1
|
Horstmann M, Speck T, Poppinga S. Orchestrated Movement Sequences and Shape-Memory-like Effects in Pine Cones. PLANTS (BASEL, SWITZERLAND) 2024; 13:2078. [PMID: 39124196 PMCID: PMC11313876 DOI: 10.3390/plants13152078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
Hygroscopic seed-scale movement is responsible for the weather-adaptive opening and closing of pine cones and for facilitating seed dispersal under favorable environmental conditions. Although this phenomenon has long been investigated, many involved processes are still not fully understood. To gain a deeper mechanical and structural understanding of the cone and its functional units, namely the individual seed scales, we have investigated their desiccation- and wetting-induced movement processes in a series of analyses and manipulative experiments. We found, for example, that the abaxial scale surface is responsible for the evaporation of water from the closed cone and subsequent cone opening. Furthermore, we tested the capability of dry and deformed scales to restore their original shape and biomechanical properties by wetting. These results shed new light on the orchestration of scale movement in cones and the involved forces and provide information about the functional robustness and resilience of cones, leading to a better understanding of the mechanisms behind hygroscopic pine cone opening, the respective ecological framework, and, possibly, to the development of smart biomimetic actuators.
Collapse
Affiliation(s)
- Martin Horstmann
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, 44780 Bochum, Germany
- Plant Biomechanics Group, Botanical Garden, University of Freiburg, 79104 Freiburg im Breisgau, Germany;
| | - Thomas Speck
- Plant Biomechanics Group, Botanical Garden, University of Freiburg, 79104 Freiburg im Breisgau, Germany;
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg, Germany
| | - Simon Poppinga
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg, Germany
- Botanical Garden, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
2
|
Suissa JS, Barkoff N, Watkins JE. Extreme functional specialization of fertile leaves in a widespread fern species and its implications on the evolution of reproductive dimorphism. Ecol Evol 2024; 14:e11552. [PMID: 38952657 PMCID: PMC11214101 DOI: 10.1002/ece3.11552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Resource allocation theory posits that organisms distribute limited resources across functions to maximize their overall fitness. In plants, the allocation of resources among maintenance, reproduction, and growth influences short-term economics and long-term evolutionary processes, especially during resource scarcity. The evolution of specialized structures to divide labor between reproduction and growth can create a feedback loop where selection can act on individual organs, further increasing specializaton and resource allocation. Ferns exhibit diverse reproductive strategies, including dimorphism, where leaves can either be sterile (only for photosynthesis) or fertile (for spore dispersal). This dimorphism is similar to processes in seed plants (e.g., the production of fertile flowers and sterile leaves), and presents an opportunity to investigate divergent resource allocation between reproductive and vegetative functions in specialized organs. Here, we conducted anatomical and hydraulic analyses on Onoclea sensibilis L., a widespread dimorphic fern species, to reveal significant structural and hydraulic divergences between fertile and sterile leaves. Fertile fronds invest less in hydraulic architecture, with nearly 1.5 times fewer water-conducting cells and a nearly 0.5 times less drought-resistant xylem compared to sterile fronds. This comes at the increased relative investment in structural support, which may help facilitate spore dispersal. These findings suggest that specialization in ferns-in the form of reproductive dimorphism-can enable independent selection pressures on each leaf type, potentially optimizing spore dispersal in fertile fronds and photosynthetic efficiency in sterile fronds. Overall, our study sheds light on the evolutionary implications of functional specialization and highlights the importance of reproductive strategies in shaping plant fitness and evolution.
Collapse
Affiliation(s)
- Jacob S. Suissa
- Department of Ecology and Evolutionary BiologyUniversity of Tennessee KnoxvilleKnoxvilleTennesseeUSA
| | - Noah Barkoff
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | | |
Collapse
|
3
|
Huntsman SV, Leslie AB. The ontogeny of disparity in Cupressaceae seed cones. THE NEW PHYTOLOGIST 2023. [PMID: 38148572 DOI: 10.1111/nph.19482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/25/2023] [Indexed: 12/28/2023]
Abstract
Ontogenetic shape change has long been recognized to be important in generating patterns of morphological diversity and may be especially important in plant reproductive structures. We explore how seed cone disparity in Cupressaceae changes over ontogeny by comparing pollination-stage and mature cones. We sampled cones at pollen and seed release and measured cone scales using basic morphometric shape variables. We used multivariate statistical methods, particularly hypervolume overlap calculations, to measure morphospace occupation and disparity. Cone scales at both pollination and maturity exhibit substantial variability, although the disparity is greater at maturity. Mature cone scales are also more clustered in trait space, showing less overlap with other taxa than at pollination. These patterns reflect two growth strategies that generate closed cones over maturation, either through thin laminar scales or relatively thick, peltate scales, resulting in two distinct regions of morphospace occupation. Disparity patterns in Cupressaceae seed cones change over ontogeny, reflecting shifting functional demands that require specific patterns of cone scale growth. The evolution of Cupressaceae reproductive disparity therefore represents selection for trajectories of ontogenetic shape change, a phenomenon that should be widespread across seed plants.
