1
|
Chen Q, Zhou Y, Long L, Zhang L, Liao H. Comparative analyses of morphology and temporal floral organ transcriptome provide insights into the development of staminodes in Globba racemosa (Zingiberaceae). Biochem Biophys Res Commun 2025; 760:151690. [PMID: 40157289 DOI: 10.1016/j.bbrc.2025.151690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/23/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Staminode, the most conspicuous floral organ in Zingiberaceae, which greatly contributes to the ornamental value of flowers in this family. Meanwhile, staminode is a key innovation in Zingiberaceae, which is hypothesized to have originated from the fertile stamen. Previous morphological and gene expression analyses have provided evidence for this hypothesis. However, in Zingiberaceae, little is known about the gene expression dynamics of the staminode compared to other floral organs at transcriptomic level, and the molecular mechanisms underlying identity specification of the staminodes remain unresolved. In this study, by using G. racemosa, an ornamental plant in Zingiberaceae, we first traced the flower development of G. racemosa, with special attention to the development of the two types of staminodes (the labellum and the outer androecial member), to explore the morphological differences between staminodes and the fertile stamen. Then, by combining a full-length transcriptome and comparative transcriptome data from seven types of floral organs at four developmental stages, we identified candidate genes that are specifically, preferentially, or differentially expressed in the labellum and the outer androecial member compared to other floral organs. Using weighted gene co-expression network analysis (WGCNA), we further identified several modules that are significantly correlated with the labellum and the outer androecial member. Lastly, by examining the expression patterns of four well-known gene regulatory networks, which, according to previous studies, are presumed to be involved in the identity specification and morphogenesis of staminodes in Zingiberaceae, we found other potential regulators for the development of staminodes of G. racemosa. Notably, we found that on the one hand, the labellum and the outer androecial member shared some genes with the fertile stamen, providing evidence for the stamen origin of staminodes in Zingiberaceae; on the other hand, the labellum, outer androecial member, and petal also share many genes, explaining the morphological similarity among labellum, outer androecial member, and petal. Thus, in terms of regulatory mechanisms, the staminodes in G. racemosa may represent a complex of stamen and petal characteristics. In summary, our results offer valuable resources for further research on gene functions and lay the foundation for future analyses of the molecular mechanisms underlying staminode development in Zingiberaceae.
Collapse
Affiliation(s)
- Qiyi Chen
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, 650500, Kunming, China
| | - Yu Zhou
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, 650500, Kunming, China
| | - Lan Long
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, 650500, Kunming, China
| | - Li Zhang
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, 650500, Kunming, China
| | - Hong Liao
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, 650500, Kunming, China.
| |
Collapse
|
2
|
Geng F, Zhang X, Ma J, Liu H, Ye H, Hao F, Liu M, Dang M, Zhou H, Li M, Zhao P. Genome Assembly and Winged Fruit Gene Regulation of Chinese Wingnut: Insights from Genomic and Transcriptomic Analyses. GENOMICS, PROTEOMICS & BIOINFORMATICS 2025; 22:qzae087. [PMID: 39666952 PMCID: PMC12043009 DOI: 10.1093/gpbjnl/qzae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
The genomic basis and biology of winged fruit are interesting issues in ecological and evolutionary biology. Chinese wingnut (Pterocarya stenoptera) is an important horticultural and economic tree species in China. The genomic resources of this hardwood tree could advance the genomic studies of Juglandaceae species and elucidate their evolutionary relationships. Here, we reported a high-quality reference genome of P. stenoptera (N50 = 35.15 Mb) and performed a comparative genomic analysis across Juglandaceae species. Paralogous relationships among the 16 chromosomes of P. stenoptera revealed eight main duplications representing the subgenomes. Molecular dating suggested that the most recent common ancestor of P. stenoptera and Cyclocarya paliurus diverged from Juglans species around 56.7 million years ago (MYA). The expanded and contracted gene families were associated with cutin, suberine, and wax biosynthesis, cytochrome P450, and anthocyanin biosynthesis. We identified large inversion blocks between P. stenoptera and its relatives, which were enriched with genes involved in lipid biosynthesis and metabolism, as well as starch and sucrose metabolism. Whole-genome resequencing of 28 individuals revealed clearly phylogenetic clustering into three groups corresponding to Pterocarya macroptera, Pterocarya hupehensis, and P. stenoptera. Morphological and transcriptomic analyses showed that CAD, COMT, LOX, and MADS-box play important roles during the five developmental stages of wingnuts. This study highlights the evolutionary history of the P. stenoptera genome and supports P. stenoptera as an appropriate Juglandaceae model for studying winged fruits. Our findings provide a theoretical basis for understanding the evolution, development, and diversity of winged fruits in woody plants.
