1
|
Lung SC, Chye ML. Mechanistic effects of lipid binding pockets within soluble signaling proteins: lessons from acyl-CoA-binding and START-domain-containing proteins. PLANT PHYSIOLOGY 2025; 197:kiae565. [PMID: 39431550 DOI: 10.1093/plphys/kiae565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
While lipids serve as important energy reserves, metabolites, and cellular constituents in all forms of life, these macromolecules also function as unique carriers of information in plant communication given their diverse chemical structures. The signal transduction process involves a sophisticated interplay between messengers, receptors, signal transducers, and downstream effectors. Over the years, an array of plant signaling proteins have been identified for their crucial roles in perceiving lipid signals. However, the mechanistic effects of lipid binding on protein functions remain largely elusive. Recent literature has presented numerous fascinating models that illustrate the significance of protein-lipid interactions in mediating signaling responses. This review focuses on the category of lipophilic signaling proteins that encompass a hydrophobic binding pocket located outside of cellular membranes and provides an update on the lessons learned from two of these structures, namely the acyl-CoA-binding and steroidogenic acute regulatory protein-related lipid transfer domains. It begins with a brief overview of the latest advances in understanding the functions of the two protein families in plant communication. The second part highlights five functional mechanisms of lipid ligands in concert with their target signaling proteins.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Mee-Len Chye
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
| |
Collapse
|
2
|
Zhou L, Wu Q, Yang Y, Li Q, Li R, Ye J. Regulation of Oil Biosynthesis and Genetic Improvement in Plants: Advances and Prospects. Genes (Basel) 2024; 15:1125. [PMID: 39336716 PMCID: PMC11431182 DOI: 10.3390/genes15091125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Triglycerides are the main storage form of oil in plant seeds. Both fatty acids and triglycerides possess important functions in the process of plant growth and development. To improve the seed oil content and improve its fatty acid composition, this paper analyzed the research progress on the oil regulation and synthesis metabolism process of plant seeds and summarized the strategies for the improvement of plant seed oil: (a) To regulate carbon distribution by inhibiting the expression of genes encoding key enzymes, allocating carbon sources into the protein synthesis pathway, and enhancing the expression of key genes encoding key enzymes, leading carbon sources into the synthesis pathway of fatty acids; (b) To intervene in lipid synthesis by promoting the biosynthesis of fatty acids and improving the expression level of key genes encoding enzymes in the triacylglycerol (TAG) assembly process; (c) To improve seed oil quality by altering the plant fatty acid composition and regulating the gene expression of fatty acid desaturase, as well as introducing an exogenous synthesis pathway of long chain polyunsaturated fatty acids; (d) To regulate the expression of transcription factors for lipid synthesis metabolism to increase the seed oil content. In addition, this article reviews the key enzymes involved in the biosynthesis of plant fatty acids, the synthesis of triacylglycerol, and the regulation process. It also summarizes the regulatory roles of transcription factors such as WRI, LEC, and Dof on the key enzymes during the synthesis process. This review holds significant implications for research on the genetic engineering applications in plant seed lipid metabolism.
