1
|
Goldbecker ES, de Vries J. Systems Biology of Streptophyte Cell Evolution. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:493-522. [PMID: 39819561 DOI: 10.1146/annurev-arplant-083123-060254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
More than 500 million years ago, a streptophyte algal population established a foothold on land and started terraforming Earth through an unprecedented radiation. This event is called plant terrestrialization and yielded the Embryophyta. Recent advancements in the field of plant evolutionary developmental biology (evo-devo) have propelled our knowledge of the closest algal relatives of land plants, the zygnematophytes, highlighting that several aspects of plant cell biology are shared between embryophytes and their sister lineage. High-throughput exploration determined that routes of signaling cascades, biosynthetic pathways, and molecular physiology predate plant terrestrialization. But how do they assemble into biological programs, and what do these programs tell us about the principal functions of the streptophyte cell? Here, we make the case that streptophyte algae are unique organisms for understanding the systems biology of the streptophyte cell, informing on not only the origin of embryophytes but also their fundamental biology.
Collapse
Affiliation(s)
- Elisa S Goldbecker
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany; ,
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany; ,
- Campus Institute Data Science (CIDAS), University of Göttingen, Göttingen, Germany
- Department of Applied Bioinformatics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Permann C, Holzinger A. Zygospore formation in Zygnematophyceae predates several land plant traits. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230356. [PMID: 39343014 PMCID: PMC11449217 DOI: 10.1098/rstb.2023.0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 10/01/2024] Open
Abstract
Recent research on a special type of sexual reproduction and zygospore formation in Zygnematophyceae, the sister group of land plants, is summarized. Within this group, gamete fusion occurs by conjugation. Zygospore development in Mougeotia, Spirogyra and Zygnema is highlighted, which has recently been studied using Raman spectroscopy, allowing chemical imaging and detection of changes in starch and lipid accumulation. Three-dimensional reconstructions after serial block-face scanning electron microscopy (SBF-SEM) or focused ion beam SEM (FIB-SEM) made it possible to visualize and quantify cell wall and organelle changes during zygospore development. The zygospore walls undergo strong modifications starting from uniform thin cell walls to a multilayered structure. The mature cell wall is composed of a cellulosic endospore and exospore and a central mesospore built up by aromatic compounds. In Spirogyra, the exospore and endospore consist of thick layers of helicoidally arranged cellulose fibrils, which are otherwise only known from stone cells of land plants. While starch is degraded during maturation, providing building blocks for cell wall formation, lipid droplets accumulate and fill large parts of the ripe zygospores, similar to spores and seeds of land plants. Overall, data show similarities between streptophyte algae and embryophytes, suggesting that the genetic toolkit for many land plant traits already existed in their shared algal ancestor. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Charlotte Permann
- Department of Botany, University of Innsbruck, Sternwartestraße 15,6020 Innsbruck, Austria
| | - Andreas Holzinger
- Department of Botany, University of Innsbruck, Sternwartestraße 15,6020 Innsbruck, Austria
| |
Collapse
|
3
|
Kong Y, Zhou Q, Wang R, Chen Q, Xu X, Zhu L, Wang Y. Alleviating effects of microplastics together with tetracycline hydrochloride on the physiological stress of Closterium sp. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1588-1600. [PMID: 39099448 DOI: 10.1039/d4em00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Microplastics have significant influence on both freshwater cyanobacteria and marine microalgae, especially under co-exposure with other pollutants such as heavy metals, antibiotics, and pharmaceuticals. In the present study, combined effects of microplastics (polyethylene terephthalate (PET) or polybutylene terephthalate (PBT)) and tetracycline hydrochloride (TCH) on the microalgae Closterium sp. were studied to evaluate their acute toxicity, and the cell density, total chlorophyll concentration, photosynthetic activity, antioxidant system, and subcellular structure of Closterium sp. under different treatments were used to explain the physiological stress mechanism of the combined effects. The results indicate that both the single and combined treatments have inhibition effects on the cell growth and photosynthetic activity, with inhibition efficiencies (in terms of cell density) of 5.0%, 9.2%, 66.7%, 55.1%, and 59.8% for PET (100 mg L-1), PBT (100 mg L-1), TCH (10 mg L-1), PET/TCH (PET 100 mg L-1 and TCH 10 mg L-1), and PBT/TCH (PBT 100 mg L-1 and TCH 10 mg L-1), respectively, and relative electron-transport rates (rETRs) of 7.3%, 12.7%, 66.8%, 54.0%, and 59.9%, respectively, for each treatment compared with the control on the 7th day. Moreover, both PET and PBT have positive effects in alleviating TCH toxicity toward Closterium sp., and at the same time, the malondialdehyde level (MDA), superoxide dismutase (SOD) activity, and catalase (CAT) activity induced by the combined treatments were much higher than those from the single microplastic treatments but lower than those from TCH treatment after 7 days. It was demonstrated that TCH causes a much more serious oxidative stress than PET/TCH and PBT/TCH, and the lower oxidative stress of the PET/TCH and PBT/TCH groups could be attributed to the adsorption of TCH to PET or PBT. This work improves the understanding of the combined toxicity effects of microplastics and TCH on Closterium sp.