Collapse
Affiliation(s)
- Fangdong Geng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xuedong Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Fan Hao
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Miaoqing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Meng Dang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Huijuan Zhou
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an 710061, China
| | - Mengdi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
3
|
Zhao C, Wang J, Mu Y, Yao W, Wang H, Shi P. Testing the Validity of the Montgomery-Koyama-Smith Equation for Calculating the Total Petal Area per Flower Using Two Rosaceae Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:3499. [PMID: 39771198 PMCID: PMC11677890 DOI: 10.3390/plants13243499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
The size of floral organs is closely related to the successful reproduction of plants, and corolla size is, to some extent, indicative of the size of floral organs. Petals are considered to be homologous to leaves, so we also attempted to estimate the area of a single petal using the method that is typically employed for estimating single leaf area (i.e., the Montgomery equation). Additionally, we estimated the total petal area per flower (AT; i.e., the whole corolla area) using the method designed for estimating the total leaf area per shoot (i.e., the Montgomery-Koyama-Smith equation). The Montgomery equation (ME) estimates the leaf area by assuming that the leaf area is proportional to the product of leaf length and width. The Montgomery-Koyama-Smith equation (MKSE) assumes that the total leaf area per shoot is proportional to the product of the sum of individual leaf widths and the maximum individual leaf length. To test the validity of the ME for predicting petal area, a total of 1005 petals from 123 flowers of two Rosaceae species, which exhibit a certain variation in petal shape, were used to fit the relationship between the petal area (A) and the product of petal length (L) and width (W). Two equations, including the MKSE and a power-law equation (PLE), were used to describe the relationship between the total petal area per flower and the product of the sum of individual petal widths and the maximum individual petal length. The root-mean-square error (RMSE) and the Akaike information criterion (AIC) were used to measure the goodness of fit and the trade-off between the goodness of fit and model's structural complexity for each equation. The results show that the ME has a low RMSE value and a high correlation coefficient when fitting the relationship between A and LW for either of the two species. Additionally, the MKSE and the PLE exhibit low RMSEs and AICs for estimating the AT of both Rosaceae species. These results indicate that the ME, MKSE, and PLE are effective in predicting individual petal area and total corolla area, respectively.
Collapse
Affiliation(s)
- Chuanlong Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China; (C.Z.); (J.W.); (Y.M.); (W.Y.); (P.S.)
| | - Jinfeng Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China; (C.Z.); (J.W.); (Y.M.); (W.Y.); (P.S.)
| | - Youying Mu
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China; (C.Z.); (J.W.); (Y.M.); (W.Y.); (P.S.)
| | - Weihao Yao
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China; (C.Z.); (J.W.); (Y.M.); (W.Y.); (P.S.)
| | - Hui Wang
- College of Landscape Architecture, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China
| | - Peijian Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China; (C.Z.); (J.W.); (Y.M.); (W.Y.); (P.S.)
| |
Collapse
|
4
|
Duan X, Xie W, Chen X, Zhang H, Zhao T, Huang J, Zhang R, Li X. Morphological and molecular mechanisms of floral nectary development in Chinese Jujube. BMC PLANT BIOLOGY 2024; 24:1041. [PMID: 39497044 PMCID: PMC11533333 DOI: 10.1186/s12870-024-05760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Chinese jujube (Ziziphus jujuba Mill.), also called Chinese date, is one of the oldest and widely cultivated fruit trees with great economic values, which, at least, can be attributed to the melliferous flower with highly developed nectary that can secret huge amount of nectar in a rather tiny floral size. However, the morphological nature, metabolic products, developmental process, as well as molecular and regulatory mechanisms of jujube nectary remain largely unknown. RESULTS Here, we selected Z. jujuba 'Dongzao' as a system to address these questions. We uncovered that the jujube nectary is an annular or donut-shaped secretory protrusion that surrounds the base of the carpels, along with emerald and glistening hues, which can produce a bulk honey with many metabolic compounds (e.g. saccharides and flavonoids) that has a high nutritional value and benefit for human health. The development of jujube nectary is a dynamic process of earlier cell division followed by later cell expansion. We also identified putative genes associated with the nectary development and found that the CRABS CLAW (CRC) ortholog (ZjCRC) is the key to nectary development: the gene is highly expressed in nectary; ectopic expression of it in the Arabidopsis crc-1 mutant rescued the lost nectary (also the carpel and silique defects). We also demonstrated that a MADS-box transcription factor ZjAGAMOUS1 (ZjAG1) is required for the direct activation of ZjCRC expression. CONCLUSIONS Taken together, our results not only provide a comprehensive portrait of the jujube nectary, but also pave the way to effective utilization of jujube and other woody crops.
Collapse
Affiliation(s)
- Xiaoshan Duan
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Research Centre for Jujube Engineering and Technology of State Forestry and Grassland Administration, Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Wenjie Xie
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiling Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanghang Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianyang Zhao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jian Huang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Research Centre for Jujube Engineering and Technology of State Forestry and Grassland Administration, Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xingang Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Research Centre for Jujube Engineering and Technology of State Forestry and Grassland Administration, Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
5
|
Khojayori FN, Ponraj U, Buch K, Zhao Y, Herrera-Ubaldo H, Glover BJ. Evolution and development of complex floral displays. Development 2024; 151:dev203027. [PMID: 39498660 PMCID: PMC11574353 DOI: 10.1242/dev.203027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Flowering plants - angiosperms - display an astounding diversity of floral features, which have evolved in response to animal pollination and have resulted in the most species-rich plant clade. Combinations of macroscale (e.g. colour, symmetry, organ number) and microscale (e.g. cell type, tissue patterning) features often lead to highly elaborate floral displays. Most studies have focused on model species with simple floral displays to uncover the genetic and evolutionary mechanisms involved in flower evolution, yet few studies have focused on complex floral displays. Here, we review current knowledge on the development and evolution of complex floral displays. We review gene regulatory networks involved in four developmental pathways contributing to overall floral display (inflorescence architecture, organ identity, flower symmetry and flower colour) in classical plant models. We then discuss how evolutionary modification of one or more of these pathways has resulted in the production of a range of complex floral displays. Finally, we explore modular systems in which multiple pathways have been modified simultaneously, generating the most elaborate floral displays.
