1
|
Beccari E, Carmona CP. Aboveground and belowground sizes are aligned in the unified spectrum of plant form and function. Nat Commun 2024; 15:9199. [PMID: 39448582 PMCID: PMC11502772 DOI: 10.1038/s41467-024-53180-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Understanding the global variation of plant strategies is essential for unravelling eco-evolutionary processes and ecosystem functions. Variation in ten fundamental aboveground and fine-root traits is summarised in four dimensions, the first of which relates to aboveground plant size. However, there is no consensus about how root size fits within this scheme. Here, we add rooting depth and lateral spread, compiling a set of twelve key traits that define the fundamental investments of plants in growth, reproduction, and survival. We examine whether the inclusion of root size alters the dimensionality and structure of trait correlations defining plant functional strategies. Our results show that including root size traits does not alter the fundamental structure and dimensionality of the plant functional space, regardless of trait completeness and phylogenetic relatedness. Plant size defines a single continuum of allometric investments at the global scale, independent from leaf and root economic strategies.
Collapse
Affiliation(s)
- Eleonora Beccari
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, Estonia.
| | - Carlos P Carmona
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, Estonia
| |
Collapse
|
2
|
Chen R, Xiao S, Dong C, Xie S, Zhang L, Wu F, Tu C, Liu QX, Wang S, Niinemets Ü, Hastings A, Niklas KJ, Deng J. Ontogenetic shifts in leaf biomass allocation in crop plants. Natl Sci Rev 2024; 11:nwae349. [PMID: 39444445 PMCID: PMC11498050 DOI: 10.1093/nsr/nwae349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Affiliation(s)
- Renfei Chen
- School of Life Science, Shanxi Normal University, China
| | - Suping Xiao
- School of Mathematics and Computer Science, Shanxi Normal University, China
| | - Chuancong Dong
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, China
| | - Shubin Xie
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, China
| | - Liang Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, China
| | - Fan Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, China
| | - Chengyi Tu
- School of Economics and Management, Zhejiang Sci-Tech University, China
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, USA
| | - Quan-Xing Liu
- School of Mathematical Sciences, Shanghai Jiao Tong University, China
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, China
| | - Ülo Niinemets
- Crop Science and Plant Biology, Estonian University of Life Sciences, Estonia
| | - Alan Hastings
- Department of Environmental Science and Policy, University of California, Davis, USA
- Santa Fe Institute, USA
| | - Karl J Niklas
- School of Integrative Plant Science, Cornell University, USA
| | - Jianming Deng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, China
| |
Collapse
|
3
|
Luo Y, Yang H, Yan X, Ma Y, Wei S, Wang J, Cao Z, Zuo Z, Yang C, Cheng J. Response of Seed Germination and Seedling Growth of Six Desert Shrubs to Different Moisture Levels under Greenhouse Conditions. BIOLOGY 2024; 13:747. [PMID: 39336174 PMCID: PMC11429217 DOI: 10.3390/biology13090747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Moisture is the most important environmental factor limiting seed regeneration of shrubs in desert areas. Therefore, understanding the effects of moisture changes on seed germination, morphological and physiological traits of shrubs is essential for vegetation restoration in desert areas. In March to June 2023, in a greenhouse using the potting method, we tested the effects of soil moisture changes (5%, 10%, 15%, 20% and 25%) on seed germination and seedling growth of six desert shrubs (Zygophyllum xanthoxylum, Nitraria sibirica, Calligonum mongolicum, Corethrodendron scoparium, Caragana korshinskii, and Corethrodendron fruticosu). Results showed that (1) seed germination percent and vigor index were significantly higher at 15 and 20% soil moisture content than at 5 and 10%; (2) shoot length, primary root length, specific leaf area and biomass of seedlings were significantly higher in the 15% and 20% soil moisture content treatments than in the 5% and 10% treatments; (3) superoxide dismutase activity (SOD) and soluble protein content (SP) decreased with decreasing soil water content, while peroxidase activity (POD) and catalase activity (CAT) showed a decreasing and then increasing trend with increasing soil water content; (4) the six seeds and seedling of shrubs were ranked in order of their survivability in response to changes in soil moisture: Caragana korshinskii > Zygophyllum xanthoxylum > Calligonum mongolicum > Corethrodendron scoparium > Corethrodendron fruticosu > Nitraria sibirica. Our study shows that shrub seedlings respond to water changes by regulating morphological and physiological traits together. More importantly, we found that C. korshinskii, Z. xanthoxylum and C. mongolicum were more survivable when coping with water deficit or extreme precipitation. The results of the study may provide a reference for the selection and cultivation of similar shrubs in desert areas under frequent extreme droughts in the future.