Collapse
Affiliation(s)
- Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Qiufei Wu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Qihong Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Rui Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Jianqiu Ye
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China (Y.Y.); (Q.L.); (R.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| |
Collapse
|
3
|
Bascom C. From the archives: oxylipins, trojan horses, and light-dependent mRNA stabilization. THE PLANT CELL 2023; 35:955-957. [PMID: 36529484 PMCID: PMC10015155 DOI: 10.1093/plcell/koac365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Carlisle Bascom
- The Plant Cell, American Society of Plant Biologists, USA
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Ling J, Li L, Lin L, Xie H, Zheng Y, Wan X. Genome-wide identification of acyl-CoA binding proteins and possible functional prediction in legumes. Front Genet 2023; 13:1057160. [PMID: 36704331 PMCID: PMC9871394 DOI: 10.3389/fgene.2022.1057160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Acyl-CoA-binding proteins (ACBPs), members of a vital housekeeping protein family, are present in various animal and plant species. They are divided into four classes: small ACBPs (class I), ankyrin-repeat ACBPs (class II), large ACBPs (class III), and kelch-ACBPs (class IV). Plant ACBPs play a pivotal role in intracellular transport, protection, and pool formation of acyl-CoA esters, promoting plant development and stress response. Even though legume crops are important for vegetable oils, proteins, vegetables and green manure, legume ACBPs are not well investigated. To comprehensively explore the functions of ACBPs in nine legumes (Lotus japonicus, Medicago truncatula, Glycine max, Vigna angularis, Vigna radiata, Phaseolus vulgaris, Arachis hypogaea, Arachis duranensis, and Arachis ipaensis), we conducted genome-wide identification of the ACBP gene family. Our evolutionary analyses included phylogenetics, gene structure, the conserved motif, chromosomal distribution and homology, subcellular localization, cis-elements, and interacting proteins. The results revealed that ACBP Orthologs of nine legumes had a high identity in gene structure and conserved motif. However, subcellular localization, cis-acting elements, and interaction protein analyses revealed potentially different functions from previously reported. The predicted results were also partially verified in Arachis hypogaea. We believe that our findings will help researchers understand the roles of ACBPs in legumes and encourage them to conduct additional research.
Collapse
|
5
|
Effects of Hypoxia Stress on Growth, Root Respiration, and Metabolism of Phyllostachys praecox. Life (Basel) 2022; 12:life12060808. [PMID: 35743839 PMCID: PMC9224615 DOI: 10.3390/life12060808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
Hypoxia affects plant growth, hormone content, various enzyme activities, cell structure, peroxide production, and metabolic level, therefore reducing crop yield. This study assessed the physiological, biochemical, and metabolic characteristics of Phyllostachys praecox. Results revealed that hypoxia stress treatment significantly inhibited plant growth. Leaf chlorophyll contents was initially improved and then reduced with plant growth time. Under hypoxia stress, the root activity significantly was reduced, leading to the decrease in the nutrient absorption and transport. Yet, with low oxygen concentration, the contents of ethanol, acetaldehyde, and lactic acid were improved. With hypoxia stress, phospholipids and amino acids were the main metabolites of Phyllostachys praecox. Glycosphospholipid metabolism is the key pathway in responding to hypoxia stress significantly (p < 0.05), and lysophosphatidlycholine (lysoPC) and phosphatidylcholines (PC) in the metabolites of this metabolic pathway were significantly enhanced. Our study reveals the mechanism of Phyllostachys praecox cell membrane responding to hypoxia stress based on molecular level. This is conducive to finding targeted solutions to improve the productivity of Phyllostachys praecox to better optimize a mulching approach in the bamboo forest.
Collapse
|
6
|
Hamdan MF, Lung SC, Guo ZH, Chye ML. Roles of acyl-CoA-binding proteins in plant reproduction. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2918-2936. [PMID: 35560189 DOI: 10.1093/jxb/erab499] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/11/2021] [Indexed: 06/15/2023]
Abstract
Acyl-CoA-binding proteins (ACBPs) constitute a well-conserved family of proteins in eukaryotes that are important in stress responses and development. Past studies have shown that ACBPs are involved in maintaining, transporting and protecting acyl-CoA esters during lipid biosynthesis in plants, mammals, and yeast. ACBPs show differential expression and various binding affinities for acyl-CoA esters. Hence, ACBPs can play a crucial part in maintaining lipid homeostasis. This review summarizes the functions of ACBPs during the stages of reproduction in plants and other organisms. A comprehensive understanding on the roles of ACBPs during plant reproduction may lead to opportunities in crop improvement in agriculture.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ze-Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
7
|
