1
|
Ernst E, Abramson B, Acosta K, Hoang PTN, Mateo-Elizalde C, Schubert V, Pasaribu B, Albert PS, Hartwick N, Colt K, Aylward A, Ramu U, Birchler JA, Schubert I, Lam E, Michael TP, Martienssen RA. Duckweed genomes and epigenomes underlie triploid hybridization and clonal reproduction. Curr Biol 2025; 35:1828-1847.e9. [PMID: 40174586 PMCID: PMC12015598 DOI: 10.1016/j.cub.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025]
Abstract
The Lemnaceae (duckweeds) are the world's smallest but fastest-growing flowering plants. Prolific clonal propagation facilitates continuous micro-cropping for plant-based protein and starch production and holds tremendous promise for sequestration of atmospheric CO2. Here, we present chromosomal assemblies, annotations, and phylogenomic analysis of Lemna genomes that uncover candidate genes responsible for the unique metabolic and developmental traits of the family, such as anatomical reduction, adaxial stomata, lack of stomatal closure, and carbon sequestration via crystalline calcium oxalate. Lemnaceae have selectively lost genes required for RNA interference, including Argonaute genes required for reproductive isolation (the triploid block) and haploid gamete formation. Triploid hybrids arise commonly among Lemna, and we have found mutations in highly conserved meiotic crossover genes that could support polyploid meiosis. Further, mapping centromeres by chromatin immunoprecipitation suggests their epigenetic origin despite divergence of underlying tandem repeats and centromeric retrotransposons. Syntenic comparisons with Wolffia and Spirodela reveal that diversification of these genera coincided with the "Azolla event" in the mid-Eocene, during which aquatic macrophytes reduced high atmospheric CO2 levels to those of the current ice age. Facile regeneration of transgenic fronds from tissue culture, aided by reduced epigenetic silencing, makes Lemna a powerful biotechnological platform, as exemplified by recent engineering of high-oil Lemna that outperforms oil-seed crops.
Collapse
Affiliation(s)
- Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Bradley Abramson
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kenneth Acosta
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Phuong T N Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany; Biology Faculty, Dalat University, 1 Phu Dong Thien Vuong, Dalat City 670000, Vietnam
| | - Cristian Mateo-Elizalde
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| | - Buntora Pasaribu
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA; Department of Marine Sciences, Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Bandung Sumedang Highway KM 21, Jatinangor 40600, Indonesia
| | - Patrice S Albert
- Biological Sciences, University of Missouri, Columbia, 105 Tucker Hall, Columbia, MO 65211, USA
| | - Nolan Hartwick
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kelly Colt
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Anthony Aylward
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Umamaheswari Ramu
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - James A Birchler
- Biological Sciences, University of Missouri, Columbia, 105 Tucker Hall, Columbia, MO 65211, USA
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| | - Eric Lam
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
2
|
Pelosi JA, Sorojsrisom ES, Barbazuk WB, Sessa EB. Population genomics of the gametophyte-only fern Vittaria appalachiana provides insights into clonal plant evolution. THE NEW PHYTOLOGIST 2025; 246:349-364. [PMID: 39902625 DOI: 10.1111/nph.20433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/11/2025] [Indexed: 02/05/2025]
Abstract
How asexually reproducing organisms maintain genetic diversity and adaptive potential is a long-standing question in evolutionary biology. Asexual lineages have historically been thought of as evolutionary dead ends, yet some exhibit remarkable persistence through time. The gametophyte-only fern Vittaria appalachiana is a clonal eukaryote, the focus of extensive study due to its peculiar habit and life history, and is an excellent system to explore the consequences of asexuality. Using reduced representation sequencing and life cycle simulations, we assess theoretical expectations for genomic consequences of long-term asexual reproduction and test hypotheses about its origin and demographic history. We show that V. appalachiana colonies are not patches of single genotypes but are mosaics of genetic diversity, and the accumulation of mutations in the absence of recombination plays an important role in driving this diversity. We identify increased genomic variation, excess heterozygosity, decreased population differentiation, and increased effective population size, all of which are consistent with the expectations for prolonged clonality. Our analyses support the hypothesis that the loss of sexual reproduction in V. appalachiana occurred during the Last Glacial Maximum. Our results from empirical and simulation-based analyses illuminate how an asexual eukaryote generates, retains, and partitions genomic diversity.
Collapse
Affiliation(s)
- Jessie A Pelosi
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Elissa S Sorojsrisom
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, 10027, USA
- Pfizer Plant Research Laboratory, New York Botanical Garden, Bronx, NY, 10458, USA
| | - William Brad Barbazuk
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Emily B Sessa
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- William and Lynda Steere Herbarium, New York Botanical Garden, Bronx, NY, 10458, USA
| |
Collapse
|
3
|
Dombey R, Buendía-Ávila D, Barragán-Borrero V, Diezma-Navas L, Ponce-Mañe A, Vargas-Guerrero JM, Elias R, Marí-Ordóñez A. Atypical epigenetic and small RNA control of degenerated transposons and their fragments in clonally reproducing Spirodela polyrhiza. Genome Res 2025; 35:522-544. [PMID: 40037843 PMCID: PMC11960707 DOI: 10.1101/gr.279532.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/06/2025] [Indexed: 03/06/2025]
Abstract
A handful of model plants have provided insight into silencing of transposable elements (TEs) through RNA-directed DNA methylation (RdDM). Guided by 24 nt long small-interfering RNAs (siRNAs), this epigenetic regulation installs DNA methylation and histone modifications like H3K9me2, which can be subsequently maintained independently of siRNAs. However, the genome of the clonally propagating duckweed Spirodela polyrhiza (Lemnaceae) has low levels of DNA methylation, very low expression of RdDM components, and near absence of 24 nt siRNAs. Moreover, some genes encoding RdDM factors, DNA methylation maintenance, and RNA silencing mechanisms are missing from the genome. Here, we investigated the distribution of TEs and their epigenetic marks in the Spirodela genome. Although abundant degenerated TEs have largely lost DNA methylation and H3K9me2 is low, they remain marked by the heterochromatin-associated H3K9me1 and H3K27me1 modifications. In contrast, we find high levels of DNA methylation and H3K9me2 in the relatively few intact TEs, which are source of 24 nt siRNAs, like RdDM-controlled TEs in other angiosperms. The data suggest that, potentially as adaptation to vegetative propagation, RdDM extent, silencing components, and targets are different from other angiosperms, preferentially focused on potentially intact TEs. It also provides evidence for heterochromatin maintenance independently of DNA methylation in flowering plants. These discoveries highlight the diversity of silencing mechanisms that exist in plants and the importance of using disparate model species to discover these mechanisms.