Collapse
Affiliation(s)
- Yonghong Luo
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hui Yang
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
- Ningxia Key Laboratory of Sand Control and Soil and Water Conservation, Yinchuan 750002, China
| | - Xingfu Yan
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan 750004, China
| | - Yongrui Ma
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Shuhua Wei
- Ningxia Academy of Agriculture and Forestry Sciences, Plant Protection Institute, Yinchuan 750002, China
| | - Jiazhi Wang
- Chengde Meteorological Disaster Prevention Center of Hebei Province, Chengde 067000, China
| | - Ziyu Cao
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Zhong Zuo
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
- Ningxia Key Laboratory of Sand Control and Soil and Water Conservation, Yinchuan 750002, China
| | - Chunhui Yang
- School of Literature and Communication, China Three Gorges University, Yichang 443002, China
| | - Jiming Cheng
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
4
|
Doležal J, Chondol T, Chlumská Z, Altman J, Čapková K, Dvorský M, Fibich P, Korznikov KA, Ruka AT, Kopecký M, Macek M, Řeháková K. Contrasting biomass allocations explain adaptations to cold and drought in the world's highest-growing angiosperms. ANNALS OF BOTANY 2024; 134:401-414. [PMID: 38407819 PMCID: PMC11341669 DOI: 10.1093/aob/mcae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/23/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND AND AIMS Understanding biomass allocation among plant organs is crucial for comprehending plant growth optimization, survival and responses to the drivers of global change. Yet, the mechanisms governing mass allocation in vascular plants from extreme elevations exposed to cold and drought stresses remain poorly understood. METHODOLOGY We analysed organ mass weights and fractions in 258 Himalayan herbaceous species across diverse habitats (wetland, steppe, alpine), growth forms (annual, perennial taprooted, rhizomatous and cushiony) and climatic gradients (3500-6150 m elevation) to explore whether biomass distribution adhered to fixed allometric or optimal partitioning rules, and how variations in size, phylogeny and ecological preferences influence their strategies for resource allocation. KEY FINDINGS Following optimal partitioning theory, Himalayan plants distribute more biomass to key organs vital for acquiring and preserving limited resources necessary for their growth and survival. Allocation strategies are mainly influenced by plant growth forms and habitat conditions, notably temperature, water availability and evaporative demands. Alpine plants invest primarily in below-ground stem bases for storage and regeneration, reducing above-ground stems while increasing leaf mass fraction to maximize carbon assimilation in their short growing season. Conversely, arid steppe plants prioritize deep roots over leaves to secure water and minimize transpiration. Wetland plants allocate resources to above-ground stems and below-ground rhizomes, enabling them to resist competition and grazing in fertile environments. CONCLUSIONS Himalayan plants from extreme elevations optimize their allocation strategies to acquire scarce resources under specific conditions, efficiently investing carbon from supportive to acquisitive and protective functions with increasing cold and drought. Intraspecific variation and shared ancestry have not significantly altered biomass allocation strategies of Himalayan plants. Despite diverse evolutionary histories, plants from similar habitats have developed comparable phenotypic structures to adapt to their specific environments. This study offers new insights into plant adaptations in diverse Himalayan environments and underscores the importance of efficient resource allocation for survival and growth in challenging conditions.
Collapse
Affiliation(s)
- Jiří Doležal
- Institute of Botany of the Czech Academy of Science, Průhonice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Thinles Chondol
- Institute of Botany of the Czech Academy of Science, Průhonice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Zuzana Chlumská
- Institute of Botany of the Czech Academy of Science, Průhonice, Czech Republic
| | - Jan Altman
- Institute of Botany of the Czech Academy of Science, Průhonice, Czech Republic
| | - Kateřina Čapková
- Institute of Botany of the Czech Academy of Science, Průhonice, Czech Republic
| | - Miroslav Dvorský
- Institute of Botany of the Czech Academy of Science, Průhonice, Czech Republic
| | - Pavel Fibich
- Institute of Botany of the Czech Academy of Science, Průhonice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Kirill A Korznikov
- Institute of Botany of the Czech Academy of Science, Průhonice, Czech Republic
| | - Adam T Ruka
- Institute of Botany of the Czech Academy of Science, Průhonice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Martin Kopecký
- Institute of Botany of the Czech Academy of Science, Průhonice, Czech Republic
| | - Martin Macek
- Institute of Botany of the Czech Academy of Science, Průhonice, Czech Republic
| | - Klára Řeháková
- Institute of Botany of the Czech Academy of Science, Průhonice, Czech Republic
| |
Collapse
|
5
|
De Deurwaerder HPT, Detto M, Visser MD, Schnitzer S, Pacala SW. Linking physiology, epidemiology, and demography: Understanding how lianas outcompete trees in a changing world. Proc Natl Acad Sci U S A 2024; 121:e2319487121. [PMID: 39133847 PMCID: PMC11348021 DOI: 10.1073/pnas.2319487121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/24/2024] [Indexed: 08/29/2024] Open
Abstract
Extending and safeguarding tropical forest ecosystems is critical for combating climate change and biodiversity loss. One of its constituents, lianas, is spreading and increasing in abundance on a global scale. This is particularly concerning as lianas negatively impact forests' carbon fluxes, dynamics, and overall resilience, potentially exacerbating both crises. While possibly linked to climate-change-induced atmospheric CO2 elevation and drought intensification, the reasons behind their increasing abundance remain elusive. Prior research shows distinct physiological differences between lianas and trees, but it is unclear whether these differences confer a demographic advantage to lianas with climate change. Guided by extensive datasets collected in Panamanian tropical forests, we developed a tractable model integrating physiology, demography, and epidemiology. Our findings suggest that CO2 fertilization, a climate change factor promoting forest productivity, gives lianas a demographic advantage. Conversely, factors such as extreme drought generally cause a decrease in liana prevalence. Such a decline in liana prevalence is expected from a physiological point of view because lianas have drought-sensitive traits. However, our analysis underscores the importance of not exclusively relying on physiological processes, as interactions with demographic mechanisms (i.e., the forest structure) can contrast these expectations, causing an increase in lianas with drought. Similarly, our results emphasize that identical physiological responses between lianas and trees still lead to liana increase. Even if lianas exhibit collinear but weaker responses in their performance compared to trees, a temporary liana prevalence increase might manifest driven by the faster response time of lianas imposed by their distinct life-history strategies than trees.