Collapse
Affiliation(s)
- Farahnoz N Khojayori
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Udhaya Ponraj
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Kristina Buch
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Yi Zhao
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Humberto Herrera-Ubaldo
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
6
|
Sharma B, Pandher MK, Alcaraz Echeveste AQ, Bravo M, Romo RK, Ramirez SC. Comparative case study of evolutionary insights and floral complexity in key early-diverging eudicot Ranunculales models. FRONTIERS IN PLANT SCIENCE 2024; 15:1486301. [PMID: 39539296 PMCID: PMC11557424 DOI: 10.3389/fpls.2024.1486301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
Famously referred to as "Darwin's abominable mystery," the rapid diversification of angiosperms over the last ~140 million years presents a fascinating enigma. This diversification is underpinned by complex genetic pathways that evolve and rewire to produce diverse and sometimes novel floral forms. Morphological innovations in flowers are shaped not only by genetics but also by evolutionary constraints and ecological dynamics. The importance of model organisms in addressing the long-standing scientific questions related to diverse floral forms cannot be overstated. In plant biology, Arabidopsis thaliana, a core eudicot, has emerged as a premier model system, with its genome being the first plant genome to be fully sequenced. Similarly, model systems derived from crop plants such as Oryza sativa (rice) and Zea mays (maize) have been invaluable, particularly for crop improvement. However, despite their substantial utility, these model systems have limitations, especially when it comes to exploring the evolution of diverse and novel floral forms. The order Ranunculales is the earliest-diverging lineage of eudicots, situated phylogenetically between core eudicots and monocots. This group is characterized by its exceptional floral diversity, showcasing a wide range of floral morphologies and adaptations that offer valuable insights into the evolutionary processes of flowering plants. Over the past two decades, the development of at least five model systems including, Aquilegia, Thalictrum, Nigella, Delphinium and Eschscholzia within the Ranunculales order has significantly advanced our understanding of floral evolution. This review highlights the conservation and divergence of floral organ identity programs observed among these models and discusses their importance in advancing research within the field. The review also delves into elaborate petal morphology observed in Aquilegia, Nigella, and Delphinium genera, and further discusses the contributions, limitations, and future research directions for Ranunculales model systems. Integrating these diverse models from the early-diverging eudicot order has enhanced our understanding of the complex evolutionary pathways that shape floral diversity in angiosperms, bridging the knowledge gaps essential for a comprehensive understanding of floral evolution.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Biological Sciences, California State Polytechnic
University, Pomona, CA, United States
| | | | | | | | | | | |
Collapse
|
7
|
Shen J, Jiang Y, Pan J, Sun L, Li Q, He W, Sun P, Zhao B, Zhao H, Ke X, Guo Y, Yang T, Li Z. The GRAS transcription factor CsTL regulates tendril formation in cucumber. THE PLANT CELL 2024; 36:2818-2833. [PMID: 38630900 PMCID: PMC11289639 DOI: 10.1093/plcell/koae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 04/19/2024]
Abstract
Cucumber (Cucumis sativus, Cs) tendrils are slender vegetative organs that typically require manual removal to ensure orderly growth during greenhouse cultivation. Here, we identified cucumber tendril-less (tl), a Tnt1 retrotransposon-induced insertion mutant lacking tendrils. Map-based cloning identified the mutated gene, CsaV3_3G003590, which we designated as CsTL, which is homologous to Arabidopsis thaliana LATERAL SUPPRESSOR (AtLAS). Knocking out CsTL repressed tendril formation but did not affect branch initiation, whereas overexpression (OE) of CsTL resulted in the formation of two or more tendrils in one leaf axil. Although expression of two cucumber genes regulating tendril formation, Tendril (CsTEN) and Unusual Floral Organs (CsUFO), was significantly decreased in CsTL knockout lines, these two genes were not direct downstream targets of CsTL. Instead, CsTL physically interacted with CsTEN, an interaction that further enhanced CsTEN-mediated expression of CsUFO. In Arabidopsis, the CsTL homolog AtLAS acts upstream of REVOLUTA (REV) to regulate branch initiation. Knocking out cucumber CsREV inhibited branch formation without affecting tendril initiation. Furthermore, genomic regions containing CsTL and AtLAS were not syntenic between the cucumber and Arabidopsis genomes, whereas REV orthologs were found on a shared syntenic block. Our results revealed not only that cucumber CsTL possesses a divergent function in promoting tendril formation but also that CsREV retains its conserved function in shoot branching.