Collapse
Affiliation(s)
- Rodolphe Dombey
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Daniel Buendía-Ávila
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna 1030, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna 1030, Austria
| | - Verónica Barragán-Borrero
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Laura Diezma-Navas
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Arturo Ponce-Mañe
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - José Mario Vargas-Guerrero
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Rana Elias
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Arturo Marí-Ordóñez
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna 1030, Austria;
| |
Collapse
|
4
|
Wang X, Feng QH, Zeng ZH, Zhang ZQ, Cai J, Chen G, Li DZ, Wang H, Zhou W. Effects of mode of reproduction on genetic polymorphism and divergence in wild yams (Dioscoreaceae: Dioscorea). PLANT DIVERSITY 2025; 47:136-147. [PMID: 40041563 PMCID: PMC11873583 DOI: 10.1016/j.pld.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 03/06/2025]
Abstract
Evolutionary transitions from sexual to asexual reproduction should have significant influences on genetic divergence and polymorphism at the genome level. Plant lineages with diverse reproductive systems provide opportunities to investigate this question using comparative approaches and studies of molecular evolution. We investigated evidence for differences among the transcriptomes of 19 Dioscorea species (wild yams) with diverse reproductive systems. These included sexual species, those that propagate primarily by bulbils, and those with mixed sexual and asexual reproductive modes. We examined how transitions between these reproductive systems affected between-species divergence and within-species polymorphism. Primarily asexual species exhibited a reduced efficacy of natural selection and accumulation of deleterious mutations for both divergence and polymorphism. In contrast, species with mixed reproductive strategies involving both seed and clonal reproduction showed no evidence of an increased fixation of harmful mutations at the divergence level, while an accumulation of genetic load present in polymorphism was evident. Our study indicates that the genetic consequences of evolutionary transitions from sexual to predominantly clonal reproduction is likely to depend on both the duration and extent of asexuality occurring in populations.
Collapse
Affiliation(s)
- Xin Wang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing-Hong Feng
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
- Research Institute of Tropical Forestry, Yunnan Academy of Forestry and Grassland, Xishuangbanna, Yunnan 666102, China
| | - Zhi-Hua Zeng
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Qiang Zhang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Jie Cai
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Gao Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Wei Zhou
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, Yunnan 674100, China
| |
Collapse
|
5
|
Wang C, Liu L, Yin M, Liu B, Wu Y, Eller F, Gao Y, Brix H, Wang T, Guo W, Salojärvi J. Chromosome-level genome assemblies reveal genome evolution of an invasive plant Phragmites australis. Commun Biol 2024; 7:1007. [PMID: 39154094 PMCID: PMC11330502 DOI: 10.1038/s42003-024-06660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024] Open
Abstract
Biological invasions pose a significant threat to ecosystems, disrupting local biodiversity and ecosystem functions. The genomic underpinnings of invasiveness, however, are still largely unknown, making it difficult to predict and manage invasive species effectively. The common reed (Phragmites australis) is a dominant grass species in wetland ecosystems and has become particularly invasive when transferred from Europe to North America. Here, we present a high-quality gap-free, telomere-to-telomere genome assembly of Phragmites australis consisting of 24 pseudochromosomes and a B chromosome. Fully phased subgenomes demonstrated considerable subgenome dominance and revealed the divergence of diploid progenitors approximately 30.9 million years ago. Comparative genomics using chromosome-level scaffolds for three other lineages and a previously published draft genome assembly of an invasive lineage revealed that gene family expansions in the form of tandem duplications may have contributed to the invasiveness of the lineage. This study sheds light on the genome evolution of Arundinoideae grasses and suggests that genetic drivers, such as gene family expansions and tandem duplications, may underly the processes of biological invasion in plants. These findings provide a crucial step toward understanding and managing the genetic basis of invasiveness in plant species.
Collapse
Affiliation(s)
- Cui Wang
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Lele Liu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Meiqi Yin
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Bingbing Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Yiming Wu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China
| | | | - Yingqi Gao
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Hans Brix
- Department of Biology, Aarhus University, Aarhus, Denmark
| | - Tong Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Weihua Guo
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, PR China.
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
6
|
Schmid MW, Moradi A, Leigh DM, Schuman MC, van Moorsel SJ. Covering the bases: Population genomic structure of Lemna minor and the cryptic species L. japonica in Switzerland. Ecol Evol 2024; 14:e11599. [PMID: 38882534 PMCID: PMC11178436 DOI: 10.1002/ece3.11599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
Duckweeds, including the common duckweed Lemna minor, are increasingly used to test eco-evolutionary theories. Yet, despite its popularity and near-global distribution, the understanding of its population structure (and genetic variation therein) is still limited. It is essential that this is resolved, because of the impact genetic diversity has on experimental responses and scientific understanding. Through whole-genome sequencing, we assessed the genetic diversity and population genomic structure of 23 natural Lemna spp. populations from their natural range in Switzerland. We used two distinct analytical approaches, a reference-free kmer approach and the classical reference-based one. Two genetic clusters were identified across the described species distribution of L. minor, surprisingly corresponding to species-level divisions. The first cluster contained the targeted L. minor individuals and the second contained individuals from a cryptic species: Lemna japonica. Within the L. minor cluster, we identified a well-defined population structure with little intra-population genetic diversity (i.e., within ponds) but high inter-population diversity (i.e., between ponds). In L. japonica, the population structure was significantly weaker and genetic variation between a subset of populations was as low as within populations. This study revealed that L. japonica is more widespread than previously thought. Our findings signify that thorough genotype-to-phenotype analyses are needed in duckweed experimental ecology and evolution.
Collapse
Affiliation(s)
| | - Aboubakr Moradi
- Department of Geography University of Zurich Zurich Switzerland
- Department of Chemistry University of Zurich Zurich Switzerland
| | - Deborah M Leigh
- Swiss Federal Research Institute WSL Birmensdorf Switzerland
| | - Meredith C Schuman
- Department of Geography University of Zurich Zurich Switzerland
- Department of Chemistry University of Zurich Zurich Switzerland
| | | |
Collapse
|
7
|
Wang Y, Duchen P, Chávez A, Sree KS, Appenroth KJ, Zhao H, Höfer M, Huber M, Xu S. Population genomics and epigenomics of Spirodela polyrhiza provide insights into the evolution of facultative asexuality. Commun Biol 2024; 7:581. [PMID: 38755313 PMCID: PMC11099151 DOI: 10.1038/s42003-024-06266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Many plants are facultatively asexual, balancing short-term benefits with long-term costs of asexuality. During range expansion, natural selection likely influences the genetic controls of asexuality in these organisms. However, evidence of natural selection driving asexuality is limited, and the evolutionary consequences of asexuality on the genomic and epigenomic diversity remain controversial. We analyzed population genomes and epigenomes of Spirodela polyrhiza, (L.) Schleid., a facultatively asexual plant that flowers rarely, revealing remarkably low genomic diversity and DNA methylation levels. Within species, demographic history and the frequency of asexual reproduction jointly determined intra-specific variations of genomic diversity and DNA methylation levels. Genome-wide scans revealed that genes associated with stress adaptations, flowering and embryogenesis were under positive selection. These data are consistent with the hypothesize that natural selection can shape the evolution of asexuality during habitat expansions, which alters genomic and epigenomic diversity levels.
Collapse
Affiliation(s)
- Yangzi Wang
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
| | - Pablo Duchen
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
| | - Alexandra Chávez
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, 48161, Münster, Germany
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periya, 671320, India
| | - Klaus J Appenroth
- Matthias Schleiden Institute - Plant Physiology, Friedrich Schiller University of Jena, 07743, Jena, Germany
| | - Hai Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, 6100641, Chengdu, China
| | - Martin Höfer
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
| | - Meret Huber
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, 48161, Münster, Germany
| | - Shuqing Xu
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany.
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany.