Collapse
Affiliation(s)
| | - Matteo Detto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544
- Smithsonian Tropical Research Institute, Balboa0843-03092, Panama
| | - Marco D. Visser
- Institute of Environmental Sciences (CML), Leiden University, LeidenCC 2333, The Netherlands
| | - Stefan Schnitzer
- Smithsonian Tropical Research Institute, Balboa0843-03092, Panama
- Department of Biological Sciences, Marquette University, Milwaukee, WI53201
| | - Stephen W. Pacala
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544
| |
Collapse
|
6
|
Gerolamo CS, Pereira L, Costa FRC, Jansen S, Angyalossy V, Nogueira A. Lianas in tropical dry seasonal forests have a high hydraulic efficiency but not always a higher embolism resistance than lianas in rainforests. ANNALS OF BOTANY 2024; 134:337-350. [PMID: 38721801 PMCID: PMC11232521 DOI: 10.1093/aob/mcae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/07/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND AND AIMS Lianas have higher relative abundance and biomass in drier seasonal forests than in rainforests, but whether this difference is associated with their hydraulic strategies is unclear. Here, we investigate whether lianas of seasonally dry forests are safer and more efficient in water transport than rainforest lianas, explaining patterns of liana abundance. METHODS We measured hydraulic traits on five pairs of congeneric lianas of the tribe Bignonieae in two contrasting forest sites: the wet 'Dense Ombrophilous Forest' in Central Amazonia (~2 dry months) and the drier 'Semideciduous Seasonal Forest' in the inland Atlantic Forest (~6 dry months). We also gathered a broader database, including 197 trees and 58 liana species from different tropical forests, to compare hydraulic safety between habits and forest types. KEY RESULTS Bignonieae lianas from both forests had high and similar hydraulic efficiency but exhibited variability in resistance to embolism across forest types when phylogenetic relationships were taken into account. Three genera had higher hydraulic safety in the seasonal forest than in the rainforest, but species across both forests had similar positive hydraulic safety margins despite lower predawn water potential values of seasonal forest lianas. We did not find the safety-efficiency trade-off. Merging our results with previously published data revealed a high variability of resistance to embolism in both trees and lianas, independent of forest types. CONCLUSIONS The high hydraulic efficiency of lianas detected here probably favours their rapid growth across tropical forests, but differences in hydraulic safety highlight that some species are highly vulnerable and may rely on other mechanisms to cope with drought. Future research on the lethal dehydration threshold and the connection between hydraulic resistance strategies and liana abundance could offer further insights into tropical forest dynamics under climatic threats.
Collapse
Affiliation(s)
- Caian S Gerolamo
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Luciano Pereira
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| | - Flavia R C Costa
- Instituto Nacional de Pesquisas da Amazônia – INPA, Manaus, AM, 69011-970, Brazil
| | - Steven Jansen
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| | - Veronica Angyalossy
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Anselmo Nogueira
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, São Bernardo do Campo, SP, 09606-070, Brazil
| |
Collapse
|
7
|
Dossa GGO, Adhikari S, Cao KF, Chen YJ, Codjia JEI, Corlett RT, Dong J, Fan ZX, Khatri P, Kiki M, Li HL, Ling TC, Liu G, Majcher BM, Nisar N, Njoroge DM, Ofosu-Bamfo B, Pearce S, Roeder M, Schaefer DA, Schnitzer SA, Smith-Martin CM, Thu WP, Tomlinson KW, Xu SY, Zakari S, Zhang JL, Zhang YB, Zotz G, Zuo J, Cornelissen JHC. Lianas from lives to afterlives: 1st International workshop on liana forest ecology, Xishuangbanna, China, 12-16 October 2023. THE NEW PHYTOLOGIST 2024; 242:1886-1890. [PMID: 38622774 DOI: 10.1111/nph.19729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/23/2024] [Indexed: 04/17/2024]
Affiliation(s)
- Gbadamassi G O Dossa
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Shambhu Adhikari
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Kun-Fang Cao
- Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, and College of Forestry, Guangxi University, Nanning, 530004, China
| | - Ya-Jun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Jean Evans Israel Codjia
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
- Research Unit Tropical Mycology and Plants-Soil Fungi Interactions, Faculty of Agronomy, University of Parakou, Parakou, BP 123, Benin
| | - Richard T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Jinlong Dong
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ze-Xin Fan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Pratibha Khatri
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Menglun, Mengla, Yunnan, 666303, China
| | - Mathieu Kiki
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Hong-Lin Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
- College of Biological and Chemical Science, Puer University, Puer, Yunnan, 665000, China
| | - Tial C Ling
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Guangyu Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
- Environmental education department, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | | | - Nehrish Nisar
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Denis M Njoroge
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
- CAS Key Laboratory of Aquatic and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Bismark Ofosu-Bamfo
- Department of Biological Science, University of Energy and Natural Resources, Sunyani, P.O. Box 214, Ghana
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Steven Pearce
- The Tree Projects Lead Tree Climber, Big Tree State Pty. Ltd., Hobart, TAS, Australia
| | - Mareike Roeder
- Department of Wetland Ecology, Institute of Geography and Geoecology, Karlsruhe Institute of Technology - KIT, Josefstr.1, Rastatt, D-76437, Germany
| | - Douglas A Schaefer
- Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, Yunnan, China
| | - Stefan A Schnitzer
- Department of Biological Sciences, Marquette University, Milwaukee, P.O. Box 1881, WI, USA
| | - Chris M Smith-Martin
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - Wai Phyo Thu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Kyle W Tomlinson
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Shui-Yuan Xu