Collapse
Affiliation(s)
- Junjun Shen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanxin Jiang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian Pan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Linhan Sun
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Qingqing Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenjing He
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Piaoyun Sun
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bosi Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongjiao Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xubo Ke
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yalu Guo
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tongwen Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Naka Y, Utsumi Y, Iwamura M, Tsukaya H, Kise K. Petal segmentation in CT images based on divide-and-conquer strategy. FRONTIERS IN PLANT SCIENCE 2024; 15:1389902. [PMID: 39077510 PMCID: PMC11284574 DOI: 10.3389/fpls.2024.1389902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/29/2024] [Indexed: 07/31/2024]
Abstract
Manual segmentation of the petals of flower computed tomography (CT) images is time-consuming and labor-intensive because the flower has many petals. In this study, we aim to obtain a three-dimensional (3D) structure of Camellia japonica flowers and propose a petal segmentation method using computer vision techniques. Petal segmentation on the slice images fails by simply applying the segmentation methods because the shape of the petals in CT images differs from that of the objects targeted by the latest instance segmentation methods. To overcome these challenges, we crop two-dimensional (2D) long rectangles from each slice image and apply the segmentation method to segment the petals on the images. Thanks to cropping, it is easier to segment the shape of the petals in the cropped images using the segmentation methods. We can also use the latest segmentation method for the task because the number of images used for training is augmented by cropping. Subsequently, the results are integrated into 3D to obtain 3D segmentation volume data. The experimental results show that the proposed method can segment petals on slice images with higher accuracy than the method without cropping. The 3D segmentation results were also obtained and visualized successfully.
Collapse
Affiliation(s)
- Yuki Naka
- Graduate School of Informatics, Osaka Metropolitan University, Sakai, Japan
| | - Yuzuko Utsumi
- Graduate School of Informatics, Osaka Metropolitan University, Sakai, Japan
| | - Masakazu Iwamura
- Graduate School of Informatics, Osaka Metropolitan University, Sakai, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Kise
- Graduate School of Informatics, Osaka Metropolitan University, Sakai, Japan
| |
Collapse
|
9
|
Xu Q, Yang Z, Jia Y, Wang R, Zhang Q, Gai R, Wu Y, Yang Q, He G, Wu JH, Ming F. PeNAC67-PeKAN2-PeSCL23 and B-class MADS-box transcription factors synergistically regulate the specialization process from petal to lip in Phalaenopsis equestris. MOLECULAR HORTICULTURE 2024; 4:15. [PMID: 38649966 PMCID: PMC11036780 DOI: 10.1186/s43897-023-00079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/26/2023] [Indexed: 04/25/2024]
Abstract
The molecular basis of orchid flower development involves a specific regulatory program in which MADS-box transcription factors play a central role. The recent 'perianth code' model hypothesizes that two types of higher-order heterotetrameric complexes, namely SP complex and L complex, play pivotal roles in the orchid perianth organ formation. Therefore, we explored their roles and searched for other components of the regulatory network.Through the combined analysis for transposase-accessible chromatin with high-throughput sequencing and RNA sequencing of the lip-like petal and lip from Phalaenopsis equestris var.trilip, transcription factor-(TF) genes involved in lip development were revealed. PeNAC67 encoding a NAC-type TF and PeSCL23 encoding a GRAS-type TF were differentially expressed between the lip-like petal and the lip. PeNAC67 interacted with and stabilized PeMADS3, which positively regulated the development of lip-like petal to lip. PeSCL23 and PeNAC67 competitively bound with PeKAN2 and positively regulated the development of lip-like petal to petal by affecting the level of PeMADS3. PeKAN2 as an important TF that interacts with PeMADS3 and PeMADS9 can promote lip development. These results extend the 'perianth code' model and shed light on the complex regulation of orchid flower development.