- Institute for Quantitative and Computational Biosciences, University of Mainz, 55218, Mainz, Germany.
| |
Collapse
|
8
|
Chen G, Stepanenko A, Borisjuk N. Contrasting patterns of 5S rDNA repeats in European and Asian ecotypes of greater duckweed, Spirodela polyrhiza (Lemnaceae). FRONTIERS IN PLANT SCIENCE 2024; 15:1378683. [PMID: 38711607 PMCID: PMC11070557 DOI: 10.3389/fpls.2024.1378683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
Ribosomal DNA (rDNA) contains highly conserved, specifically organized sequences encoding ribosomal RNAs (rRNAs) separated by variable non-transcribed intergenic spacers (NTSs) and is abundant in eukaryotic genomes. These characteristics make the rDNA an informative molecular target to study genome organization, molecular evolution, and phylogenetics. In this study, we characterized the 5S rDNA repeats in the greater duckweed Spiroldela polyrhiza, a species known for its small size, rapid growth, highly conserved genome organization, and low mutation rate. Sequence analysis of at least 12 individually cloned PCR fragments containing the 5S rDNA units for each of six ecotypes that originated from Europe (Ukraine) and Asia (China) revealed two distinct types of 5S rDNA repeats containing NTSs of different lengths and nucleotide compositions. The shorter 5S rDNA repeat units had a highly homogeneous 400-bp NTS, with few ecotype- or region-specific single-nucleotide polymorphisms (SNPs). The longer 5S rDNA units had NTSs of 1056-1084 bp with characteristic intra- and inter-genomic variants due to specific SNPs and insertions/deletions of 4-15-bp DNA elements. We also detected significant variability in the ratio of short/long 5S rDNA variants between ecotypes of S. polyrhiza. The contrasting dynamics of the two types of 5S rDNA units, combined with the unusually low repeat copy number (for plants) in S. polyrhiza (46-220 copies per genome), shows that this species could serve as an excellent model for examining the mechanisms of concerted evolution and functional significance of rDNA variability.
Collapse
Affiliation(s)
- Guimin Chen
- School of Life Sciences, Huaiyin Normal University, Huai’an, China
| | - Anton Stepanenko
- School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Department of Molecular Genetics, Institute of Cell Biology and Genetic Engineering, Kyiv, Ukraine
| | - Nikolai Borisjuk
- School of Life Sciences, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
9
|
Harkess A, Bewick AJ, Lu Z, Fourounjian P, Michael TP, Schmitz RJ, Meyers BC. The unusual predominance of maintenance DNA methylation in Spirodela polyrhiza. G3 (BETHESDA, MD.) 2024; 14:jkae004. [PMID: 38190722 PMCID: PMC10989885 DOI: 10.1093/g3journal/jkae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024]
Abstract
Duckweeds are among the fastest reproducing plants, able to clonally divide at exponential rates. However, the genetic and epigenetic impact of clonality on plant genomes is poorly understood. 5-methylcytosine (5mC) is a modified base often described as necessary for the proper regulation of certain genes and transposons and for the maintenance of genome integrity in plants. However, the extent of this dogma is limited by the current phylogenetic sampling of land plant species diversity. Here we analyzed DNA methylomes, small RNAs, mRNA-seq, and H3K9me2 histone modification for Spirodela polyrhiza. S. polyrhiza has lost highly conserved genes involved in de novo methylation of DNA at sites often associated with repetitive DNA, and within genes, however, symmetrical DNA methylation and heterochromatin are maintained during cell division at certain transposons and repeats. Consequently, small RNAs that normally guide methylation to silence repetitive DNA like retrotransposons are diminished. Despite the loss of a highly conserved methylation pathway, and the reduction of small RNAs that normally target repetitive DNA, transposons have not proliferated in the genome, perhaps due in part to the rapid, clonal growth lifestyle of duckweeds.
Collapse
Affiliation(s)
- Alex Harkess
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Adam J Bewick
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Zefu Lu
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Paul Fourounjian
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Todd P Michael
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
- Division of Plant Sciences, University of Missouri—Columbia, Columbia, MO 65211, USA
| |
Collapse
|
10
|
Höfer M, Schäfer M, Wang Y, Wink S, Xu S. Genetic Mechanism of Non-Targeted-Site Resistance to Diquat in Spirodela polyrhiza. PLANTS (BASEL, SWITZERLAND) 2024; 13:845. [PMID: 38592881 PMCID: PMC10975167 DOI: 10.3390/plants13060845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/27/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Understanding non-target-site resistance (NTSR) to herbicides represents a pressing challenge as NTSR is widespread in many weeds. Using giant duckweed (Spirodela polyrhiza) as a model, we systematically investigated genetic and molecular mechanisms of diquat resistance, which can only be achieved via NTSR. Quantifying the diquat resistance of 138 genotypes, we revealed an 8.5-fold difference in resistance levels between the most resistant and most susceptible genotypes. Further experiments suggested that diquat uptake and antioxidant-related processes jointly contributed to diquat resistance in S. polyrhiza. Using a genome-wide association approach, we identified several candidate genes, including a homolog of dienelactone hydrolase, that are associated with diquat resistance in S. polyrhiza. Together, these results provide new insights into the mechanisms and evolution of NTSR in plants.
Collapse
Affiliation(s)
- Martin Höfer
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55128 Mainz, Germany (M.S.)
| | - Martin Schäfer
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55128 Mainz, Germany (M.S.)
| | - Yangzi Wang
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55128 Mainz, Germany (M.S.)
| | - Samuel Wink
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Shuqing Xu
- Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55128 Mainz, Germany (M.S.)
| |
Collapse
|
11
|
Malacrinò A, Böttner L, Nouere S, Huber M, Schäfer M, Xu S. Induced responses contribute to rapid adaptation of Spirodela polyrhiza to herbivory by Lymnaea stagnalis. Commun Biol 2024; 7:81. [PMID: 38200287 PMCID: PMC10781955 DOI: 10.1038/s42003-023-05706-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Herbivory-induced responses in plants are typical examples of phenotypic plasticity, and their evolution is thought to be driven by herbivory. However, direct evidence of the role of induced responses in plant adaptive evolution to herbivores is scarce. Here, we experimentally evolve populations of an aquatic plant (Spirodela polyrhiza, giant duckweed) and its native herbivore (Lymnaea stagnalis, freshwater snail), testing whether herbivory drives rapid adaptive evolution in plant populations using a combination of bioassays, pool-sequencing, metabolite analyses, and amplicon metagenomics. We show that snail herbivory drove rapid phenotypic changes, increased herbivory resistance, and altered genotype frequencies in the plant populations. Additional bioassays suggest that evolutionary changes of induced responses contributed to the rapid increase of plant resistance to herbivory. This study provides direct evidence that herbivory-induced responses in plants can be subjected to selection and have an adaptive role by increasing resistance to herbivores.
Collapse
Affiliation(s)
- Antonino Malacrinò
- Department of Agriculture, Università degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Italy.