- College of Biological and Chemical Science, Puer University, Puer, Yunnan, 665000, China
| | - Sissou Zakari
- Laboratory of Hydraulics and Environmental Modeling (HydroModE-Lab), Faculté d'Agronomie, Université de Parakou, 03 BP 351, Parakou, Benin
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Gerhard Zotz
- Functional Ecology of Plants, Carl von Ossietzky University, Carl-von-Ossietzky-Str. 9-11, 26111, Oldenburg, Germany
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Panama City, Panama
| | - Juan Zuo
- CAS Key Laboratory of Aquatic and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Johannes H C Cornelissen
- Systems Ecology, Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Cusack DF, Christoffersen B, Smith-Martin CM, Andersen KM, Cordeiro AL, Fleischer K, Wright SJ, Guerrero-Ramírez NR, Lugli LF, McCulloch LA, Sanchez-Julia M, Batterman SA, Dallstream C, Fortunel C, Toro L, Fuchslueger L, Wong MY, Yaffar D, Fisher JB, Arnaud M, Dietterich LH, Addo-Danso SD, Valverde-Barrantes OJ, Weemstra M, Ng JC, Norby RJ. Toward a coordinated understanding of hydro-biogeochemical root functions in tropical forests for application in vegetation models. THE NEW PHYTOLOGIST 2024; 242:351-371. [PMID: 38416367 DOI: 10.1111/nph.19561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/10/2024] [Indexed: 02/29/2024]
Abstract
Tropical forest root characteristics and resource acquisition strategies are underrepresented in vegetation and global models, hampering the prediction of forest-climate feedbacks for these carbon-rich ecosystems. Lowland tropical forests often have globally unique combinations of high taxonomic and functional biodiversity, rainfall seasonality, and strongly weathered infertile soils, giving rise to distinct patterns in root traits and functions compared with higher latitude ecosystems. We provide a roadmap for integrating recent advances in our understanding of tropical forest belowground function into vegetation models, focusing on water and nutrient acquisition. We offer comparisons of recent advances in empirical and model understanding of root characteristics that represent important functional processes in tropical forests. We focus on: (1) fine-root strategies for soil resource exploration, (2) coupling and trade-offs in fine-root water vs nutrient acquisition, and (3) aboveground-belowground linkages in plant resource acquisition and use. We suggest avenues for representing these extremely diverse plant communities in computationally manageable and ecologically meaningful groups in models for linked aboveground-belowground hydro-nutrient functions. Tropical forests are undergoing warming, shifting rainfall regimes, and exacerbation of soil nutrient scarcity caused by elevated atmospheric CO2. The accurate model representation of tropical forest functions is crucial for understanding the interactions of this biome with the climate.
Collapse
Affiliation(s)
- Daniela F Cusack
- Department of Ecosystem Science and Sustainability, Warner College of Natural Resources, Colorado State University, 1231 Libbie Coy Way, A104, Fort Collins, CO, 80523-1476, USA
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Bradley Christoffersen
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Chris M Smith-Martin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | | | - Amanda L Cordeiro
- Department of Ecosystem Science and Sustainability, Warner College of Natural Resources, Colorado State University, 1231 Libbie Coy Way, A104, Fort Collins, CO, 80523-1476, USA
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Katrin Fleischer
- Department Biogeochemical Signals, Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Straße 10, Jena, 07745, Germany
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Nathaly R Guerrero-Ramírez
- Silviculture and Forest Ecology of Temperate Zones, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Gottingen, 37077, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Gottingen, 37077, Germany
| | - Laynara F Lugli
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Lindsay A McCulloch
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, 02138, USA
- National Center for Atmospheric Research, National Oceanographic and Atmospheric Agency, 1850 Table Mesa Dr., Boulder, CO, 80305, USA
| | - Mareli Sanchez-Julia
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Sarah A Batterman
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Caroline Dallstream
- Department of Biology, McGill University, 1205 Av. du Docteur-Penfield, Montreal, QC, H3A 1B1, Canada
| | - Claire Fortunel
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34398, France
| | - Laura Toro
- Yale Applied Science Synthesis Program, The Forest School at the Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Lucia Fuchslueger
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1030, Austria
| | - Michelle Y Wong
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| | - Daniela Yaffar
- Functional Forest Ecology, Universität Hamburg, Barsbüttel, 22885, Germany
| | - Joshua B Fisher
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA, 92866, USA
| | - Marie Arnaud
- Institute of Ecology and Environmental Sciences (IEES), UMR 7618, CNRS-Sorbonne University-INRAE-UPEC-IRD, Paris, 75005, France
- School of Geography, Earth and Environmental Sciences & BIFOR, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Lee H Dietterich
- Department of Ecosystem Science and Sustainability, Warner College of Natural Resources, Colorado State University, 1231 Libbie Coy Way, A104, Fort Collins, CO, 80523-1476, USA
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, 39180, USA
- Department of Biology, Haverford College, Haverford, PA, 19003, USA
| | - Shalom D Addo-Danso
- Forests and Climate Change Division, CSIR-Forestry Research Institute of Ghana, P.O Box UP 63 KNUST, Kumasi, Ghana
| | - Oscar J Valverde-Barrantes
- Department of Biological Sciences, International Center for Tropical Biodiversity, Florida International University, Miami, FL, 33199, USA
| | - Monique Weemstra
- Department of Biological Sciences, International Center for Tropical Biodiversity, Florida International University, Miami, FL, 33199, USA
| | - Jing Cheng Ng
- Nanyang Technological University, Singapore, 639798, Singapore
| | - Richard J Norby
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
9
|
Xu X, van der Sleen P, Groenendijk P, Vlam M, Medvigy D, Moorcroft P, Petticord D, Ma Y, Zuidema PA. Constraining long-term model predictions for woody growth using tropical tree rings. GLOBAL CHANGE BIOLOGY 2024; 30:e17075. [PMID: 38273586 DOI: 10.1111/gcb.17075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 01/27/2024]