Collapse
Affiliation(s)
- Qingyu Xu
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhenyu Yang
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yupeng Jia
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Rui Wang
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qiyu Zhang
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ruonan Gai
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yiding Wu
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qingyong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Guoren He
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ju Hua Wu
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Feng Ming
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
10
|
Zhu QQ, Xue C, Sun L, Zhong X, Zhu XX, Ren Y, Zhang XH. The diversity of elaborate petals in Isopyreae (Ranunculaceae): a special focus on nectary structure. PROTOPLASMA 2023; 260:437-451. [PMID: 35760912 DOI: 10.1007/s00709-022-01787-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/18/2022] [Indexed: 05/25/2023]
Abstract
Elaborate petals are highly diverse in morphology, structure, and epidermal differentiation and play a key role in attracting pollinators. There have been few studies on the elaborate structure of petals in the tribe Isopyreae (Ranunculaceae). Seven genera in Isopyreae (Aquilegia, Semiaquilegia, Urophysa, Isopyrum, Paraquilegia, Dichocarpum, and Leptopyrum) have petals that vary in morphology, and two genera (Enemion and Thalictrum) have no petals. The petals of nine species belonged to 7 genera in the tribe were studied to reveal their nectary structure, epidermal micromorphology and ancestral traits. The petal nectaries of Isopyreae examined in this study were located at the tip of spurs (Aquilegia yabeana and A. rockii), or the bottom of shallow sacs (Semiaquilegia adoxoides, Urophysa henryi, Isopyrum manshuricum, and Paraquilegia microphylla), a cup-shaped structure (Dichocarpum fargesii) and a bilabiate structure (Leptopyrum fumarioides). The petal nectary of eight species in Isopyreae (except A. ecalcarata) was composed of secretory epidermis, nectary parenchyma, and vascular tissues, and some sieve tubes reached the secretory parenchyma cells. Among the eight species with nectaries examined in the present study, A. yabeana had the most developed nectaries, with 10-15 layers of secretory parenchyma cells. The epidermal cells of mature petals of the nine species were divided into 11 types. Among these 11 types, there were two types of secretory cells and two types of trichomes. Aquilegia yabeana and A. rockii had the highest number of cell types (eight types), and I. manshuricum and L. fumarioides had the lowest number of cell types (three types). Aquilegia ecalcarata had no secretory cells, and the papillose conical polygonal secretory cells of D. fargesii were different from those of the other seven species with nectaries. Trichomes were found only in Aquilegia, Semiaquilegia, Urophysa, and Paraquilegia. The ancestral mode of nectar presentation in Isopyreae was petals with hidden nectar (70.58%). The different modes of nectar presentation in petals may reflect adaptations to different pollinators in Isopyreae.
Collapse
Affiliation(s)
- Qing-Qing Zhu
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710062, China
- College of Life Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Cheng Xue
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710062, China
| | - Li Sun
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710062, China
| | - Xin Zhong
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Xin-Xin Zhu
- College of Life Sciences, Xinyang Normal University, Xinyang, 46400, China
| | - Yi Ren
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710062, China
| | - Xiao-Hui Zhang
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710062, China.
- College of Life Science, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
11
|
Yuan Y, Li X, Yao X, Fu X, Cheng J, Shan H, Yin X, Kong H. Mechanisms underlying the formation of complex color patterns on Nigella orientalis (Ranunculaceae) petals. THE NEW PHYTOLOGIST 2023; 237:2450-2466. [PMID: 36527229 DOI: 10.1111/nph.18681] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Complex color patterns on petals are widespread in flowering plants, yet the mechanisms underlying their formation remain largely unclear. Here, by conducting detailed morphological, anatomical, biochemical, optical, transcriptomic, and functional studies, we investigated the cellular bases, chromogenic substances, reflectance spectra, developmental processes, and underlying mechanisms of complex color pattern formation on Nigella orientalis petals. We found that the complexity of the N. orientalis petals in color pattern is reflected at multiple levels, with the amount and arrangement of different pigmented cells being the key. We also found that biosynthesis of the chromogenic substances of different colors is sequential, so that one color/pattern is superimposed on another. Expression and functional studies further revealed that a pair of R2R3-MYB genes function cooperatively to specify the formation of the eyebrow-like horizontal stripe and the Mohawk haircut-like splatters. Specifically, while NiorMYB113-1 functions to draw a large splatter region, NiorMYB113-2 functions to suppress the production of anthocyanins from the region where a gap will form, thereby forming the highly specialized pattern. Our results provide a detailed portrait for the spatiotemporal dynamics of the coloration of N. orientalis petals and help better understand the mechanisms underlying complex color pattern formation in plants.
Collapse
Affiliation(s)
- Yi Yuan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xuan Li
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xu Yao
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xuehao Fu
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Jie Cheng
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xiaofeng Yin
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| |
Collapse
|
12
|
Huang Z, Zhang X. Floral nectaries and pseudonectaries in Eranthis (Ranunculaceae): petal development, micromorphology, structure and ultrastructure. PROTOPLASMA 2022; 259:1283-1300. [PMID: 35066725 DOI: 10.1007/s00709-022-01738-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Flowers are an innovative characteristic of angiosperms, and elaborate petals usually have highly specialized structures to adapt to different living environments and pollinators. Petals of Eranthis have complex bilabiate structures with nectaries and pseudonectaries; however, the diversity of the petal micromorphology and structure is unknown. Petal development, micromorphology, structure and ultrastructure in four Eranthis species were investigated under SEM, TEM and LM. The results show that petals undergo 5 developmental stages, and accessory structure formation (stage 4) mainly determines the diversity of final mature petal morphology and pseudonectaries; the central depression formed in stage 2 will develop into nectary tissues. Petals are bilabiate and have hidden nectaries in nectary grooves; they consist of one layer of rounded and raised secretory epidermal cells and 3-14 layers of secretory cells with abundant plasmodesmata between cells. A large number of sieve tubes are distributed between the cells and extend to the epidermis; in addition, the vessel elements are located below the secretory area. Nectar is stored in the intercellular space between secretory parenchyma cells and escapes through microchannels or cell rupture. Pseudonectaries in all species of Eranthis except for E. hyemalis consist of smooth, ornamented epidermal cells and 9-12 layers of parenchyma cells with sparse cytoplasm, which may have the function of attracting pollinators.