Collapse
Affiliation(s)
- Stepfan V Huntsman
- Department of Earth and Planetary Sciences, Stanford University, 450 Jane Stanford Way, Building 320, Room 118, Stanford, CA, 94305, USA
| | - Andrew B Leslie
- Department of Earth and Planetary Sciences, Stanford University, 450 Jane Stanford Way, Building 320, Room 118, Stanford, CA, 94305, USA
| |
Collapse
|
4
|
Leslie AB, Mander L. Quantifying the complexity of plant reproductive structures reveals a history of morphological and functional integration. Proc Biol Sci 2023; 290:20231810. [PMID: 37909082 PMCID: PMC10618862 DOI: 10.1098/rspb.2023.1810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
Vascular plant reproductive structures have undoubtedly become more complex through time, evolving highly differentiated parts that interact in specialized ways. But quantifying these patterns at broad scales is challenging because lineages produce disparate reproductive structures that are often difficult to compare and homologize. We develop a novel approach for analysing interactions within reproductive structures using networks, treating component parts as nodes and a suite of physical and functional interactions among parts as edges. We apply this approach to the plant fossil record, showing that interactions have generally increased through time and that the concentration of these interactions has shifted towards differentiated surrounding organs, resulting in more compact, functionally integrated structures. These processes are widespread across plant lineages, but their extent and timing vary with reproductive biology; in particular, seed-producing structures show them more strongly than spore or pollen-producing structures. Our results demonstrate that major reproductive innovations like the origin of seeds and angiospermy were associated with increased integration through greater interactions among parts. But they also reveal that for certain groups, particularly Mesozoic gymnosperms, millions of years elapsed between the origin of reproductive innovations and increased interactions among parts within their reproductive structures.
Collapse
Affiliation(s)
- Andrew B. Leslie
- Department of Geological Sciences, Stanford University, 450 Jane Stanford Way, Building 320, Room 118, Stanford, CA 94305, USA
| | - Luke Mander
- School of Environment, Earth and Ecosystem Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| |
Collapse
|
5
|
Petrone-Mendoza E, Vergara-Silva F, Olson ME. Plant morpho evo-devo. TRENDS IN PLANT SCIENCE 2023; 28:1257-1276. [PMID: 37423784 DOI: 10.1016/j.tplants.2023.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
Evo-devo is often thought of as being the study of which genes underlie which phenotypes. However, evo-devo is much more than this, especially in plant science. In leaf scars along stems, cell changes across wood growth rings, or flowers along inflorescences, plants trace a record of their own development. Plant morpho evo-devo provides data that genes could never furnish on themes such as heterochrony, the evolution of temporal phenotypes, modularity, and phenotype-first evolution. As plant science surges into increasingly -omic realms, it is essential to keep plant morpho evo-devo in full view as an honored member of the evo-devo canon, ensuring that plant scientists can, wherever they are, generate fundamental insights at the appropriate level of biological organization.
Collapse
Affiliation(s)
- Emilio Petrone-Mendoza
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México 04510, México; Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, CDMX, México
| | - Francisco Vergara-Silva
- Laboratorio de Teoría Evolutiva e Historia de la Ciencia, Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México 04510, México.
| |
Collapse
|
6
|
Herrera F, Shi G, Bickner MA, Ichinnorov N, Leslie AB, Crane PR, Herendeen PS. Early Cretaceous abietoid Pinaceae from Mongolia and the history of seed scale shedding. AMERICAN JOURNAL OF BOTANY 2021; 108:1483-1499. [PMID: 34458982 DOI: 10.1002/ajb2.1713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/10/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Seed cones of extant Pinaceae exhibit two mechanisms of seed release. In "flexers" the cone scales remain attached to the central axis, while flexing and separating from each other to release the seeds. In "shedders" scales are shed from the axis, with the seeds either remaining attached to the scale or becoming detached. The early fossil history of Pinaceae from the Jurassic to Early Cretaceous is dominated by flexing seed cones, while the systematic information provided by shedding fossil cones has been overlooked and rarely integrated with data based on compression and permineralized specimens. We describe the earliest and best-documented evidence of a "shedder" seed cone from the Aptian-Albian of Mongolia. METHODS Lignite samples from Tevshiin Govi locality were disaggregated in water, washed, and dried in air. Fossils were compared to material of extant Pinaceae using LM and CT scans. RESULTS Lepidocasus mellonae gen. et sp. nov. is characterized by a seed cone that disarticulated at maturity and shed obovate bract-scale complexes that have a distinctive ribbed surface and an abaxial surface covered with abundant trichomes. The ovuliferous scale has ca. 30-40 resin canals, but only scarce xylem near the attachment to the cone axis. Resin vesicles are present in the seed integument. Phylogenetic analysis places Lepidocasus as sister to extant Cedrus within the abietoid grade. CONCLUSIONS The exquisite preservation of the trichomes in L. mellonae raises questions about their potential ecological function in the cones of fossil and living Pinaceae. Lepidocasus mellonae also shows that a shedding dispersal syndrome, a feature that has often been overlooked, evolved early in the history of Pinaceae during the Early Cretaceous.