Collapse
Affiliation(s)
- Yun Kong
- College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China.
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Qingyun Zhou
- College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China.
| | - Renjuan Wang
- College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China.
| | - Qi Chen
- College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China.
| | - Xiangyang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Liang Zhu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yue Wang
- College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China.
| |
Collapse
|
4
|
Tsuchikane Y, Watanabe M, Kawaguchi YW, Uehara K, Nishiyama T, Sekimoto H, Tsuchimatsu T. Diversity of genome size and chromosome number in homothallic and heterothallic strains of the Closterium peracerosum-strigosum-littorale complex (Desmidiales, Zygnematophyceae, Streptophyta). JOURNAL OF PHYCOLOGY 2024; 60:654-667. [PMID: 38678594 DOI: 10.1111/jpy.13457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/27/2024] [Accepted: 03/31/2024] [Indexed: 05/01/2024]
Abstract
The evolutionary transitions of mating systems between outcrossing and self-fertilization are often suggested to associate with the cytological and genomic changes, but the empirical reports are limited in multicellular organisms. Here we used the unicellular zygnematophycean algae, the Closterium peracerosum-strigosum-littorale (C. psl.) complex, to address whether genomic properties such as genome sizes and chromosome numbers are associated with mating system transitions between homothallism (self-fertility) and heterothallism (self-sterility). Phylogenetic analysis revealed the polyphyly of homothallic strains, suggesting multiple transitions between homothallism and heterothallism in the C. psl. complex. Flow cytometry analysis identified a more than 2-fold genome size variation, ranging from 0.53 to 1.42 Gbp, which was positively correlated with chromosome number variation between strains. Although we did not find consistent trends in genome size change and mating system transitions, the mean chromosome sizes tend to be smaller in homothallic strains than in their relative heterothallic strains. This result suggests that homothallic strains possibly have more fragmented chromosomes, which is consistent with the argument that self-fertilizing populations may tolerate more chromosomal rearrangements.