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
| | - Laura Böttner
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Institute for Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Sara Nouere
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Meret Huber
- Institute for Plant Biology and Biotechnology, University of Münster, Münster, Germany
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Martin Schäfer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
12
|
Sandler G, Agrawal AF, Wright SI. Population Genomics of the Facultatively Sexual Liverwort Marchantia polymorpha. Genome Biol Evol 2023; 15:evad196. [PMID: 37883717 PMCID: PMC10667032 DOI: 10.1093/gbe/evad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
The population genomics of facultatively sexual organisms are understudied compared with their abundance across the tree of life. We explore patterns of genetic diversity in two subspecies of the facultatively sexual liverwort Marchantia polymorpha using samples from across Southern Ontario, Canada. Despite the ease with which M. polymorpha should be able to propagate asexually, we find no evidence of strictly clonal descent among our samples and little to no signal of isolation by distance. Patterns of identity-by-descent tract sharing further showed evidence of recent recombination and close relatedness between geographically distant isolates, suggesting long distance gene flow and at least a modest frequency of sexual reproduction. However, the M. polymorpha genome contains overall very low levels of nucleotide diversity and signs of inefficient selection evidenced by a relatively high fraction of segregating deleterious variants. We interpret these patterns as possible evidence of the action of linked selection and a small effective population size due to past generations of asexual propagation. Overall, the M. polymorpha genome harbors signals of a complex history of both sexual and asexual reproduction.
Collapse
Affiliation(s)
- George Sandler
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Ziegler P, Appenroth KJ, Sree KS. Survival Strategies of Duckweeds, the World's Smallest Angiosperms. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112215. [PMID: 37299193 DOI: 10.3390/plants12112215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Duckweeds (Lemnaceae) are small, simply constructed aquatic higher plants that grow on or just below the surface of quiet waters. They consist primarily of leaf-like assimilatory organs, or fronds, that reproduce mainly by vegetative replication. Despite their diminutive size and inornate habit, duckweeds have been able to colonize and maintain themselves in almost all of the world's climate zones. They are thereby subject to multiple adverse influences during the growing season, such as high temperatures, extremes of light intensity and pH, nutrient shortage, damage by microorganisms and herbivores, the presence of harmful substances in the water, and competition from other aquatic plants, and they must also be able to withstand winter cold and drought that can be lethal to the fronds. This review discusses the means by which duckweeds come to grips with these adverse influences to ensure their survival. Important duckweed attributes in this regard are a pronounced potential for rapid growth and frond replication, a juvenile developmental status facilitating adventitious organ formation, and clonal diversity. Duckweeds have specific features at their disposal for coping with particular environmental difficulties and can also cooperate with other organisms of their surroundings to improve their survival chances.
Collapse
Affiliation(s)
- Paul Ziegler
- Department of Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Klaus J Appenroth
- Matthias Schleiden Institute-Plant Physiology, University of Jena, 07743 Jena, Germany
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
| |
Collapse
|
14
|
Insights into the differentiation and adaptation within Circaeasteraceae from Circaeaster agrestis genome sequencing and resequencing. iScience 2023; 26:106159. [PMID: 36895650 PMCID: PMC9988679 DOI: 10.1016/j.isci.2023.106159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Circaeaster agrestis and Kingdonia uniflora are sister species that reproduce sexually and mainly asexually respectively, providing a good system for comparative genome evolution between taxa with different reproductive models. Comparative genome analyses revealed the two species have similar genome size, but C. agrestis encodes many more genes. The gene families specific to C. agrestis show significant enrichment of genes associated with defense response, while those gene families specific to K. uniflora are enriched in genes regulating root system development. Collinearity analyses revealed C. agrestis experienced two rounds of whole-genome duplication. Fst outlier test across 25 C. agrestis populations uncovered a close inter-relationship between abiotic stress and genetic variability. Genetic feature comparisons showed K. uniflora presents much higher genome heterozygosity, transposable element load, linkage disequilibrium degree, and πN/πS ratio. This study provides new insights into understanding the genetic differentiation and adaptation within ancient lineages characterized by multiple reproductive models.
Collapse
|
15
|
Mateo-Elizalde C, Lynn J, Ernst E, Martienssen R. Duckweeds. Curr Biol 2023; 33:R89-R91. [PMID: 36750028 DOI: 10.1016/j.cub.2022.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mateo-Elizalde et al. introduce duckweeds, a family of freshwater plants.
Collapse
Affiliation(s)
| | - Jason Lynn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, NY 11724, USA
| | - Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, NY 11724, USA
| | - Rob Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, NY 11724, USA
| |
Collapse
|
16
|
Bafort Q, Wu T, Natran A, De Clerck O, Van de Peer Y. The immediate effects of polyploidization of Spirodela polyrhiza change in a strain-specific way along environmental gradients. Evol Lett 2023; 7:37-47. [PMID: 37065435 PMCID: PMC10091501 DOI: 10.1093/evlett/qrac003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 02/04/2023] Open
Abstract
Abstract
The immediate effects of plant polyploidization are well characterized and it is generally accepted that these morphological, physiological, developmental, and phenological changes contribute to polyploid establishment. Studies on the environmental dependence of the immediate effects of whole-genome duplication (WGD) are, however, scarce but suggest that these immediate effects are altered by stressful conditions. As polyploid establishment seems to be associated with environmental disturbance, the relationship between ploidy-induced phenotypical changes and environmental conditions is highly relevant. Here, we use a common garden experiment on the greater duckweed Spirodela polyrhiza to test whether the immediate effects of WGD can facilitate the establishment of tetraploid duckweed along gradients of two environmental stressors. Because successful polyploid establishment often depends on recurrent polyploidization events, we include four genetically diverse strains and assess whether these immediate effects are strain-specific. We find evidence that WGD can indeed confer a fitness advantage under stressful conditions and that the environment affects ploidy-induced changes in fitness and trait reaction norms in a strain-specific way.
Collapse
Affiliation(s)
- Quinten Bafort
- Department of Biology, Ghent University , Ghent , Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB-UGent Center for Plant Systems Biology , Ghent , Belgium
| | - Tian Wu
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB-UGent Center for Plant Systems Biology , Ghent , Belgium
| | - Annelore Natran
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB-UGent Center for Plant Systems Biology , Ghent , Belgium
| | | | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB-UGent Center for Plant Systems Biology , Ghent , Belgium
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University , Nanjing , China
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria , Pretoria , South Africa
| |
Collapse
|
17
|
Sun Y, Zhang X, Zhang A, Landis JB, Zhang H, Sun H, Xiang QY(J, Wang H. Population Genomic Analyses Suggest a Hybrid Origin, Cryptic Sexuality, and Decay of Genes Regulating Seed Development for the Putatively Strictly Asexual Kingdonia uniflora (Circaeasteraceae, Ranunculales). Int J Mol Sci 2023; 24:1451. [PMID: 36674965 PMCID: PMC9866071 DOI: 10.3390/ijms24021451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Asexual lineages are perceived to be short-lived on evolutionary timescales. Hence, reports for exceptional cases of putative 'ancient asexuals' usually raise questions about the persistence of such species. So far, there have been few studies to solve the mystery in plants. The monotypic Kingdonia dating to the early Eocene, contains only K. uniflora that has no known definitive evidence for sexual reproduction nor records for having congeneric sexual species, raising the possibility that the species has persisted under strict asexuality for a long period of time. Here, we analyze whole genome polymorphism and divergence in K. uniflora. Our results show that K. uniflora is characterized by high allelic heterozygosity and elevated πN/πS ratio, in line with theoretical expectations under asexual evolution. Allele frequency spectrum analysis reveals the origin of asexuality in K. uniflora occurred prior to lineage differentiation of the species. Although divergence within K. uniflora individuals exceeds that between populations, the topologies of the two haplotype trees, however, fail to match each other, indicating long-term asexuality is unlikely to account for the high allele divergence and K. uniflora may have a recent hybrid origin. Phi-test shows a statistical probability of recombination for the conflicting phylogenetic signals revealed by the split network, suggesting K. uniflora engages in undetected sexual reproduction. Detection of elevated genetic differentiation and premature stop codons (in some populations) in genes regulating seed development indicates mutational degradation of sexuality-specific genes in K. uniflora. This study unfolds the origin and persistence mechanism of a plant lineage that has been known to reproduce asexually and presents the genomic consequences of lack of sexuality.