Alahakoon AY, Tongson E, Meng W, Ye ZW, Russell DA, Chye ML, Golz JF, Taylor PWJ. Overexpressing Arabidopsis thaliana ACBP6 in transgenic rapid-cycling Brassica napus confers cold tolerance. PLANT METHODS 2022; 18:62. [PMID: 35546678 PMCID: PMC9097446 DOI: 10.1186/s13007-022-00886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Rapid-cycling Brassica napus (B. napus-RC) has potential as a rapid trait testing system for canola (B. napus) because its life cycle is completed within 2 months while canola usually takes 4 months, and it is susceptible to the same range of diseases and abiotic stress as canola. However, a rapid trait testing system for canola requires the development of an efficient transformation and tissue culture system for B. napus-RC. Furthermore, effectiveness of this system needs to be demonstrated by showing that a particular trait can be rapidly introduced into B. napus-RC plants. RESULTS An in-vitro regeneration protocol was developed for B. napus-RC using 4-day-old cotyledons as the explant. High regeneration percentages, exceeding 70%, were achieved when 1-naphthaleneacetic acid (0.10 mg/L), 6-benzylaminopurine (1.0 mg/L), gibberellic acid (0.01 mg/L) and the ethylene antagonist silver nitrate (5 mg/L) were included in the regeneration medium. An average transformation efficiency of 16.4% was obtained using Agrobacterium-mediated transformation of B. napus-RC cotyledons using Agrobacterium strain GV3101 harbouring a plasmid with an NPTII (kanamycin-selectable) marker gene and the Arabidopsis thaliana cDNA encoding ACYL-COA-BINDING PROTEIN6 (AtACBP6). Transgenic B. napus-RC overexpressing AtACBP6 displayed better tolerance to freezing/frost than the wild type, with enhanced recovery from cellular membrane damage at both vegetative and flowering stages. AtACBP6-overexpressing B. napus-RC plants also exhibited lower electrolyte leakage and improved recovery following frost treatment, resulting in higher yields than the wild type. Ovules from transgenic AtACBP6 lines were better protected from frost than those of the wild type, while the developing embryos of frost-treated AtACBP6-overexpressing plants showed less freezing injury than the wild type. CONCLUSIONS This study demonstrates that B. napus-RC can be successfully regenerated and transformed from cotyledon explants and has the potential to be an effective trait testing platform for canola. Additionally, AtACBP6 shows potential for enhancing cold tolerance in canola however, larger scale studies will be required to further confirm this outcome.
Collapse
Affiliation(s)
- Aruni Y Alahakoon
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Eden Tongson
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Wei Meng
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zi-Wei Ye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Derek A Russell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - John F Golz
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Paul W J Taylor
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
8
|
Lung SC, Lai SH, Wang H, Zhang X, Liu A, Guo ZH, Lam HM, Chye ML. Oxylipin signaling in salt-stressed soybean is modulated by ligand-dependent interaction of Class II acyl-CoA-binding proteins with lipoxygenase. THE PLANT CELL 2022; 34:1117-1143. [PMID: 34919703 PMCID: PMC8894927 DOI: 10.1093/plcell/koab306] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/11/2021] [Indexed: 05/24/2023]
Abstract
Plant lipoxygenases (LOXs) oxygenate linoleic and linolenic acids, creating hydroperoxy derivatives, and from these, jasmonates and other oxylipins are derived. Despite the importance of oxylipin signaling, its activation mechanism remains largely unknown. Here, we show that soybean ACYL-COA-BINDING PROTEIN3 (ACBP3) and ACBP4, two Class II acyl-CoA-binding proteins, suppressed activity of the vegetative LOX homolog VLXB by sequestering it at the endoplasmic reticulum. The ACBP4-VLXB interaction was facilitated by linoleoyl-CoA and linolenoyl-CoA, which competed with phosphatidic acid (PA) for ACBP4 binding. In salt-stressed roots, alternative splicing produced ACBP variants incapable of VLXB interaction. Overexpression of the variants enhanced LOX activity and salt tolerance in Arabidopsis and soybean hairy roots, whereas overexpressors of the native forms exhibited reciprocal phenotypes. Consistently, the differential alternative splicing pattern in two soybean genotypes coincided with their difference in salt-induced lipid peroxidation. Salt-treated soybean roots were enriched in C32:0-PA species that showed high affinity to Class II ACBPs. We conclude that PA signaling and alternative splicing suppress ligand-dependent interaction of Class II ACBPs with VLXB, thereby triggering lipid peroxidation during salt stress. Hence, our findings unveil a dual mechanism that initiates the onset of oxylipin signaling in the salinity response.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sze Han Lai
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Haiyang Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiuying Zhang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ailin Liu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ze-Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
9
|