Collapse
Affiliation(s)
- Yuki Tsuchikane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo, Japan
| | - Misaki Watanabe
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo, Japan
| | - Yawako W Kawaguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Koichi Uehara
- College of Liberal Arts and Sciences, Chiba University, Chiba, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroyuki Sekimoto
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo, Japan
| | - Takashi Tsuchimatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Kawaguchi YW, Tsuchikane Y, Tanaka K, Taji T, Suzuki Y, Toyoda A, Ito M, Watano Y, Nishiyama T, Sekimoto H, Tsuchimatsu T. Extensive Copy Number Variation Explains Genome Size Variation in the Unicellular Zygnematophycean Alga, Closterium peracerosum-strigosum-littorale Complex. Genome Biol Evol 2023; 15:evad115. [PMID: 37348049 PMCID: PMC10407611 DOI: 10.1093/gbe/evad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/17/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Genome sizes are known to vary within and among closely related species, but the knowledge about genomic factors contributing to the variation and their impacts on gene functions is limited to only a small number of species. This study identified a more than 2-fold heritable genome size variation among the unicellular Zygnematophycean alga, Closterium peracerosum-strigosum-littorale (C. psl.) complex, based on short-read sequencing analysis of 22 natural strains and F1 segregation analysis. Six de novo assembled genomes revealed that genome size variation is largely attributable to genome-wide copy number variation (CNV) among strains rather than mating type-linked genomic regions or specific repeat sequences such as rDNA. Notably, about 30% of genes showed CNV even between strains that can mate with each other. Transcriptome and gene ontology analysis demonstrated that CNV is distributed nonrandomly in terms of gene functions, such that CNV was more often observed in the gene set with stage-specific expression. Furthermore, in about 30% of these genes with CNV, the expression level does not increase proportionally with the gene copy number, suggesting presence of dosage compensation, which was overrepresented in genes involved in basic biological functions, such as translation. Nonrandom patterns in gene duplications and corresponding expression changes in terms of gene functions may contribute to maintaining the high level of CNV associated with extensive genome size variation in the C. psl. complex, despite its possible detrimental effects.
Collapse
Affiliation(s)
- Yawako W Kawaguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Graduate School of Science and Engineering, Chiba University, Chiba, Chiba, Japan
| | - Yuki Tsuchikane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Motomi Ito
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Yasuyuki Watano
- Graduate School of Science, Chiba University, Chiba, Chiba, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroyuki Sekimoto
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Takashi Tsuchimatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
6
|
Sekimoto H, Komiya A, Tsuyuki N, Kawai J, Kanda N, Ootsuki R, Suzuki Y, Toyoda A, Fujiyama A, Kasahara M, Abe J, Tsuchikane Y, Nishiyama T. A divergent RWP-RK transcription factor determines mating type in heterothallic Closterium. THE NEW PHYTOLOGIST 2023; 237:1636-1651. [PMID: 36533897 DOI: 10.1111/nph.18662] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The Closterium peracerosum-strigosum-littorale complex (Closterium, Zygnematophyceae) has an isogamous mating system. Members of the Zygnematophyceae are the closest relatives to extant land plants and are distantly related to chlorophytic models, for which a genetic basis of mating type (MT) determination has been reported. We thus investigated MT determination in Closterium. We sequenced genomes representing the two MTs, mt+ and mt-, in Closterium and identified CpMinus1, a gene linked to the mt- phenotype. We analyzed its function using reverse genetics methods. CpMinus1 encodes a divergent RWP-RK domain-containing-like transcription factor and is specifically expressed during gamete differentiation. Introduction of CpMinus1 into an mt+ strain was sufficient to convert it to a phenotypically mt- strain, while CpMinus1-knockout mt- strains were phenotypically mt+. We propose that CpMinus1 is the major MT determinant that acts by evoking the mt- phenotype and suppressing the mt+ phenotype in heterothallic Closterium. CpMinus1 likely evolved independently in the Zygnematophyceae lineage, which lost an egg-sperm anisogamous mating system. mt- specific regions possibly constitute an MT locus flanked by common sequences that undergo some recombination.
Collapse
Affiliation(s)
- Hiroyuki Sekimoto
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Ayumi Komiya
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Natsumi Tsuyuki
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Junko Kawai
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Naho Kanda
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Ryo Ootsuki
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8568, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Masahiro Kasahara
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8568, Japan
| | - Jun Abe
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Yuki Tsuchikane
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kakumacho, Kanazawa, Ishikawa, 920-1192, Japan
| |
Collapse
|
7
|
Zygnematophycean algae: Possible models for cellular and evolutionary biology. Semin Cell Dev Biol 2023; 134:59-68. [PMID: 35430142 DOI: 10.1016/j.semcdb.2022.03.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/20/2022]
Abstract
Plant terrestrialization was a critical event for our planet. For the study of plant evolution, charophytes have received a great deal of attention because of their phylogenetic position. Among charophytes, the class Zygnematophyceae is the closest lineage to land plants. During sexual reproduction, they show isogamous conjugation by immotile gametes, which is characteristic of zygnematophycean algae. Here, we introduce the genera Mougeotia, Penium, and Closterium, which are representative model organisms of Zygnematophyceae in terms of chloroplast photorelocation movement, the cell wall, and sexual reproduction, respectively.