Collapse
Affiliation(s)
- Yanxia Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aidi Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jacob B. Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Huajie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Qiu-Yun (Jenny) Xiang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
18
|
Baggs EL, Tiersma MB, Abramson BW, Michael TP, Krasileva KV. Characterization of defense responses against bacterial pathogens in duckweeds lacking EDS1. THE NEW PHYTOLOGIST 2022; 236:1838-1855. [PMID: 36052715 PMCID: PMC9828482 DOI: 10.1111/nph.18453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/19/2022] [Indexed: 05/19/2023]
Abstract
ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) mediates the induction of defense responses against pathogens in most angiosperms. However, it has recently been shown that a few species have lost EDS1. It is unknown how defense against disease unfolds and evolves in the absence of EDS1. We utilize duckweeds; a collection of aquatic species that lack EDS1, to investigate this question. We established duckweed-Pseudomonas pathosystems and used growth curves and microscopy to characterize pathogen-induced responses. Through comparative genomics and transcriptomics, we show that the copy number of infection-associated genes and the infection-induced transcriptional responses of duckweeds differ from other model species. Pathogen defense in duckweeds has evolved along different trajectories than in other plants, including genomic and transcriptional reprogramming. Specifically, the miAMP1 domain-containing proteins, which are absent in Arabidopsis, showed pathogen responsive upregulation in duckweeds. Despite such divergence between Arabidopsis and duckweed species, we found conservation of upregulation of certain genes and the role of hormones in response to disease. Our work highlights the importance of expanding the pool of model species to study defense responses that have evolved in the plant kingdom independent of EDS1.
Collapse
Affiliation(s)
- Erin L. Baggs
- Department of Plant and Microbial BiologyUniversity of California BerkeleyBerkeleyCA94720USA
| | - Meije B. Tiersma
- Department of Plant and Microbial BiologyUniversity of California BerkeleyBerkeleyCA94720USA
| | - Brad W. Abramson
- Plant Molecular and Cellular Biology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - Todd P. Michael
- Plant Molecular and Cellular Biology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - Ksenia V. Krasileva
- Department of Plant and Microbial BiologyUniversity of California BerkeleyBerkeleyCA94720USA
| |
Collapse
|
19
|
Friedjung Yosef A, Ghazaryan L, Klamann L, Kaufman KS, Baubin C, Poodiack B, Ran N, Gabay T, Didi-Cohen S, Bog M, Khozin-Goldberg I, Gillor O. Diversity and Differentiation of Duckweed Species from Israel. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233326. [PMID: 36501368 PMCID: PMC9736646 DOI: 10.3390/plants11233326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 06/12/2023]
Abstract
Duckweeds (Lemnaceae) are tiny plants that float on aquatic surfaces and are typically isolated from temperate and equatorial regions. Yet, duckweed diversity in Mediterranean and arid regions has been seldom explored. To address this gap in knowledge, we surveyed duckweed diversity in Israel, an ecological junction between Mediterranean and arid climates. We searched for duckweeds in the north and center of Israel on the surface of streams, ponds and waterholes. We collected and isolated 27 duckweeds and characterized their morphology, molecular barcodes (atpF-atpH and psbK-psbI) and biochemical features (protein content and fatty acids composition). Six species were identified-Lemna minor, L. gibba and Wolffia arrhiza dominated the duckweed populations, and together with past sightings, are suggested to be native to Israel. The fatty acid profiles and protein content further suggest that diverged functions have attributed to different haplotypes among the identified species. Spirodela polyrhiza, W. globosa and L. minuta were also identified but were rarer. S. polyrhiza was previously reported in our region, thus, its current low abundance should be revisited. However, L. minuta and W. globosa are native to America and Far East Asia, respectively, and are invasive in Europe. We hypothesize that they may be invasive species to our region as well, carried by migratory birds that disperse them through their migration routes. This study indicates that the duckweed population in Israel's aquatic environments consists of both native and transient species.
Collapse
Affiliation(s)
- Avital Friedjung Yosef
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben-Gurion 8499000, Israel
| | - Lusine Ghazaryan
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben-Gurion 8499000, Israel
| | - Linda Klamann
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben-Gurion 8499000, Israel
| | - Katherine Sarah Kaufman
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben-Gurion 8499000, Israel
| | - Capucine Baubin
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben-Gurion 8499000, Israel
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Ben Poodiack
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben-Gurion 8499000, Israel
| | - Noya Ran
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben-Gurion 8499000, Israel
| | - Talia Gabay
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben-Gurion 8499000, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be’er Sheva 8410501, Israel
| | - Shoshana Didi-Cohen
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Manuela Bog
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489 Greifswald, Germany
| | - Inna Khozin-Goldberg
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
20
|
Taghipour E, Bog M, Frootan F, Shojaei S, Rad N, Arezoumandi M, Jafari M, Salmanian AH. DNA barcoding and biomass accumulation rates of native Iranian duckweed species for biotechnological applications. FRONTIERS IN PLANT SCIENCE 2022; 13:1034238. [PMID: 36523621 PMCID: PMC9744944 DOI: 10.3389/fpls.2022.1034238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
The Lemnaceae family (duckweed) consists of at least three recognized genera with six reported species in Iran that are distributed in wetlands. Duckweeds are the simplest and smallest flowering aquatic monocots with free-floating fronds that can reproduce asexually every 2-3 days. Duckweed could be a major source of balanced amino acids and high protein content, which is increasingly promising for biotechnological applications. For molecular classification and species identification of the collected samples, DNA barcoding was performed using two standard chloroplast markers, the spacer region between the ATP synthase subunits F and H (atpF-atpH) and the intron region of the ribosomal protein S16 (rps16). The results confirm the presence of four species belonging to the two genera Lemna and Spirodela. In addition, L. turionifera was detected for the first time in Iran. Due to the high growth rates of duckweed, measurement of biomass accumulation and doubling time are important factors in determining growth potential, especially for native species. The relative growth rates (RGR), doubling times (DT), biomass accumulation, and relative weekly yields (RY) of 40 distinct duckweed clones were determined under standard cultivation conditions. The dry weight-based RGR ranged from 0.149 to more than 0.600 per day, DT from 1.12 to 9 days, and RY from 7 to 108.9 per week. All values are comparable with previous studies. RGR and RY of selected clones are higher than the growth potential for a wide range of wild plants and common crops. These data support that native duckweed has high productivity value and should be further investigated as a potentially rich protein source for alternative human food, livestock feed, and recombinant protein production.