Interactions between plant lipid-binding proteins and their ligands. Prog Lipid Res 2022; 86:101156. [DOI: 10.1016/j.plipres.2022.101156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/05/2021] [Accepted: 01/14/2022] [Indexed: 01/11/2023]
|
10
|
Plant Acyl-CoA-Binding Proteins-Their Lipid and Protein Interactors in Abiotic and Biotic Stresses. Cells 2021; 10:cells10051064. [PMID: 33946260 PMCID: PMC8146436 DOI: 10.3390/cells10051064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Plants are constantly exposed to environmental stresses during their growth and development. Owing to their immobility, plants possess stress-sensing abilities and adaptive responses to cope with the abiotic and biotic stresses caused by extreme temperatures, drought, flooding, salinity, heavy metals and pathogens. Acyl-CoA-binding proteins (ACBPs), a family of conserved proteins among prokaryotes and eukaryotes, bind to a variety of acyl-CoA esters with different affinities and play a role in the transport and maintenance of subcellular acyl-CoA pools. In plants, studies have revealed ACBP functions in development and stress responses through their interactions with lipids and protein partners. This review summarises the roles of plant ACBPs and their lipid and protein interactors in abiotic and biotic stress responses.
Collapse
|
11
|
Xie LJ, Zhou Y, Chen QF, Xiao S. New insights into the role of lipids in plant hypoxia responses. Prog Lipid Res 2020; 81:101072. [PMID: 33188800 DOI: 10.1016/j.plipres.2020.101072] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/25/2020] [Accepted: 11/08/2020] [Indexed: 12/21/2022]
Abstract
In plants, hypoxia (low-oxygen stress) is induced by soil waterlogging or submergence and this major abiotic stress has detrimental effects on plant growth, development, distribution, and productivity. To survive low-oxygen stress, plants have evolved a set of morphological, physiological, and biochemical adaptations. These adaptations integrate metabolic acclimation and signaling networks allowing plants to endure or escape from low-oxygen environments by altering their metabolism and growth. Lipids are ubiquitously involved in regulating plant responses to hypoxia and post-hypoxic reoxygenation. In particular, the polyunsaturation of long-chain acyl-CoAs regulates hypoxia sensing in plants by modulating acyl-CoA-binding protein-Group VII ethylene response factor dynamics. Moreover, unsaturated very-long-chain ceramide species protect plants from hypoxia-induced cellular damage by regulating the kinase activity of CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway. Finally, the oxylipin jasmonate specifically regulates plant responses to reoxygenation stress by transcriptionally modulating antioxidant biosynthesis. Here we provide an overview of the roles of lipid remodeling and signaling in plant responses to hypoxia/reoxygenation and their effects on the downstream events affecting plant survival. In addition, we highlight the key remaining challenges in this important field.
Collapse
Affiliation(s)
- Li-Juan Xie
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ying Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
12
|
Meng W, Xu L, Du ZY, Wang F, Zhang R, Song X, Lam SM, Shui G, Li Y, Chye ML. RICE ACYL-COA-BINDING PROTEIN6 Affects Acyl-CoA Homeostasis and Growth in Rice. RICE (NEW YORK, N.Y.) 2020; 13:75. [PMID: 33159253 PMCID: PMC7647982 DOI: 10.1186/s12284-020-00435-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/21/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUNDS Acyl-coenzyme A (CoA) esters are important intermediates in lipid metabolism with regulatory properties. Acyl-CoA-binding proteins bind and transport acyl-CoAs to fulfill these functions. RICE ACYL-COA-BINDING PROTEIN6 (OsACBP6) is currently the only one peroxisome-localized plant ACBP that has been proposed to be involved in β-oxidation in transgenic Arabidopsis. The role of the peroxisomal ACBP (OsACBP6) in rice (Oryza sativa) was investigated. RESULTS Here, we report on the function of OsACBP6 in rice. The osacbp6 mutant showed diminished growth with reduction in root meristem activity and leaf growth. Acyl-CoA profiling and lipidomic analysis revealed an increase in acyl-CoA content and a slight triacylglycerol accumulation caused by the loss of OsACBP6. Comparative transcriptomic analysis discerned the biological processes arising from the loss of OsACBP6. Reduced response to oxidative stress was represented by a decline in gene expression of a group of peroxidases and peroxidase activities. An elevation in hydrogen peroxide was observed in both roots and shoots/leaves of osacbp6. Taken together, loss of OsACBP6 not only resulted in a disruption of the acyl-CoA homeostasis but also peroxidase-dependent reactive oxygen species (ROS) homeostasis. In contrast, osacbp6-complemented transgenic rice displayed similar phenotype to the wild type rice, supporting a role for OsACBP6 in the maintenance of the acyl-CoA pool and ROS homeostasis. Furthermore, quantification of plant hormones supported the findings observed in the transcriptome and an increase in jasmonic acid level occurred in osacbp6. CONCLUSIONS In summary, OsACBP6 appears to be required for the efficient utilization of acyl-CoAs. Disruption of OsACBP6 compromises growth and led to provoked defense response, suggesting a correlation of enhanced acyl-CoAs content with defense responses.