Collapse
|
8
|
Kawai J, Kanazawa M, Suzuki R, Kikuchi N, Hayakawa Y, Sekimoto H. Highly efficient transformation of the model zygnematophycean alga Closterium peracerosum-strigosum-littorale complex by square-pulse electroporation. THE NEW PHYTOLOGIST 2022; 233:569-578. [PMID: 34605030 DOI: 10.1111/nph.17763] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The zygnematophycean algae occupy an important phylogenetic position as the closest living relatives of land plants. Reverse genetics is quite useful for dissecting the functions of genes. However, this strategy requires genetic transformation, and there are only a few reports of successful transformation in zygnematophycean algae. Here, we established a simple and highly efficient transformation technique for the unicellular zygnematophycean alga Closterium peracerosum-strigosum-littorale complex using a square electric pulse-generating electroporator without the need for cell wall removal. Using this method, the transformation efficiency increased > 100-fold compared with our previous study using particle bombardment. We also succeeded in performing CRISPR/Cas9-based gene knockout using this new method. Our method requires only small amounts of labor, time and incubator space. Moreover, our technique could also be utilized to transform other charophycean algae with available genome information by optimizing the electric pulse conditions.
Collapse
Affiliation(s)
- Junko Kawai
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Manaki Kanazawa
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Rie Suzuki
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Nanako Kikuchi
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | | | - Hiroyuki Sekimoto
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| |
Collapse
|
9
|
Coelho SM, Umen J. Switching it up: algal insights into sexual transitions. PLANT REPRODUCTION 2021; 34:287-296. [PMID: 34181073 PMCID: PMC8566403 DOI: 10.1007/s00497-021-00417-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/02/2021] [Indexed: 05/03/2023]
Abstract
While the process of meiosis is highly conserved across eukaryotes, the sexual systems that govern life cycle phase transitions are surprisingly labile. Switches between sexual systems have profound evolutionary and ecological consequences, in particular for plants, but our understanding of the fundamental mechanisms and ultimate causes underlying these transitions is still surprisingly incomplete. We explore here the idea that brown and green algae may be interesting comparative models that can increase our understanding of relevant processes in plant reproductive biology, from evolution of gamete dimorphism, gametogenesis, sex determination and transitions in sex-determining systems.
Collapse
Affiliation(s)
- Susana M Coelho
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany.
| | - James Umen
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| |
Collapse
|
10
|
Anders A, Colin R, Banderas A, Sourjik V. Asymmetric mating behavior of isogamous budding yeast. SCIENCE ADVANCES 2021; 7:7/24/eabf8404. [PMID: 34117059 PMCID: PMC8195471 DOI: 10.1126/sciadv.abf8404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/28/2021] [Indexed: 05/12/2023]
Abstract
Anisogamy, the size difference between small male and large female gametes, is known to enable selection for sexual dimorphism and behavioral differences between sexes. Nevertheless, even isogamous species exhibit molecular asymmetries between mating types, which are known to ensure their self-incompatibility. Here, we show that different properties of the pheromones secreted by the MATa and MATα mating types of budding yeast lead to asymmetry in their behavioral responses during mating in mixed haploid populations, which resemble behavioral asymmetries between gametes in anisogamous organisms. MATa behaves as a random searcher that is stimulated in proportion to the fraction of MATα partner cells within the population, whereas MATα behaves as a short-range directional distance sensor. Mathematical modeling suggests that the observed asymmetric responses can enhance efficiency of mating and might thus provide a selective advantage. Our results demonstrate that the emergence of asymmetric mating behavior did not require anisogamy-based sexual selection.