Abstract
The strength and persistence of the tropical carbon sink hinges on the long-term responses of woody growth to climatic variations and increasing CO2 . However, the sensitivity of tropical woody growth to these environmental changes is poorly understood, leading to large uncertainties in growth predictions. Here, we used tree ring records from a Southeast Asian tropical forest to constrain ED2.2-hydro, a terrestrial biosphere model with explicit vegetation demography. Specifically, we assessed individual-level woody growth responses to historical climate variability and increases in atmospheric CO2 (Ca ). When forced with historical Ca , ED2.2-hydro reproduced the magnitude of increases in intercellular CO2 concentration (a major determinant of photosynthesis) estimated from tree ring carbon isotope records. In contrast, simulated growth trends were considerably larger than those obtained from tree rings, suggesting that woody biomass production efficiency (WBPE = woody biomass production:gross primary productivity) was overestimated by the model. The estimated WBPE decline under increasing Ca based on model-data discrepancy was comparable to or stronger than (depending on tree species and size) the observed WBPE changes from a multi-year mature-forest CO2 fertilization experiment. In addition, we found that ED2.2-hydro generally overestimated climatic sensitivity of woody growth, especially for late-successional plant functional types. The model-data discrepancy in growth sensitivity to climate was likely caused by underestimating WBPE in hot and dry years due to commonly used model assumptions on carbon use efficiency and allocation. To our knowledge, this is the first study to constrain model predictions of individual tree-level growth sensitivity to Ca and climate against tropical tree-ring data. Our results suggest that improving model processes related to WBPE is crucial to obtain better predictions of tropical forest responses to droughts and increasing Ca . More accurate parameterization of WBPE will likely reduce the stimulation of woody growth by Ca rise predicted by biosphere models.
Collapse
Affiliation(s)
- Xiangtao Xu
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Peter van der Sleen
- Forest Ecology & Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | - Peter Groenendijk
- Department of Plant Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Mart Vlam
- Forest Ecology & Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | - David Medvigy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Paul Moorcroft
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Daniel Petticord
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Yixin Ma
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Pieter A Zuidema
- Forest Ecology & Forest Management Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
10
|
Smith-Martin CM, Muscarella R, Hammond WM, Jansen S, Brodribb TJ, Choat B, Johnson DM, Vargas-G G, Uriarte M. Hydraulic variability of tropical forests is largely independent of water availability. Ecol Lett 2023; 26:1829-1839. [PMID: 37807917 DOI: 10.1111/ele.14314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 07/06/2023] [Accepted: 08/08/2023] [Indexed: 10/10/2023]
Abstract
Tropical rainforest woody plants have been thought to have uniformly low resistance to hydraulic failure and to function near the edge of their hydraulic safety margin (HSM), making these ecosystems vulnerable to drought; however, this may not be the case. Using data collected at 30 tropical forest sites for three key traits associated with drought tolerance, we show that site-level hydraulic diversity of leaf turgor loss point, resistance to embolism (P50 ), and HSMs is high across tropical forests and largely independent of water availability. Species with high HSMs (>1 MPa) and low P50 values (< -2 MPa) are common across the wet and dry tropics. This high site-level hydraulic diversity, largely decoupled from water stress, could influence which species are favoured and become dominant under a drying climate. High hydraulic diversity could also make these ecosystems more resilient to variable rainfall regimes.
Collapse
Affiliation(s)
- Chris M Smith-Martin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York City, New York, USA
| | - Robert Muscarella
- Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - William M Hammond
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Daniel M Johnson
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| | - German Vargas-G
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - María Uriarte
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York City, New York, USA
| |
Collapse
|
11
|
Gomes AS, Callaway RM, Rabelo BS, Petry GL, Barbosa EM, Borghetti F. Competition for water and rapid exclusion of an island endemic by a pantropical species in a tropical climate. Oecologia 2023; 201:901-914. [PMID: 36973609 DOI: 10.1007/s00442-023-05352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023]
Abstract
Water availability has major effects on community structure and dynamics globally, yet our understanding of competition for water in the tropics is limited. On the tropical Trindade Island, we explored competition for water in the context of the rapid exclusion of an endemic sedge, Cyperus atlanticus (Cyperaceae), by a pantropical, N-fixing shrub, Guilandina bonduc (Fabaceae). Guilandina patches were generally surrounded by rings of bare soil, and dead Cyperus halos commonly surrounded these bare zones. With geo-referenced measurements, we showed that Guilandina patches and bare soil zones rapidly expanded and replaced adjacent Cyperus populations. We found that soil water potentials were much lower in bare soils than soils under Guilandina or Cyperus, and that leaf water potentials of Cyperus plants were lower when co-occurring with Guilandina than when alone. When Guilandina was removed experimentally, Cyperus populations expanded and largely covered the bare soil zones. Our results indicate that when Guilandina establishes, its root systems expand beyond its canopies and these roots pull water from soils beneath Cyperus and kill it, creating bare zone halos, and then Guilandina expands and repeats the process. This scenario indicates rapid competitive exclusion and displacement of an endemic by a common pantropical species, at least in part through competition for water.