Collapse
Affiliation(s)
- Wei Meng
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Lijian Xu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Zhi-Yan Du
- Department of Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Fang Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Rui Zhang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xingshun Song
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Lipidall Technologies Company Limited, Changzhou, 213000, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuhua Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
13
|
Aznar-Moreno JA, Venegas-Calerón M, Du ZY, Garcés R, Tanner JA, Chye ML, Martínez-Force E, Salas JJ. Characterization and function of a sunflower (Helianthus annuus L.) Class II acyl-CoA-binding protein. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110630. [PMID: 33180709 DOI: 10.1016/j.plantsci.2020.110630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 05/13/2023]
Abstract
Acyl-CoA-binding proteins (ACBP) bind to long-chain acyl-CoA esters and phospholipids, enhancing the activity of different acyltransferases in animals and plants. Nevertheless, the role of these proteins in the synthesis of triacylglycerols (TAGs) remains unclear. Here, we cloned a cDNA encoding HaACBP1, a Class II ACBP from sunflower (Helianthus annuus), one of the world's most important oilseed crop plants. Transcriptome analysis of this gene revealed strong expression in developing seeds from 16 to 30 days after flowering. The recombinant protein (rHaACBP1) was expressed in Escherichia coli and purified to be studied by in vitro isothermal titration calorimetry and for phospholipid binding. Its high affinity for saturated palmitoyl-CoA (16:0-CoA; KD 0.11 μM) and stearoyl-CoA (18:0-CoA; KD 0.13 μM) esters suggests that rHaACBP1 could act in acyl-CoA transfer pathways that involve saturated acyl derivatives. Furthermore, rHaACBP1 also binds to both oleoyl-CoA (18:1-CoA; KD 6.4 μM) and linoleoyl-CoA (18:2-CoA; KD 21.4 μM) esters, the main acyl-CoA substrates used to synthesise the TAGs that accumulate in sunflower seeds. Interestingly, rHaACBP1 also appears to bind to different species of phosphatidylcholines (dioleoyl-PC and dilinoleoyl-PC), glycerolipids that are also involved in TAG synthesis, and while it interacts with dioleoyl-PA, this is less prominent than its binding to the PC derivative. Expression of rHaACBP in yeast alters its fatty acid composition, as well as the composition and size of the host acyl-CoA pool. These results suggest that HaACBP1 may potentially fulfil a role in the transport and trafficking of acyl-CoAs during sunflower seed development.