Collapse
Affiliation(s)
- Elham Taghipour
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Department of Agricultural Biotechnology, Tehran, Iran
| | - Manuela Bog
- University of Greifswald, Institute of Botany and Landscape Ecology, Greifswald, Germany
| | - Fateme Frootan
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Department of Agricultural Biotechnology, Tehran, Iran
| | - Sadegh Shojaei
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Department of Agricultural Biotechnology, Tehran, Iran
| | - Nima Rad
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Department of Agricultural Biotechnology, Tehran, Iran
| | - Mahdi Arezoumandi
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Department of Agricultural Biotechnology, Tehran, Iran
| | - Mahyat Jafari
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Department of Agricultural Biotechnology, Tehran, Iran
| | - Ali Hatef Salmanian
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Department of Agricultural Biotechnology, Tehran, Iran
| |
Collapse
|
21
|
Bog M, Braglia L, Morello L, Noboa Melo KI, Schubert I, Shchepin ON, Sree KS, Xu S, Lam E, Appenroth KJ. Strategies for Intraspecific Genotyping of Duckweed: Comparison of Five Orthogonal Methods Applied to the Giant Duckweed Spirodela polyrhiza. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223033. [PMID: 36432762 PMCID: PMC9696241 DOI: 10.3390/plants11223033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/12/2023]
Abstract
The predominantly vegetative propagating duckweeds are of growing commercial interest. Since clonal accessions within a respective species can vary considerably with respect to their physiological as well as biochemical traits, it is critical to be able to track the clones of species of interest after their characterization. Here, we compared the efficacy of five different genotyping methods for Spirodela polyrhiza, a species with very low intraspecific sequence variations, including polymorphic NB-ARC-related loci, tubulin-gene-based polymorphism (TBP), simple sequence repeat variations (SSR), multiplexed ISSR genotyping by sequencing (MIG-seq), and low-coverage, reduced-representation genome sequencing (GBS). Four of the five approaches could distinguish 20 to 22 genotypes out of the 23 investigated clones, while TBP resolved just seven genotypes. The choice for a particular method for intraspecific genotyping can depend on the research question and the project budget, while the combination of orthogonal methods may increase the confidence and resolution for the results obtained.
Collapse
Affiliation(s)
- Manuela Bog
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489 Greifswald, Germany
| | - Luca Braglia
- Istituto Biologia e Biotecnologia Agraria, Via Bassini 15, 20131 Milano, Italy
| | - Laura Morello
- Istituto Biologia e Biotecnologia Agraria, Via Bassini 15, 20131 Milano, Italy
| | - Karen I. Noboa Melo
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489 Greifswald, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466 Stadt Seeland, Germany
| | - Oleg N. Shchepin
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489 Greifswald, Germany
| | - K. Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
| | - Shuqing Xu
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Eric Lam
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Klaus J. Appenroth
- Matthias Schleiden Institute—Plant Physiology, University of Jena, 07743 Jena, Germany
| |
Collapse
|
22
|
Yi H, Wang J, Wang J, Rausher M, Kang M. Genomic insights into inter- and intraspecific mating system shifts in Primulina. Mol Ecol 2022; 31:5699-5713. [PMID: 36178058 DOI: 10.1111/mec.16706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 01/13/2023]
Abstract
The mating system shift from outcrossing to selfing is one of the most frequent evolutionary trends in flowering plants. However, the genomic consequences of this shift remain poorly understood. Specifically, the relative importance of the demographic and genetic processes causing changes in genetic variation and selection efficacy associated with the evolution of selfing is unclear. Here we sequenced the genomes of two Primulina species with contrasting mating systems: P. eburnea (outcrossing) versus P. tabacum (outcrossing, mixed-mating and selfing populations). Whole-genome resequencing data were used to investigate the genomic consequences of mating system shifts within and between species. We found that highly selfing populations of P. tabacum display loss of genetic diversity, increased deleterious mutations, higher genomic burden and fewer adaptive substitutions. However, compared with outcrossing populations, mixed-mating populations did not display loss of genetic diversity and accumulation of genetic load. We find no evidence of population bottlenecks associated with the shift to selfing, which suggests that the genetic effects of selfing on Ne and possibly linked selection, rather than demographic history, are the primary drivers of diversity reduction in highly selfing populations. Our results highlight the importance of distinguishing the relative contribution of mating system and demography on the genomic consequences associated with mating system evolution in plants.
Collapse
Affiliation(s)
- Huiqin Yi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jieyu Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jing Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Mark Rausher
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
23
|
da Cunha NL, Xue H, Wright SI, Barrett SCH. Genetic variation and clonal diversity in floating aquatic plants: Comparative genomic analysis of water hyacinth species in their native range. Mol Ecol 2022; 31:5307-5325. [PMID: 35984729 DOI: 10.1111/mec.16664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/24/2022] [Accepted: 08/10/2022] [Indexed: 12/15/2022]
Abstract
Many eukaryotic organisms reproduce by sexual and asexual reproduction. Genetic diversity in populations can be strongly dependent on the relative importance of these two reproductive modes. Here, we compare the amounts and patterns of genetic diversity in related water hyacinths that differ in their propensity for clonal propagation - highly clonal Eichhornia crassipes and moderately clonal E. azurea (Pontederiaceae). Our comparisons involved genotype-by-sequencing (GBS) of 137 E. crassipes ramets from 60 locations (193,495 nucleotide sites) and 118 E. azurea ramets from 53 locations (198,343 nucleotide sites) among six hydrological basins in central South America, the native range of both species. We predicted that because of more prolific clonal propagation, E. crassipes would exhibit lower clonal diversity than E. azurea. This prediction was supported by all measures of clonal diversity that we examined. Eichhornia crassipes also had a larger excess of heterozygotes at variant sites, another signature of clonality. However, genome-wide heterozygosity was not significantly different between the species. Eichhornia crassipes had weaker spatial genetic structure and lower levels of differentiation among hydrological basins than E. azurea, probably because of higher clonality and more extensive dispersal of its free-floating life form. Our findings for E. crassipes contrast with earlier studies from the invasive range which have reported very low levels of clonal diversity and extensive geographic areas of genetic uniformity.
Collapse
Affiliation(s)
- Nicolay Leme da Cunha
- Grupo de Ecología de la Polinización, INIBIOMA, CONICET-Universidad Nacional del Comahue, San Carlos de Bariloche, Rio Negro, Argentina.,Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Haoran Xue
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Bog M, Appenroth KJ, Schneider P, Sree KS. Intraspecific Diversity in Aquatic Ecosystems: Comparison between Spirodela polyrhiza and Lemna minor in Natural Populations of Duckweed. PLANTS 2022; 11:plants11070968. [PMID: 35406948 PMCID: PMC9003317 DOI: 10.3390/plants11070968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
Samples of two duckweed species, Spirodela polyrhiza and Lemna minor, were collected around small ponds and investigated concerning the question of whether natural populations of duckweeds constitute a single clone, or whether clonal diversity exists. Amplified fragment length polymorphism was used as a molecular method to distinguish clones of the same species. Possible intraspecific diversity was evaluated by average-linkage clustering. The main criterion to distinguish one clone from another was the 95% significance level of the Jaccard dissimilarity index for replicated samples. Within natural populations of L. minor, significant intraspecific genetic differences were detected. In each of the three small ponds harbouring populations of L. minor, based on twelve samples, between four and nine distinct clones were detected. Natural populations of L. minor consist of a mixture of several clones representing intraspecific biodiversity in an aquatic ecosystem. Moreover, identical distinct clones were discovered in more than one pond, located at a distance of 1 km and 2.4 km from each other. Evidently, fronds of L. minor were transported between these different ponds. The genetic differences for S. polyrhiza, however, were below the error-threshold of the method within a pond to detect distinct clones, but were pronounced between samples of two different ponds.