Collapse
|
12
|
Bloomfield KJ, Stocker BD, Keenan TF, Prentice IC. Environmental controls on the light use efficiency of terrestrial gross primary production. GLOBAL CHANGE BIOLOGY 2023; 29:1037-1053. [PMID: 36334075 PMCID: PMC10099475 DOI: 10.1111/gcb.16511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Gross primary production (GPP) by terrestrial ecosystems is a key quantity in the global carbon cycle. The instantaneous controls of leaf-level photosynthesis are well established, but there is still no consensus on the mechanisms by which canopy-level GPP depends on spatial and temporal variation in the environment. The standard model of photosynthesis provides a robust mechanistic representation for C3 species; however, additional assumptions are required to "scale up" from leaf to canopy. As a consequence, competing models make inconsistent predictions about how GPP will respond to continuing environmental change. This problem is addressed here by means of an empirical analysis of the light use efficiency (LUE) of GPP inferred from eddy covariance carbon dioxide flux measurements, in situ measurements of photosynthetically active radiation (PAR), and remotely sensed estimates of the fraction of PAR (fAPAR) absorbed by the vegetation canopy. Focusing on LUE allows potential drivers of GPP to be separated from its overriding dependence on light. GPP data from over 100 sites, collated over 20 years and located in a range of biomes and climate zones, were extracted from the FLUXNET2015 database and combined with remotely sensed fAPAR data to estimate daily LUE. Daytime air temperature, vapor pressure deficit, diffuse fraction of solar radiation, and soil moisture were shown to be salient predictors of LUE in a generalized linear mixed-effects model. The same model design was fitted to site-based LUE estimates generated by 16 terrestrial ecosystem models. The published models showed wide variation in the shape, the strength, and even the sign of the environmental effects on modeled LUE. These findings highlight important model deficiencies and suggest a need to progress beyond simple "goodness of fit" comparisons of inferred and predicted carbon fluxes toward an approach focused on the functional responses of the underlying dependencies.
Collapse
Affiliation(s)
- Keith J. Bloomfield
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College LondonAscotUK
| | - Benjamin D. Stocker
- Department of Environmental Systems Science, ETHZurichSwitzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Institute of GeographyUniversity of BernBernSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
| | - Trevor F. Keenan
- Department of Environmental Science, Policy and Management, UC BerkeleyBerkeleyCaliforniaUSA
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - I. Colin Prentice
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College LondonAscotUK
- Department of Biological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System ScienceTsinghua UniversityBeijingChina
| |
Collapse
|
13
|
Werden LK, Averill C, Crowther TW, Calderón-Morales E, Toro L, Alvarado JP, Gutiérrez LM, Mallory DE, Powers JS. Below-ground traits mediate tree survival in a tropical dry forest restoration. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210067. [PMID: 36373912 PMCID: PMC9661956 DOI: 10.1098/rstb.2021.0067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/03/2022] [Indexed: 11/16/2022] Open
Abstract
Reforestation is one of our most promising natural climate solutions, and one that addresses the looming biodiversity crisis. Tree planting can catalyse forest community reassembly in degraded landscapes where natural regeneration is slow, however, tree survival rates vary remarkably across projects. Building a trait-based framework for tree survival could streamline species selection in a way that generalizes across ecosystems, thereby increasing the effectiveness of the global restoration movement. We investigated how traits mediated seedling survival in a tropical dry forest restoration, and how traits were coordinated across plant structures. We examined growth and survival of 14 species for 2 years and measured six below-ground and 22 above-ground traits. Species-level survival ranged widely from 7.8% to 90.1%, and a model including growth rate, below-ground traits and their interaction explained more than 73% of this variation. A strong interaction between below-ground traits and growth rate indicated that selecting species with fast growth rates can promote establishment, but this effect was most apparent for species that invest in thick fine roots and deep root structures. Overall, results emphasize the prominent role of below-ground traits in determining early restoration outcomes, and highlight little above- and below-ground trait coordination, providing a path forward for tropical dry forest restoration efforts. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.
Collapse
Affiliation(s)
- Leland K. Werden
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
- Lyon Arboretum and School of Life Sciences, University of Hawaii, Honolulu, HI 96822, USA
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Colin Averill
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Thomas W. Crowther
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Erick Calderón-Morales
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Laura Toro
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - J. Pedro Alvarado
- Estación Experimental Forestal Horizontes, Área de Conservación Guanacaste, Liberia, 8008 Costa Rica
| | - L. Milena Gutiérrez
- Estación Experimental Forestal Horizontes, Área de Conservación Guanacaste, Liberia, 8008 Costa Rica
| | | | - Jennifer S. Powers
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
14
|
Bomfim NCP, Aguilar JV, Ferreira TC, de Souza LA, Camargos LS. Could nitrogen compounds be indicators of tolerance to high doses of Cu and Fe in the cultivation of Leucaena leucocephala? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:489-498. [PMID: 36512983 DOI: 10.1016/j.plaphy.2022.11.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen metabolism and the production of primary and secondary metabolites vary according to biotic and abiotic factors such as trace elements (TE) stress, and can, therefore, be considered biomarkers. The present study evaluated the effect of copper (Cu) and iron (Fe) TE, separately, on the metabolism of nitrogen compounds and biomass production, partitioned into shoot and roots of Leucaena leucocephala (Lam.) de Wit., and identified possible defense mechanisms linked to nitrogen metabolism. At 120 days of cultivation, the biomass production of L. leucocephala was higher when exposed to excess Fe than Cu. Nonetheless, the biomass gain (%) of plants exposed to Cu was higher, especially the biomass gains in roots. The tolerance and biomass production of L. leucocephala is related to the regulation of nitrogen metabolism and production of secondary metabolites. The biochemistry of plant metabolism against the excess of Cu and Fe TE manifested similarly, but with some specifics regarding the chemical nature of each metal. There was a reduction in the content of ureides and proteins and an increase in amino acids in the roots in relation to the increase in Cu and Fe concentrations. There was low accumulation of proline in the roots in treatments 400 and 500 mg/dm3 compared to the control for both TE. On the other hand, the total phenolic compounds in the roots increased. Our results indicate that the increased synthesis of amino acids and the accumulation of phenolic compounds is involved in the tolerance of L. leucocephala to Cu and Fe.