Collapse
Affiliation(s)
- Jose A Aznar-Moreno
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Mónica Venegas-Calerón
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013, Sevilla, Spain
| | - Zhi-Yan Du
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Rafael Garcés
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013, Sevilla, Spain
| | - Julian A Tanner
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Enrique Martínez-Force
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013, Sevilla, Spain
| | - Joaquín J Salas
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013, Sevilla, Spain.
| |
Collapse
|
14
|
Zhang X, Lin K, Li Y. Highlights to phytosterols accumulation and equilibrium in plants: Biosynthetic pathway and feedback regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:637-649. [PMID: 32858426 DOI: 10.1016/j.plaphy.2020.08.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/08/2020] [Accepted: 08/08/2020] [Indexed: 05/26/2023]
Abstract
Phytosterols are a group of sterols exclusive to plants and fungi, but are indispensable to humans because of their medicinal and nutritional values. However, current raw materials used for phytosterols extraction add to the cost and waste in the process. For higher sterols production, major attention is drawn to plant materials abundant in phytosterols and genetic modification. To provide an insight into phytosterols metabolism, the research progress on key enzymes involved in phytosterols biosynthesis and conversions were summarized. CAS, SSR2, SMT, DWF1 and CYP710A, the enzymes participating in the biosynthetic pathway, and PSAT, ASAT and SGT, the enzymes involved in the conversion of free sterols to conjugated ones, were reviewed. Specifically, SMT and CYP710A were emphasized for their function on modulating the percentage composition of different kinds of phytosterols. The thresholds of sterol equilibrium and the resultant phytosterols accumulation, which vary in plant species and contribute to plasma membrane remodeling under stresses, were also discussed. By retrospective analysis of the previous researches, we proposed a feedback mechanism regulating sterol equilibrium underlying sterols metabolism. From a strategic perspective, we regard salt tolerant plant as an alternative to present raw materials, which will attain higher phytosterols production in combination with gene-modification.
Collapse
Affiliation(s)
- Xuan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Kangqi Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
15
|
Jin J, Guo ZH, Hao Q, Chye ML. Crystal structure of the rice acyl-CoA-binding protein OsACBP2 in complex with C18:3-CoA reveals a novel pattern of binding to acyl-CoA esters. FEBS Lett 2020; 594:3568-3575. [PMID: 32888212 DOI: 10.1002/1873-3468.13923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022]
Abstract
Acyl-CoA-binding proteins (ACBPs) are a family of proteins that bind acyl-CoA esters at a conserved acyl-CoA-binding domain. ACBPs maintain intracellular acyl-CoA pools to regulate lipid metabolism. Here, we report on the structure of rice OsACBP2 in complex with C18:3-CoA ester. The residues Y33, K34 and K56 of OsACBP2 play a crucial role in binding the CoA group, while residues N23, L27, K52 and Y55 in one molecule of OsACBP2 cooperate with L27, L28, A59 and A62 from another anchoring the fatty acyl group. Multiangle light scattering assays indicate that OsACBP2 binds C18:3-CoA as a monomer. The first complex structure of a plant ACBP binding with C18:3-CoA is therefore presented, providing a novel model for the interaction between an acyl-CoA ester and the acyl-CoA-binding domain(s).
Collapse
Affiliation(s)
- Jing Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ze-Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Quan Hao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, N.T, China
| |
Collapse
|
16
|
Huby E, Napier JA, Baillieul F, Michaelson LV, Dhondt‐Cordelier S. Sphingolipids: towards an integrated view of metabolism during the plant stress response. THE NEW PHYTOLOGIST 2020; 225:659-670. [PMID: 31211869 PMCID: PMC6973233 DOI: 10.1111/nph.15997] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/07/2019] [Indexed: 05/18/2023]
Abstract
Plants exist in an environment of changing abiotic and biotic stresses. They have developed a complex set of strategies to respond to these stresses and over recent years it has become clear that sphingolipids are a key player in these responses. Sphingolipids are not universally present in all three domains of life. Many bacteria and archaea do not produce sphingolipids but they are ubiquitous in eukaryotes and have been intensively studied in yeast and mammals. During the last decade there has been a steadily increasing interest in plant sphingolipids. Plant sphingolipids exhibit structural differences when compared with their mammalian counterparts and it is now clear that they perform some unique functions. Sphingolipids are recognised as critical components of the plant plasma membrane and endomembrane system. Besides being important structural elements of plant membranes, their particular structure contributes to the fluidity and biophysical order. Sphingolipids are also involved in multiple cellular and regulatory processes including vesicle trafficking, plant development and defence. This review will focus on our current knowledge as to the function of sphingolipids during plant stress responses, not only as structural components of biological membranes, but also as signalling mediators.