Collapse
Affiliation(s)
- Zixuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Science, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Xiaohui Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, People's Republic of China.
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Science, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
| |
Collapse
|
13
|
Orooji F, Mirzaghaderi G, Kuo YT, Fuchs J. Variation in the Number and Position of rDNA Loci Contributes to the Diversification and Speciation in Nigella (Ranunculaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:917310. [PMID: 35812971 PMCID: PMC9261981 DOI: 10.3389/fpls.2022.917310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Nigella is a small genus belonging to the Ranunculaceae family which is presumably originated and distributed in Aegean and the adjacent Western-Irano-Turanian region. Comparative repeat analysis of N. sativa, N. damascena and N. bucharica was performed using low-pass Illumina genomic reads followed by karyotyping and FISH mapping of seven Nigella species using the in silico identified repeats and ribosomal DNA (rDNA) probes. High- and moderate-copy repeat sequences occupy 57.52, 59.01, and 64.73% of N. sativa, N. damascena and N. bucharica genomes, respectively. Roughly, half of the genomes are retrotransposons (class I transposons), while DNA transposons (class II transposons) contributed to only about 2% of the genomes. The analyzed Nigella species possess large genomes of about 7.4 to 12.4 Gbp/1C. Only two satellite repeats in N. sativa, one in N. damascena and four in N. bucharica were identified, which were mostly (peri)centromeric and represented about 1% of each genome. A high variation in number and position of 45S rDNA loci were found among Nigella species. Interestingly, in N. hispanica, each chromosome revealed at least one 45S rDNA site and one of them occurs in hemizygous condition. Based on the chromosome numbers, genome size and (peri)centromeric satellites, three karyotype groups were observed: Two with 2n = 2x = 12 and a karyotype formula of 10m + 2t (including N. sativa, N. arvensis, N. hispanica as the first group and N. damascena and N. orientalis as the second group) and a more distant group with 2n = 2x = 14 and a karyotype formula of 8m + 2st + 4t (including N. integrifolia and N. bucharica). These karyotype groups agreed with the phylogenetic analysis using ITS and rbcL sequences. We conclude that variation in (peri)centromeric sequences, number and localization of rDNA sites as well as chromosome number (dysploidy) are involved in the diversification of the genus Nigella.
Collapse
Affiliation(s)
- Fatemeh Orooji
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Yi-Tzu Kuo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
14
|
Fu X, Shan H, Yao X, Cheng J, Jiang Y, Yin X, Kong H. Petal development and elaboration. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3308-3318. [PMID: 35275176 DOI: 10.1093/jxb/erac092] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/07/2022] [Indexed: 05/12/2023]
Abstract
Petals can be simple or elaborate, depending on whether they have complex basic structures and/or highly specialized epidermal modifications. It has been proposed that the independent origin and diversification of elaborate petals have promoted plant-animal interactions and, therefore, the evolutionary radiation of corresponding plant groups. Recent advances in floral development and evolution have greatly improved our understanding of the processes, patterns, and mechanisms underlying petal elaboration. In this review, we compare the developmental processes of simple and elaborate petals, concluding that elaborate petals can be achieved through four main paths of modifications (i.e. marginal elaboration, ventral elaboration, dorsal elaboration, and surface elaboration). Although different types of elaborate petals were formed through different types of modifications, they are all results of changes in the expression patterns of genes involved in organ polarity establishment and/or the proliferation, expansion, and differentiation of cells. The deployment of existing genetic materials to perform a new function was also shown to be a key to making elaborate petals during evolution.
Collapse
Affiliation(s)
- Xuehao Fu
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xu Yao
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jie Cheng
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongchao Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaofeng Yin
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Delpeuch P, Jabbour F, Damerval C, Schönenberger J, Pamperl S, Rome M, Nadot S. A flat petal as ancestral state for Ranunculaceae. FRONTIERS IN PLANT SCIENCE 2022; 13:961906. [PMID: 36212342 PMCID: PMC9532948 DOI: 10.3389/fpls.2022.961906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/23/2022] [Indexed: 05/19/2023]
Abstract
Ranunculaceae comprise ca. 2,500 species (ca. 55 genera) that display a broad range of floral diversity, particularly at the level of the perianth. Petals, when present, are often referred to as "elaborate" because they have a complex morphology. In addition, the petals usually produce and store nectar, which gives them a crucial functional role in the interaction with pollinators. Its morphological diversity and species richness make this family a particularly suitable model group for studying the evolution of complex morphologies. Our aims are (1) to reconstruct the ancestral form of the petal and evolutionary stages at the scale of Ranunculaceae, (2) to test the hypothesis that there are morphogenetic regions on the petal that are common to all species and that interspecific morphological diversity may be due to differences in the relative proportions of these regions during development. We scored and analyzed traits (descriptors) that characterize in detail the complexity of mature petal morphology in 32 genera. Furthermore, we described petal development using high resolution X-Ray computed tomography (HRX-CT) in six species with contrasting petal forms (Ficaria verna, Helleborus orientalis, Staphisagria picta, Aconitum napellus, Nigella damascena, Aquilegia vulgaris). Ancestral state reconstruction was performed using a robust and dated phylogeny of the family, allowing us to produce new hypotheses for petal evolution in Ranunculaceae. Our results suggest a flat ancestral petal with a short claw for the entire family and for the ancestors of all tribes except Adonideae. The elaborate petals that are present in different lineages have evolved independently, and similar morphologies are the result of convergent evolution.
