
| | - Florence Wisniewski‐Dyé
- Université de Lyon F‐69622 Lyon France
- Université Lyon 1 F‐69622 Villeurbanne France
- CNRSUMR 5557 Ecologie Microbienne F‐69622 Villeurbanne France
- INRAUMR1418 Ecologie Microbienne F‐69622 Villeurbanne France
| | - Ludovic Vial
- Université de Lyon F‐69622 Lyon France
- Université Lyon 1 F‐69622 Villeurbanne France
- CNRSUMR 5557 Ecologie Microbienne F‐69622 Villeurbanne France
- INRAUMR1418 Ecologie Microbienne F‐69622 Villeurbanne France
| | - Florence Hommais
- Université de Lyon F‐69622 Lyon France
- Université Lyon 1 F‐69622 Villeurbanne France
- CNRSUMR 5240 Microbiologie Adaptation et Pathogénie F‐69622 Villeurbanne France
| |
Collapse
|
17
|
Gonzalez-Mula A, Lachat J, Mathias L, Naquin D, Lamouche F, Mergaert P, Faure D. The biotroph Agrobacterium tumefaciens thrives in tumors by exploiting a wide spectrum of plant host metabolites. THE NEW PHYTOLOGIST 2019; 222:455-467. [PMID: 30447163 DOI: 10.1111/nph.15598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/03/2018] [Indexed: 05/12/2023]
Abstract
Agrobacterium tumefaciens is a niche-constructing biotroph that exploits host plant metabolites. We combined metabolomics, transposon-sequencing (Tn-seq), transcriptomics, and reverse genetics to characterize A. tumefaciens pathways involved in the exploitation of resources from the Solanum lycopersicum host plant. Metabolomics of healthy stems and plant tumors revealed the common (e.g. sucrose, glutamate) and enriched (e.g. opines, γ-aminobutyric acid (GABA), γ-hydroxybutyric acid (GHB), pyruvate) metabolites that A. tumefaciens could use as nutrients. Tn-seq and transcriptomics pinpointed the genes that are crucial and/or upregulated when the pathogen grew on either sucrose (pgi, kdgA, pycA, cisY) or GHB (blcAB, pckA, eno, gpsA) as a carbon source. While sucrose assimilation involved the Entner-Doudoroff and tricarboxylic acid (TCA) pathways, GHB degradation required the blc genes, TCA cycle, and gluconeogenesis. The tumor-enriched metabolite pyruvate is at the node connecting these pathways. Using reverse genetics, we showed that the blc, pckA, and pycA loci were important for aggressiveness (tumor weight), proliferation (bacterial charge), and/or fitness (competition between the constructed mutants and wild-type) of A. tumefaciens in plant tumors. This work highlighted how a biotroph mobilizes its central metabolism for exploiting a wide diversity of resources in a plant host. It further shows the complementarity of functional genome-wide scans by transcriptomics and Tn-seq to decipher the lifestyle of a plant pathogen.
Collapse
Affiliation(s)
- Almudena Gonzalez-Mula
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Joy Lachat
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Léo Mathias
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Delphine Naquin
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Florian Lamouche
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Peter Mergaert
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| |
Collapse
|
18
|
Adaptations and evolution of a heritable leaf nodule symbiosis between Dioscorea sansibarensis and Orrella dioscoreae. ISME JOURNAL 2019; 13:1831-1844. [PMID: 30877285 DOI: 10.1038/s41396-019-0398-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/31/2022]
Abstract
Various plant species establish intimate symbioses with bacteria within their aerial organs. The bacteria are contained within nodules or glands often present in distinctive patterns on the leaves in what is commonly referred to as leaf nodule symbiosis. We describe here a highly specific symbiosis between a wild yam species from Madagascar, Dioscorea sansibarensis and bacteria of the species Orrella dioscoreae. Using whole-genome sequencing of plastids and bacteria from wild-collected samples, we show phylogenetic patterns consistent with a dominant vertical mode of transmission of the symbionts. Unique so far among leaf nodule symbioses, the bacteria can be cultured and are amenable to comparative transcriptomics, revealing a potential role in complementing the host's arsenal of secondary metabolites. We propose a recent establishment of a vertical mode of transmission in this symbiosis which, together with a large effective population size explains the cultivability and apparent lack of genome reductive evolution in O. dioscoreae. We leverage these unique features to reveal pathways and functions under positive selection in these specialized endophytes, highlighting the candidate mechanisms enabling a permanent association in the phyllosphere.