Collapse
Affiliation(s)
- Nayane Cristina Pires Bomfim
- Department of Biology and Zootechny, São Paulo State University (Unesp), School of Engineering, Ilha Solteira. Plant Metabolism Physiology Laboratory. Rua Monção, 226, Rua Monção, 226, Zona Norte, Ilha Solteira, São Paulo, 15385-000, Brazil.
| | - Jailson Vieira Aguilar
- Department of Biology and Zootechny, São Paulo State University (Unesp), School of Engineering, Ilha Solteira. Plant Metabolism Physiology Laboratory. Rua Monção, 226, Rua Monção, 226, Zona Norte, Ilha Solteira, São Paulo, 15385-000, Brazil
| | - Tassia Caroline Ferreira
- Department of Biology and Zootechny, São Paulo State University (Unesp), School of Engineering, Ilha Solteira. Plant Metabolism Physiology Laboratory. Rua Monção, 226, Rua Monção, 226, Zona Norte, Ilha Solteira, São Paulo, 15385-000, Brazil
| | | | - Liliane Santos Camargos
- Department of Biology and Zootechny, São Paulo State University (Unesp), School of Engineering, Ilha Solteira. Plant Metabolism Physiology Laboratory. Rua Monção, 226, Rua Monção, 226, Zona Norte, Ilha Solteira, São Paulo, 15385-000, Brazil.
| |
Collapse
|
15
|
Zhou Z, Chen B, Zhao H, Yi J, Liu S, Tie D, Xu J, Hu S, Guo Y, Yue M. Temperate Lianas Have More Acquisitive Strategies than Host Trees in Leaf and Stem Traits, but Not Root Traits. PLANTS (BASEL, SWITZERLAND) 2022; 11:3543. [PMID: 36559652 PMCID: PMC9788099 DOI: 10.3390/plants11243543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Increasingly, tropical studies based on aboveground traits have suggested that lianas have a more acquisitive strategy than trees, thereby possibly explaining the increase in lianas relative to trees in many tropical forests under global change. However, few studies have tested whether this pattern can be extended to root traits and temperate forests. In this study, we sampled 61 temperate liana-host tree pairs and quantified 11 commonly studied functional traits representative of plant economics in roots, stems, and leaves; we aimed to determine whether root, stem and leaf traits are coordinated across lifeforms, and whether temperate lianas are also characterized by more fast and acquisitive traits than trees. Our results showed that leaf and stem traits were coordinated across lifeforms but not with root traits, suggesting that aboveground plant economics is not always correlated with belowground economics, and leaf and stem economic spectra cannot be expanded to the root directly. Compared with host trees, lianas had more acquisitive leaf and stem traits, such as higher specific leaf area and lower leaf dry matter content, leaf carbon content, leaf mass per area, and wood density, suggesting that lianas have a more acquisitive strategy than host trees in the temperate forest. The differences between lianas and trees in plant strategy may drive their contrasting responses to the changing temperate forest environment under global change.
Collapse
|
16
|
Whole-Plant Seedling Functional Traits Suggest Lianas Also Support “Fast-Slow” Plant Economics Spectrum. FORESTS 2022. [DOI: 10.3390/f13070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lianas are predicted to perform better than trees during seasonal drought among tropical forests, which has substantial implications for tree and forest dynamics. Here, we use whole-plant trait comparison to test whether lianas allocated on the resource acquisitive end of the continuum of woody plant strategies. We measured morphological and biomass allocation traits for seedlings of 153 species of trees and lianas occurring in a tropical forest in Thailand during the dry season. We first compared trait differences between lianas and trees directly, and then classified all species based on their trait similarities. We found that liana seedlings had significantly higher specific leaf areas and specific stem lengths than co-occurring tree seedlings. Trait similarity classification resulted in a liana-dominated cluster and a tree-dominated cluster. Compared to the tree-dominated cluster, species in the liana-dominated cluster were characterized by a consistent pattern of lower dry matter content and cheaper and more efficient per dry mass unit investment in both above- and below-ground organs. The consistency of all organs operating in tandem for dry matter content, together with optimized investment in them per mass unit, implied that the lianas and trees can be highly overlapped on the strategy gradient of the resource acquisition continuum.
Collapse
|
17
|
Willson AM, Trugman AT, Powers JS, Smith-Martin CM, Medvigy D. Climate and hydraulic traits interact to set thresholds for liana viability. Nat Commun 2022; 13:3332. [PMID: 35680917 PMCID: PMC9184652 DOI: 10.1038/s41467-022-30993-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Lianas, or woody vines, and trees dominate the canopy of tropical forests and comprise the majority of tropical aboveground carbon storage. These growth forms respond differently to contemporary variation in climate and resource availability, but their responses to future climate change are poorly understood because there are very few predictive ecosystem models representing lianas. We compile a database of liana functional traits (846 species) and use it to parameterize a mechanistic model of liana-tree competition. The substantial difference between liana and tree hydraulic conductivity represents a critical source of inter-growth form variation. Here, we show that lianas are many times more sensitive to drying atmospheric conditions than trees as a result of this trait difference. Further, we use our competition model and projections of tropical hydroclimate based on Representative Concentration Pathway 4.5 to show that lianas are more susceptible to reaching a hydraulic threshold for viability by 2100.