Collapse
Affiliation(s)
- Pauline Delpeuch
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Orsay, France
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
- *Correspondence: Pauline Delpeuch,
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Catherine Damerval
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, Gif-sur-Yvette, France
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Susanne Pamperl
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Maxime Rome
- Jardin du Lautaret, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Sophie Nadot
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Orsay, France
- Sophie Nadot,
| |
Collapse
|
16
|
Gonçalves B. Case not closed: the mystery of the origin of the carpel. EvoDevo 2021; 12:14. [PMID: 34911578 PMCID: PMC8672599 DOI: 10.1186/s13227-021-00184-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/05/2021] [Indexed: 11/25/2022] Open
Abstract
The carpel is a fascinating structure that plays a critical role in flowering plant reproduction and contributed greatly to the evolutionary success and diversification of flowering plants. The remarkable feature of the carpel is that it is a closed structure that envelopes the ovules and after fertilization develops into the fruit which protects, helps disperse, and supports seed development into a new plant. Nearly all plant-based foods are either derived from a flowering plant or are a direct product of the carpel. Given its importance it's no surprise that plant and evolutionary biologists have been trying to explain the origin of the carpel for a long time. Before carpel evolution seeds were produced on open leaf-like structures that are exposed to the environment. When the carpel evolved in the stem lineage of flowering plants, seeds became protected within its closed structure. The evolutionary transition from that open precursor to the closed carpel remains one of the greatest mysteries of plant evolution. In recent years, we have begun to complete a picture of what the first carpels might have looked like. On the other hand, there are still many gaps in our understanding of what the precursor of the carpel looked like and what changes to its developmental mechanisms allowed for this evolutionary transition. This review aims to present an overview of existing theories of carpel evolution with a particular emphasis on those that account for the structures that preceded the carpel and/or present testable developmental hypotheses. In the second part insights from the development and evolution of diverse plant organs are gathered to build a developmental hypothesis for the evolutionary transition from a hypothesized laminar open structure to the closed structure of the carpel.
Collapse
|
17
|
Galipot P, Gerber S, Le Guilloux M, Jabbour F, Damerval C. Micro- and Macroscale Patterns of Petal Morphogenesis in Nigella damascena (Ranunculaceae) Revealed by Geometric Morphometrics and Cellular Analyses. FRONTIERS IN PLANT SCIENCE 2021; 12:769246. [PMID: 34868166 PMCID: PMC8640125 DOI: 10.3389/fpls.2021.769246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Petals, the inner organs in a differentiated perianth, generally play an important role in pollinator attraction. As such they exhibit an extraordinary diversity of shapes, sizes, and colors. Being involved in pollinator attraction and reward, they are privileged targets of evolution. The corolla of the Ranunculaceae species Nigella damascena consists of elaborate nectariferous petals, made of a stalk, upper, and lower lips forming a nectar pouch, shiny pseudonectaries, and pilose ears. While the main events of petal development are properly described, a few is known about the pattern of organ size and shape covariation and the cellular dynamics during development. In this study, we investigated the relationships between morphogenesis and growth of N. damascena petals using geometric morphometrics coupled with the study of cell characteristics. First, we found that petal shape and size dynamics are allometric during development and that their covariation suggests that petal shape change dynamics are exponentially slower than growth. We then found that cell proliferation is the major driver of shape patterning during development, while petal size dynamics are mostly driven by cell expansion. Our analyses provide a quantitative basis to characterize the relationships between shape, size, and cell characteristics during the development of an elaborate floral structure. Such studies lay the ground for future evo-devo investigations of the large morphological diversity observed in nectariferous structures, in Ranunculaceae and beyond.
Collapse
Affiliation(s)
- Pierre Galipot
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
- Génétique Quantitative et Evolution-Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Gif-sur-Yvette, France
| | - Sylvain Gerber
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Martine Le Guilloux
- Génétique Quantitative et Evolution-Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Gif-sur-Yvette, France
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Catherine Damerval
- Génétique Quantitative et Evolution-Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Gif-sur-Yvette, France
| |
Collapse
|
18
|
Cavallini-Speisser Q, Morel P, Monniaux M. Petal Cellular Identities. FRONTIERS IN PLANT SCIENCE 2021; 12:745507. [PMID: 34777425 PMCID: PMC8579033 DOI: 10.3389/fpls.2021.745507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/04/2021] [Indexed: 05/14/2023]
Abstract
Petals are typified by their conical epidermal cells that play a predominant role for the attraction and interaction with pollinators. However, cell identities in the petal can be very diverse, with different cell types in subdomains of the petal, in different cell layers, and depending on their adaxial-abaxial or proximo-distal position in the petal. In this mini-review, we give an overview of the main cell types that can be found in the petal and describe some of their functions. We review what is known about the genetic basis for the establishment of these cellular identities and their possible relation with petal identity and polarity specifiers expressed earlier during petal development, in an attempt to bridge the gap between organ identity and cell identity in the petal.