Collapse
Affiliation(s)
- Eloïse Huby
- Résistance Induite et Bioprotection des Plantes EA 4707SFR Condorcet FR CNRS 3417University of Reims Champagne‐ArdenneBP 1039F‐51687Reims Cedex 2France
- Laboratoire de Biophysique Moléculaire aux InterfacesGembloux Agro‐Bio TechUniversité de Liège2 Passage des DéportésB‐5030GemblouxBelgique
| | | | - Fabienne Baillieul
- Résistance Induite et Bioprotection des Plantes EA 4707SFR Condorcet FR CNRS 3417University of Reims Champagne‐ArdenneBP 1039F‐51687Reims Cedex 2France
| | | | - Sandrine Dhondt‐Cordelier
- Résistance Induite et Bioprotection des Plantes EA 4707SFR Condorcet FR CNRS 3417University of Reims Champagne‐ArdenneBP 1039F‐51687Reims Cedex 2France
| |
Collapse
|
17
|
Liao P, Leung KP, Lung SC, Panthapulakkal Narayanan S, Jiang L, Chye ML. Subcellular Localization of Rice Acyl-CoA-Binding Proteins ACBP4 and ACBP5 Supports Their Non-redundant Roles in Lipid Metabolism. FRONTIERS IN PLANT SCIENCE 2020; 11:331. [PMID: 32265974 PMCID: PMC7105888 DOI: 10.3389/fpls.2020.00331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 05/03/2023]
Abstract
Acyl-CoA-binding proteins (ACBPs), conserved at the acyl-CoA-binding domain, can bind acyl-CoA esters as well as transport them intracellularly. Six ACBPs co-exist in each model plant, dicot Arabidopsis thaliana (thale cress) and monocot Oryza sativa (rice). Although Arabidopsis ACBPs have been studied extensively, less is known about the rice ACBPs. OsACBP4 is highly induced by salt treatment, but down-regulated following pathogen infection, while OsACBP5 is up-regulated by both wounding and pathogen treatment. Their differential expression patterns under various stress treatments suggest that they may possess non-redundant functions. When expressed from the CaMV35S promoter, OsACBP4 and OsACBP5 were subcellularly localized to different endoplasmic reticulum (ER) domains in transgenic Arabidopsis. As these plants were not stress-treated, it remains to be determined if OsACBP subcellular localization would change following treatment. Given that the subcellular localization of proteins may not be reliable if not expressed in the native plant, this study addresses OsACBP4:GFP and OsACBP5:DsRED expression from their native promoters to verify their subcellular localization in transgenic rice. The results indicated that OsACBP4:GFP was targeted to the plasma membrane besides the ER, while OsACBP5:DsRED was localized at the apoplast, in contrast to their only localization at the ER in transgenic Arabidopsis. Differences in tagged-protein localization in transgenic Arabidopsis and rice imply that protein subcellular localization studies are best investigated in the native plant. Likely, initial targeting to the ER in a non-native plant could not be followed up properly to the final destination(s) unless it occurred in the native plant. Also, monocot (rice) protein targeting may not be optimally processed in a transgenic dicot (Arabidopsis), perhaps arising from the different processing systems for routing between them. Furthermore, changes in the subcellular localization of OsACBP4:GFP and OsACBP5:DsRED were not detectable following salt and pathogen treatment, respectively. These results suggest that OsACBP4 is likely involved in the intracellular shuttling of acyl-CoA esters and/or other lipids between the plasma membrane and the ER, while OsACBP5 appears to participate in the extracellular transport of acyl-CoA esters and/or other lipids, suggesting that they are non-redundant proteins in lipid trafficking.
Collapse
Affiliation(s)
- Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
- State Key Laboratory of Agrobiotechnology, CUHK, New Territories, China
| | - King Pong Leung
- Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, New Territories, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
| | | | - Liwen Jiang
- Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, New Territories, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
- State Key Laboratory of Agrobiotechnology, CUHK, New Territories, China
- *Correspondence: Mee-Len Chye,
| |
Collapse
|