Collapse
Affiliation(s)
- Alexander Anders
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Remy Colin
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Alvaro Banderas
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Laboratoire Physico Chimie Curie, CNRS UMR168, Institut Curie, Paris, France
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
11
|
Zhou H, von Schwartzenberg K. Zygnematophyceae: from living algae collections to the establishment of future models. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3296-3304. [PMID: 32076703 DOI: 10.1093/jxb/eraa091] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
The class of conjugating green algae, Zygnematophyceae (Conjugatophyceae), is extremely rich in species and has attracted the interest of phycologists for a long time. It is now widely accepted that this class of charophyte algae holds a key position in the phylogenetic tree of streptophytes, where they represent the closest relatives to all land plants (embryophytes). It is increasingly evident that robust model plants that can be easily cultivated and genetically transformed are necessary to better understand the process of terrestrialization and the related molecular, cellular, and physiological adaptations. Living algae collections play an important role, not only for phylogenomic-based taxonomy but also for screening for suitable model organisms. For this review, we screened six major public algae collections for Zygnematophyceae strains and established a cumulative list comprising 738 different taxa (including species, subspecies, varieties, and forms). From the described biodiversity with 8883 registered taxa (AlgaeBase) the cultured Zygnematophyceae taxa worldwide cover only ~8.3%. We review the past research on this clade of algae and discuss it from the perspective of establishing a model organism. We present data on the life cycle of the genera Micrasterias and Spirogyra, representing the orders Desmidiales and Zygnematales, and outline the current status of genetic transformation of Zygnematophyceae algae and future research perspectives.
Collapse
Affiliation(s)
- Hong Zhou
- Microalgae and Zygnematophyceae Collection Hamburg, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Klaus von Schwartzenberg
- Microalgae and Zygnematophyceae Collection Hamburg, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
12
|
Abstract
Algae are photosynthetic eukaryotes whose taxonomic breadth covers a range of life histories, degrees of cellular and developmental complexity, and diverse patterns of sexual reproduction. These patterns include haploid- and diploid-phase sex determination, isogamous mating systems, and dimorphic sexes. Despite the ubiquity of sexual reproduction in algae, their mating-type-determination and sex-determination mechanisms have been investigated in only a limited number of representatives. These include volvocine green algae, where sexual cycles and sex-determining mechanisms have shed light on the transition from mating types to sexes, and brown algae, which are a model for UV sex chromosome evolution in the context of a complex haplodiplontic life cycle. Recent advances in genomics have aided progress in understanding sexual cycles in less-studied taxa including ulvophyte, charophyte, and prasinophyte green algae, as well as in diatoms.
Collapse
Affiliation(s)
- James Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA;
| | - Susana Coelho
- Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Université Paris 06, CNRS, CS 90074, F-29688 Roscoff, France;
| |
Collapse
|
13
|
Caisová L, Jobe TO. Regeneration and transient gene expression in protoplasts of Draparnaldia (chlorophytes), an emerging model for comparative analyses with basal streptophytes. PLANT METHODS 2019; 15:74. [PMID: 31338114 PMCID: PMC6624896 DOI: 10.1186/s13007-019-0460-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/06/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Green plants comprise two lineages: (1) the streptophytes that colonised land and (2) the chlorophytes that have adaptations to land but remained mostly aquatic. To better understand what made streptophytes so successful, we are currently establishing the chlorophyte alga Draparnaldia sp. (Chaetophorales, Chlorophyceae) as a model for comparative analyses between these two lineages. However, establishing Draparnaldia as a valuable model requires that it can be transformed. Thus, our goal is to develop a transformation protocol for this alga. RESULTS We have established the first transformation protocol for Draparnaldia. This protocol is based on protoplast transformation by electroporation. It includes instructions on protoplast isolation, regeneration and transient transfection. It also provides a list of the effective selective agents for future Draparnaldia transformations. CONCLUSIONS Our protocol opens a way for Draparnaldia functional genomics analyses. Moreover, it also provides an important base for establishment of stable transformation.
Collapse
Affiliation(s)
- Lenka Caisová
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT UK
| | - Timothy O. Jobe
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|