Collapse
|
19
|
Wang YH, Hsu HC, Chou WC, Liang CH, Kuo YF. Automatic Identification of First-Order Veins and Corolla Contours in Three-Dimensional Floral Images. FRONTIERS IN PLANT SCIENCE 2020; 11:549699. [PMID: 33042177 PMCID: PMC7525071 DOI: 10.3389/fpls.2020.549699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/25/2020] [Indexed: 05/03/2023]
Abstract
Defining and quantifying corolla traits are essential for studying corolla shape variation. Three-dimensional (3D) images of corollas contain comprehensive information regarding corolla structures and are optimal for studying corolla shapes. Conventionally, corolla traits are identified and quantified manually from 3D images. Manual identification is time consuming and labor intensive. In this study, approaches are proposed to automatically identify first-order veins and corolla contours in 3D corolla images. The first-order veins of the corollas were identified using Hessian of Gaussian and Dijkstra's algorithm. The contours of the corollas were identified using vector harmony and node distance thresholding. A total of 130 3D images of 28 species in the subtribe Ligeriinae were collected and used to test the proposed approaches. The successful detection rate reached 86.54%. Two derived traits, contour-vein ratio and corolla angle, were defined and quantified using the first-order veins and corolla contour results to investigate the relationship between corolla shapes and pollination types of the subtribe Ligeriinae. Analyses revealed that the mean corolla contour, mean absolute corolla angle, and mean contour-vein ratio of the ornithophilic species were significantly smaller compared with the other species. The mean corolla contour, mean corolla angle, and mean contour-vein ratio of the melittophilic species were significantly larger compared with those of the ornithophilic species. The proposed method was also applied to certain Gesneriaceae species in the subtribes Gloxiniinae, Streptocarpinae, and Didymocarpinae. The results revealed that the method could be applied to most fresh sympetalous flowers for identifying first-order veins and corolla contours.
Collapse
Affiliation(s)
| | | | | | | | - Yan-Fu Kuo
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Liao H, Fu X, Zhao H, Cheng J, Zhang R, Yao X, Duan X, Shan H, Kong H. The morphology, molecular development and ecological function of pseudonectaries on Nigella damascena (Ranunculaceae) petals. Nat Commun 2020; 11:1777. [PMID: 32286317 PMCID: PMC7156421 DOI: 10.1038/s41467-020-15658-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/20/2020] [Indexed: 01/21/2023] Open
Abstract
Pseudonectaries, or false nectaries, the glistening structures that resemble nectaries or nectar droplets but do not secrete nectar, show considerable diversity and play important roles in plant-animal interactions. The morphological nature, optical features, molecular underpinnings and ecological functions of pseudonectaries, however, remain largely unclear. Here, we show that pseudonectaries of Nigella damascena (Ranunculaceae) are tiny, regional protrusions covered by tightly arranged, non-secretory polygonal epidermal cells with flat, smooth and reflective surface, and are clearly visible even under ultraviolet light and bee vision. We also show that genes associated with cell division, chloroplast development and wax formation are preferably expressed in pseudonectaries. Specifically, NidaYABBY5, an abaxial gene with ectopic expression in pseudonectaries, is indispensable for pseudonectary development: knockdown of it led to complete losses of pseudonectaries. Notably, when flowers without pseudonectaries were arrayed beside those with pseudonectaries, clear differences were observed in the visiting frequency, probing time and visiting behavior of pollinators (i.e., honey bees), suggesting that pseudonectaries serve as both visual attractants and nectar guides. Interspecies interactions, including those between plants and pollinators, can involve deception. The authors characterize the molecular development of Nigella damascena pseudonectaries, and their adaptive function in attracting specific pollinators to concealed nectaries with visual cues.
Collapse
Affiliation(s)
- Hong Liao
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Xuehao Fu
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huiqi Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jie Cheng
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Xu Yao
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Xiaoshan Duan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
21
|
Shan H, Cheng J, Zhang R, Yao X, Kong H. Developmental mechanisms involved in the diversification of flowers. NATURE PLANTS 2019; 5:917-923. [PMID: 31477891 DOI: 10.1038/s41477-019-0498-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/18/2019] [Indexed: 05/08/2023]
Abstract
We all appreciate the fantastic diversity of flowers. How flowers diversified, however, remains largely enigmatic. The mechanisms underlying the diversification of flowers are complex because the overall appearance of a flower is determined by many factors, such as the shape and size of its receptacle, and the arrangement, number, type, shape and colour of floral organs. Modifications of the developmental trajectories of a flower and its components, therefore, can lead to the generation of new floral types. In this Review, by summarizing the recent progress in studying the initiation, identity determination, morphogenesis and maturation of floral organs, we present our current understanding of the mechanisms underlying the diversification of flowers.
Collapse
Affiliation(s)
- Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jie Cheng
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xu Yao
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|