Collapse
Affiliation(s)
- Manuela Bog
- Institute of Botany and Landscape Ecology, University of Greifswald, D-17489 Greifswald, Germany;
| | - Klaus-Juergen Appenroth
- Matthias Schleiden Institute-Plant Physiology, University of Jena, D-07743 Jena, Germany;
- Correspondence: (K.-J.A.); or (K.S.S.); Tel.: +49-3641-949233 (K.-J.A.); +91-9999-672921 (K.S.S.)
| | - Philipp Schneider
- Matthias Schleiden Institute-Plant Physiology, University of Jena, D-07743 Jena, Germany;
| | - K. Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
- Correspondence: (K.-J.A.); or (K.S.S.); Tel.: +49-3641-949233 (K.-J.A.); +91-9999-672921 (K.S.S.)
| |
Collapse
|
25
|
Acosta K, Appenroth KJ, Borisjuk L, Edelman M, Heinig U, Jansen MAK, Oyama T, Pasaribu B, Schubert I, Sorrels S, Sree KS, Xu S, Michael TP, Lam E. Return of the Lemnaceae: duckweed as a model plant system in the genomics and postgenomics era. THE PLANT CELL 2021; 33:3207-3234. [PMID: 34273173 PMCID: PMC8505876 DOI: 10.1093/plcell/koab189] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/18/2021] [Indexed: 05/05/2023]
Abstract
The aquatic Lemnaceae family, commonly called duckweed, comprises some of the smallest and fastest growing angiosperms known on Earth. Their tiny size, rapid growth by clonal propagation, and facile uptake of labeled compounds from the media were attractive features that made them a well-known model for plant biology from 1950 to 1990. Interest in duckweed has steadily regained momentum over the past decade, driven in part by the growing need to identify alternative plants from traditional agricultural crops that can help tackle urgent societal challenges, such as climate change and rapid population expansion. Propelled by rapid advances in genomic technologies, recent studies with duckweed again highlight the potential of these small plants to enable discoveries in diverse fields from ecology to chronobiology. Building on established community resources, duckweed is reemerging as a platform to study plant processes at the systems level and to translate knowledge gained for field deployment to address some of society's pressing needs. This review details the anatomy, development, physiology, and molecular characteristics of the Lemnaceae to introduce them to the broader plant research community. We highlight recent research enabled by Lemnaceae to demonstrate how these plants can be used for quantitative studies of complex processes and for revealing potentially novel strategies in plant defense and genome maintenance.
Collapse
Affiliation(s)
- Kenneth Acosta
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Klaus J Appenroth
- Plant Physiology, Matthias Schleiden Institute, University of Jena, Jena 07737, Germany
| | - Ljudmilla Borisjuk
- The Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben D-06466, Germany
| | - Marvin Edelman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uwe Heinig
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Cork T23 TK30, Ireland
| | - Tokitaka Oyama
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Buntora Pasaribu
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ingo Schubert
- The Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben D-06466, Germany
| | - Shawn Sorrels
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute of Biological Studies, La Jolla, California 92037, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
26
|
Chen G, Stepanenko A, Borisjuk N. Mosaic Arrangement of the 5S rDNA in the Aquatic Plant Landoltia punctata (Lemnaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:678689. [PMID: 34249048 PMCID: PMC8264772 DOI: 10.3389/fpls.2021.678689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Duckweeds are a group of monocotyledonous aquatic plants in the Araceae superfamily, represented by 37 species divided into five genera. Duckweeds are the fastest growing flowering plants and are distributed around the globe; moreover, these plants have multiple applications, including biomass production, wastewater remediation, and making pharmaceutical proteins. Dotted duckweed (Landoltia punctata), the sole species in genus Landoltia, is one of the most resilient duckweed species. The ribosomal DNA (rDNA) encodes the RNA components of ribosomes and represents a significant part of plant genomes but has not been comprehensively studied in duckweeds. Here, we characterized the 5S rDNA genes in L. punctata by cloning and sequencing 25 PCR fragments containing the 5S rDNA repeats. No length variation was detected in the 5S rDNA gene sequence, whereas the nontranscribed spacer (NTS) varied from 151 to 524 bp. The NTS variants were grouped into two major classes, which differed both in nucleotide sequence and the type and arrangement of the spacer subrepeats. The dominant class I NTS, with a characteristic 12-bp TC-rich sequence present in 3-18 copies, was classified into four subclasses, whereas the minor class II NTS, with shorter, 9-bp nucleotide repeats, was represented by two identical sequences. In addition to these diverse subrepeats, class I and class II NTSs differed in their representation of cis-elements and the patterns of predicted G-quadruplex structures, which may influence the transcription of the 5S rDNA. Similar to related duckweed species in the genus Spirodela, L. punctata has a relatively low rDNA copy number, but in contrast to Spirodela and the majority of other plants, the arrangement of the 5S rDNA units demonstrated an unusual, heterogeneous pattern in L. punctata, as revealed by analyzing clones containing double 5S rDNA neighboring units. Our findings may further stimulate the research on the evolution of the plant rDNA and discussion of the molecular forces driving homogenization of rDNA repeats in concerted evolution.
Collapse
Affiliation(s)
- Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
27
|
Peniston JH, Barfield M, Holt RD, Orive ME. Environmental fluctuations dampen the effects of clonal reproduction on evolutionary rescue. J Evol Biol 2021; 34:710-722. [PMID: 33682225 DOI: 10.1111/jeb.13778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/19/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022]
Abstract
Evolutionary rescue occurs when genetic change allows a population to persist in response to an environmental change that would otherwise have led to extinction. Most studies of evolutionary rescue assume that species have either fully clonal or fully sexual reproduction; however, many species have partially clonal reproductive strategies in which they reproduce both clonally and sexually. Furthermore, the few evolutionary rescue studies that have evaluated partially clonal reproduction did not consider fluctuations in the environment, which are nearly ubiquitous in nature. Here, we use individual-based simulations to investigate how environmental fluctuations (either uncorrelated or positively autocorrelated) influence the effect of clonality on evolutionary rescue. We show that, for moderate magnitudes of environmental fluctuations, as was found in the absence of fluctuations, increasing the degree of clonality increases the probability of population persistence in response to an abrupt environmental change, but decreases persistence in response to a continuous, directional environmental change. However, with large magnitudes of fluctuations, both the benefits of clonality following a step change and the detrimental effects of clonality following a continuous, directional change are generally reduced; in fact, in the latter scenario, increasing clonality can even become beneficial if environmental fluctuations are autocorrelated. We also show that increased generational overlap dampens the effects of environmental fluctuations. Overall, we demonstrate that understanding the evolutionary rescue of partially clonal organisms requires not only knowledge of the species life history and the type of environmental change, but also an understanding of the magnitude and autocorrelation of environmental fluctuations.