Collapse
|
19
|
Raoul des Essarts Y, Pédron J, Blin P, Van Dijk E, Faure D, Van Gijsegem F. Common and distinctive adaptive traits expressed in
Dickeya dianthicola
and
Dickeya solani
pathogens when exploiting potato plant host. Environ Microbiol 2019; 21:1004-1018. [DOI: 10.1111/1462-2920.14519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Yannick Raoul des Essarts
- Institut for Integrative Biology of the Cell (I2BC)CNRS CEA Univ. Paris‐Sud, Université Paris‐Saclay Avenue de la Terrasse, 91198, Gif‐sur‐Yvette Cedex France
- Research & DevelopmentPromotion of Seed Potatoes ‐ French Federation of Seed Potato Growers (RD3PT‐FN3PT) 43‐45 Rue de Naples, 75008, Paris France
| | - Jacques Pédron
- Sorbonne Université, INRA, Institute of Ecology and Environmental sciences‐Paris 4 place Jussieu, F‐75252, Paris France
| | - Pauline Blin
- Institut for Integrative Biology of the Cell (I2BC)CNRS CEA Univ. Paris‐Sud, Université Paris‐Saclay Avenue de la Terrasse, 91198, Gif‐sur‐Yvette Cedex France
| | - Erwin Van Dijk
- Institut for Integrative Biology of the Cell (I2BC)CNRS CEA Univ. Paris‐Sud, Université Paris‐Saclay Avenue de la Terrasse, 91198, Gif‐sur‐Yvette Cedex France
| | - Denis Faure
- Institut for Integrative Biology of the Cell (I2BC)CNRS CEA Univ. Paris‐Sud, Université Paris‐Saclay Avenue de la Terrasse, 91198, Gif‐sur‐Yvette Cedex France
| | - Frédérique Van Gijsegem
- Sorbonne Université, INRA, Institute of Ecology and Environmental sciences‐Paris 4 place Jussieu, F‐75252, Paris France
| |
Collapse
|
20
|
Gonzalez-Mula A, Torres M, Faure D. Integrative and deconvolution omics approaches to uncover the Agrobacterium tumefaciens lifestyle in plant tumors. PLANT SIGNALING & BEHAVIOR 2019; 14:e1581562. [PMID: 30774017 PMCID: PMC6422367 DOI: 10.1080/15592324.2019.1581562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Agrobacterium tumefaciens is a plant pathogen which provokes galls on roots and stems (crown-gall disease) and colonizes them. Two approaches combining omics were used to decipher the lifestyle of A. tumefaciens in plant tumors: an integrative approach when omics were used on A. tumefaciens cells collected from plant tumors, a deconvolution approach when omics were used on A. tumefaciens cells exploiting a single tumor metabolite in pure culture assay. This addendum highlights some recent results on the biotroph lifestyle of A. tumefaciens in plant tumors.
Collapse
Affiliation(s)
- Almudena Gonzalez-Mula
- Institute for integrative biology of the cell (I2BC), CNRS CEA Univ. Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, France
| | - Marta Torres
- Institute for integrative biology of the cell (I2BC), CNRS CEA Univ. Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, France
| | - Denis Faure
- Institute for integrative biology of the cell (I2BC), CNRS CEA Univ. Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, France
- CONTACT Denis Faure Institute for integrative biology of the cell (I2BC), CNRS CEA Univ. Paris-Sud, University Paris-Saclay, Gif-sur-Yvette F-91190, France
| |
Collapse
|