Collapse
Affiliation(s)
| | - Gongle Shi
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, 210008, China
| | | | - Niiden Ichinnorov
- Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar-15160, Mongolia
| | - Andrew B Leslie
- Department of Geological Sciences, Stanford University, California, 94305, USA
| | - Peter R Crane
- Oak Spring Garden Foundation, Oak Spring, Upperville, Virginia, 20184, USA
- Yale School of the Environment, Yale University, New Haven, Connecticut, 06511, USA
| | | |
Collapse
|
7
|
Herrera F, Shi G, Mays C, Ichinnorov N, Takahashi M, Bevitt JJ, Herendeen PS, Crane PR. Reconstructing Krassilovia mongolica supports recognition of a new and unusual group of Mesozoic conifers. PLoS One 2020; 15:e0226779. [PMID: 31940374 PMCID: PMC6961850 DOI: 10.1371/journal.pone.0226779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/03/2019] [Indexed: 11/19/2022] Open
Abstract
Previously unrecognized anatomical features of the cone scales of the enigmatic Early Cretaceous conifer Krassilovia mongolica include the presence of transversely oriented paracytic stomata, which is unusual for all other extinct and extant conifers. Identical stomata are present on co-occurring broad, linear, multiveined leaves assigned to Podozamites harrisii, providing evidence that K. mongolica and P. harrisii are the seed cones and leaves of the same extinct plant. Phylogenetic analyses of the relationships of the reconstructed Krassilovia plant place it in an informal clade that we name the Krassilovia Clade, which also includes Swedenborgia cryptomerioides-Podozamites schenkii, and Cycadocarpidium erdmanni-Podozamites schenkii. All three of these plants have linear leaves that are relatively broad compared to most living conifers, and that are also multiveined with transversely oriented paracytic stomata. We propose that these may be general features of the Krassilovia Clade. Paracytic stomata, and other features of this new group, recall features of extant and fossil Gnetales, raising questions about the phylogenetic homogeneity of the conifer clade similar to those raised by phylogenetic analyses of molecular data.
Collapse
Affiliation(s)
- Fabiany Herrera
- Chicago Botanic Garden, Glencoe, Illinois, United States of America
| | - Gongle Shi
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, People’s Republic of China
| | - Chris Mays
- Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia
| | - Niiden Ichinnorov
- Institute of Paleontology and Geology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | - Masamichi Takahashi
- Department of Environmental Sciences, Faculty of Science, Niigata University, Nishi-ku, Niigata, Japan
| | - Joseph J. Bevitt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New South Wales, Australia
| | | | - Peter R. Crane
- Oak Spring Garden Foundation, Upperville, Virginia, United States of America
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
8
|
Leslie AB, Losada JM. Reproductive Ontogeny and the Evolution of Morphological Diversity in Conifers and Other Plants. Integr Comp Biol 2019; 59:548-558. [DOI: 10.1093/icb/icz062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Biologists often study morphological evolution through form and function relationships. But biological structures can perform multiple functional roles, complicating efforts to understand the evolutionary significance of any one relationship. Plant reproductive organs perform multiple roles in a sequence, however, which provides a unique opportunity to understand how structures evolve to meet multiple functional demands. Using conifers as a study group, we discuss how a shared developmental trajectory links the performance of sequential functional roles. Variation in development among lineages can underlie morphological diversity; pollination-stage seed cones in Pinaceae conifers function similarly but show diverse forms reflecting differences in developmental rate. As cones develop further, the morphologies that they use to perform later functional roles are influenced by the specific developmental patterns used to meet earlier demands, which may ultimately limit morphological diversity. However, we also show how selective pressures relating to the final functional stage (seed dispersal) may influence cone anatomy and morphology over all previous stages, highlighting the complex linkages among form, function, and development. We end by discussing the potential relationships between functional ontogeny and morphological disparity in plant reproductive structures more broadly, suggesting that the complex functional roles associated with seed plant reproduction probably underlie the high disparity in this group.
Collapse
Affiliation(s)
- A B Leslie
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, RI 02912, USA
| | - J M Losada
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC). Avda. Dr. Wienberg s/n, Algarrobo-Costa, Málaga 29750, Spain
| |
Collapse
|