Collapse
Affiliation(s)
- James H Peniston
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Michael Barfield
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Robert D Holt
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Maria E Orive
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
28
|
Hartfield M. Approximating the Coalescent Under Facultative Sex. J Hered 2021; 112:145-154. [PMID: 33511984 DOI: 10.1093/jhered/esaa036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 09/01/2020] [Indexed: 11/14/2022] Open
Abstract
Genome studies of facultative sexual species, which can either reproduce sexually or asexually, are providing insight into the evolutionary consequences of mixed reproductive modes. It is currently unclear to what extent the evolutionary history of facultative sexuals' genomes can be approximated by the standard coalescent, and if a coalescent effective population size Ne exists. Here, I determine if and when these approximations can be made. When sex is frequent (occurring at a frequency much greater than 1/N per reproduction per generation, for N the actual population size), the underlying genealogy can be approximated by the standard coalescent, with a coalescent Ne≈N. When sex is very rare (at frequency much lower than 1/N), approximations for the pairwise coalescent time can be obtained, which is strongly influenced by the frequencies of sex and mitotic gene conversion, rather than N. However, these terms do not translate into a coalescent Ne. These results are used to discuss the best sampling strategies for investigating the evolutionary history of facultative sexual species.
Collapse
Affiliation(s)
- Matthew Hartfield
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
29
|
Hoang PTN, Fiebig A, Novák P, Macas J, Cao HX, Stepanenko A, Chen G, Borisjuk N, Scholz U, Schubert I. Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries. Sci Rep 2020; 10:19230. [PMID: 33154426 PMCID: PMC7645714 DOI: 10.1038/s41598-020-75728-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
Duckweeds are small, free-floating, morphologically highly reduced organisms belonging to the monocot order Alismatales. They display the most rapid growth among flowering plants, vary ~ 14-fold in genome size and comprise five genera. Spirodela is the phylogenetically oldest genus with only two mainly asexually propagating species: S. polyrhiza (2n = 40; 160 Mbp/1C) and S. intermedia (2n = 36; 160 Mbp/1C). This study combined comparative cytogenetics and de novo genome assembly based on PacBio, Illumina and Oxford Nanopore (ON) reads to obtain the first genome reference for S. intermedia and to compare its genomic features with those of the sister species S. polyrhiza. Both species' genomes revealed little more than 20,000 putative protein-coding genes, very low rDNA copy numbers and a low amount of repetitive sequences, mainly Ty3/gypsy retroelements. The detection of a few new small chromosome rearrangements between both Spirodela species refined the karyotype and the chromosomal sequence assignment for S. intermedia.
Collapse
Affiliation(s)
- Phuong T N Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
- Biology Faculty, Dalat University, District 8, Dalat City, Lamdong Province, Vietnam
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
| | - Petr Novák
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic
| | - Hieu X Cao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, 06120, Halle, Germany
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany.
| |
Collapse
|
30
|
Estimation of the SNP Mutation Rate in Two Vegetatively Propagating Species of Duckweed. G3-GENES GENOMES GENETICS 2020; 10:4191-4200. [PMID: 32973000 PMCID: PMC7642947 DOI: 10.1534/g3.120.401704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutation rate estimates for vegetatively reproducing organisms are rare, despite their frequent occurrence across the tree of life. Here we report mutation rate estimates in two vegetatively reproducing duckweed species, Lemna minor and Spirodela polyrhiza We use a modified approach to estimating mutation rates by taking into account the reduction in mutation detection power that occurs when new individuals are produced from multiple cell lineages. We estimate an extremely low per generation mutation rate in both species of duckweed and note that allelic coverage at de novo mutation sites is very skewed. We also find no substantial difference in mutation rate between mutation accumulation lines propagated under benign conditions and those grown under salt stress. Finally, we discuss the implications of interpreting mutation rate estimates in vegetatively propagating organisms.
Collapse
|
31
|
Chen D, Zhang H, Wang Q, Shao M, Li X, Chen D, Zeng R, Song Y. Intraspecific variations in cadmium tolerance and phytoaccumulation in giant duckweed (Spirodela polyrhiza). JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122672. [PMID: 32305716 DOI: 10.1016/j.jhazmat.2020.122672] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 05/25/2023]
Abstract
Duckweeds are widely recognized for the heavy metal phytoremediation. However, the intraspecific variations in biological responses of duckweeds to heavy metal remain largely unknown. Here, the toxicity and phytoaccumulation of cadmium (Cd) were synchronously evaluated in 30 accessions of giant duckweed (Spirodela polyrhiza) collected from different provenances in Southern China. Exposure to 1 μM Cd decreased relative growth rates of dry weight, fronds number and fronds area, as well as photosynthetic pigment contents, while it increased H2O2 accumulation, lipid peroxidation and activities of anti-oxidant enzymes in the majority of accessions. Cd treatment led to remarkable Cd accumulation but little changes in the starch content in giant duckweed. The biological responses to Cd varied among the accessions. Further correlation analysis indicated that growth traits and Cd concentration were positively correlated with Cd accumulation, while the contents of chlorophyll, H2O2 and MDA were negatively associated with Cd accumulation. Our results proved the great intraspecific variation in Cd tolerance of giant duckweed, suggesting a valuable natural resource for Cd phytoremediation. Moreover, different mechanisms may be exploited by S. polyrhiza for phytoaccumulation, but growth maintenance, Cd uptake and antioxidative enzyme-independent ROS-scavenging under Cd exposure are the common mechanisms contributing to Cd accumulation ability.
Collapse
Affiliation(s)
- Daoqian Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Hao Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Qiongli Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Min Shao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Xinyu Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Dongmei Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
| |
Collapse
|
32
|
Chen Z, Ai F, Zhang J, Ma X, Yang W, Wang W, Su Y, Wang M, Yang Y, Mao K, Wang Q, Lascoux M, Liu J, Ma T. Survival in the Tropics despite isolation, inbreeding and asexual reproduction: insights from the genome of the world's southernmost poplar (Populus ilicifolia). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:430-442. [PMID: 32168389 DOI: 10.1111/tpj.14744] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/04/2020] [Accepted: 03/02/2020] [Indexed: 05/16/2023]
Abstract
Species are becoming extinct at unprecedented rates as a consequence of human activity. Hence it is important to understand the evolutionary dynamics of species with already small population sizes. Populus ilicifolia is a vulnerable poplar species that is isolated from other poplar species and is uniquely adapted to the Tropics. It has a very limited size, reproduces partly clonally and is therefore an excellent case study for conservation genomics. We present here the first annotated draft genome of P. ilicifolia, characterize genome-wide patterns of polymorphisms and compare those to other poplar species with larger natural ranges. P. ilicifolia experienced a more prolonged and severe decline of effective population size (Ne ) and signs of genetic erosion than any other poplar species with which it was compared. At present, the species has the lowest genome-wide genetic diversity, the highest abundance of long runs of homozygosity, high inbreeding levels as well as a high overall accumulation of deleterious variants. However, more effective purging of severely deleterious variants and adaptation to the Tropics may have contributed to its survival. Hence, in spite of its limited genetic variation, it is certainly worth pursuing the conservation efforts of this unique species.
Collapse
Affiliation(s)
- Zeyuan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Fandi Ai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Junlin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Xinzhi Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenlu Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Weiwei Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Yutao Su
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingcheng Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Qingfeng Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen, 18D 75326, Uppsala, Sweden
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
33
|
Bog M, Appenroth KJ, Sree KS. Duckweed (Lemnaceae): Its Molecular Taxonomy. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00117] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Schoen DJ, Johnson MTJ, Wright SI. The ecology, evolution, and genetics of plant reproductive systems. THE NEW PHYTOLOGIST 2019; 224:999-1004. [PMID: 31631365 DOI: 10.1111/nph.16222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Daniel J Schoen
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Marc T J Johnson
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|