Collapse
Affiliation(s)
- Alyssa M Willson
- Department of Biological Sciences, University of Notre Dame, 100 Galvin Life Sciences, Notre Dame, IN, 46556, USA
| | - Anna T Trugman
- Department of Geography, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Jennifer S Powers
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA.,Department of Plant and Microbial Ecology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Chris M Smith-Martin
- Department of Ecology, Evolution and Evolutionary Biology, Columbia University, New York, NY, 10027, USA
| | - David Medvigy
- Department of Biological Sciences, University of Notre Dame, 100 Galvin Life Sciences, Notre Dame, IN, 46556, USA.
| |
Collapse
|
18
|
Indigenous Community Fishing Practices in Nagaland, Eastern Indian Himalayas. SUSTAINABILITY 2022. [DOI: 10.3390/su14127049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The significance of indigenous knowledge under the current scenario of biodiversity imperilment is well-known since such knowledge is gained through continuous intergenerational observations of natural systems. In this study, we present a description of indigenous community fishing practices in Nagaland and investigate their relationship with the cultural and traditional aspects of the associated communities through oral interactions, questionnaires and as a participatory observer. We observed inter- and intra-community fishing in which the piscicidal plants Millettia pachycarpa and Derris elliptica (both Fabaceae) were used as fish poison. M. pachycarpa was commonly used in inter-community ‘fishing festivals’ since it is easily available, less laborious to collect and there are no reports of harm to the body in comparison to D. elliptica which causes allergy and/or dermatological effects. Indigenous community fishing is conducted to develop a sense of peaceful co-existence and prosperity within and among the neighboring communities. However, the increasing use of synthetic fish poisons has overlapped with the traditional practices of fishing, exerting pressure on the livelihoods and food security of the tribal populations while contributing to riverine ecosystem degradation. Formulation of policies banning synthetic fish poison, and judicious use of traditional piscicidal plant fishing is therefore recommended.
Collapse
|
19
|
Meunier F, Visser MD, Shiklomanov A, Dietze MC, Guzmán Q. JA, Sanchez‐Azofeifa GA, De Deurwaerder HPT, Krishna Moorthy SM, Schnitzer SA, Marvin DC, Longo M, Liu C, Broadbent EN, Almeyda Zambrano AM, Muller‐Landau HC, Detto M, Verbeeck H. Liana optical traits increase tropical forest albedo and reduce ecosystem productivity. GLOBAL CHANGE BIOLOGY 2022; 28:227-244. [PMID: 34651375 PMCID: PMC9298317 DOI: 10.1111/gcb.15928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Lianas are a key growth form in tropical forests. Their lack of self-supporting tissues and their vertical position on top of the canopy make them strong competitors of resources. A few pioneer studies have shown that liana optical traits differ on average from those of colocated trees. Those trait discrepancies were hypothesized to be responsible for the competitive advantage of lianas over trees. Yet, in the absence of reliable modelling tools, it is impossible to unravel their impact on the forest energy balance, light competition, and on the liana success in Neotropical forests. To bridge this gap, we performed a meta-analysis of the literature to gather all published liana leaf optical spectra, as well as all canopy spectra measured over different levels of liana infestation. We then used a Bayesian data assimilation framework applied to two radiative transfer models (RTMs) covering the leaf and canopy scales to derive tropical tree and liana trait distributions, which finally informed a full dynamic vegetation model. According to the RTMs inversion, lianas grew thinner, more horizontal leaves with lower pigment concentrations. Those traits made the lianas very efficient at light interception and significantly modified the forest energy balance and its carbon cycle. While forest albedo increased by 14% in the shortwave, light availability was reduced in the understorey (-30% of the PAR radiation) and soil temperature decreased by 0.5°C. Those liana-specific traits were also responsible for a significant reduction of tree (-19%) and ecosystem (-7%) gross primary productivity (GPP) while lianas benefited from them (their GPP increased by +27%). This study provides a novel mechanistic explanation to the increase in liana abundance, new evidence of the impact of lianas on forest functioning, and paves the way for the evaluation of the large-scale impacts of lianas on forest biogeochemical cycles.
Collapse
Affiliation(s)
- Félicien Meunier
- CAVElab—Computational and Applied Vegetation EcologyDepartment of EnvironmentGhent UniversityGhentBelgium
- Department of Earth and EnvironmentBoston UniversityBostonMassachusettsUSA
| | - Marco D. Visser
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Institute of Environmental SciencesLeiden UniversityLeidenThe Netherlands
| | | | - Michael C. Dietze
- Department of Earth and EnvironmentBoston UniversityBostonMassachusettsUSA
| | - J. Antonio Guzmán Q.
- Centre for Earth Observation Sciences (CEOS)Earth and Atmospheric Sciences DepartmentUniversity of AlbertaEdmontonAlbertaCanada
| | - G. Arturo Sanchez‐Azofeifa
- Centre for Earth Observation Sciences (CEOS)Earth and Atmospheric Sciences DepartmentUniversity of AlbertaEdmontonAlbertaCanada
- Smithsonian Tropical Research InstituteBalboaPanama
| | | | - Sruthi M. Krishna Moorthy
- CAVElab—Computational and Applied Vegetation EcologyDepartment of EnvironmentGhent UniversityGhentBelgium
| | - Stefan A. Schnitzer
- Smithsonian Tropical Research InstituteBalboaPanama
- Department of Biological SciencesMarquette UniversityMilwaukeeWisconsinUSA
| | | | - Marcos Longo
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Chang Liu
- CAVElab—Computational and Applied Vegetation EcologyDepartment of EnvironmentGhent UniversityGhentBelgium
| | - Eben N. Broadbent
- Spatial Ecology and Conservation (SPEC) Lab, School of Forest, Fisheries, and Geomatics SciencesUniversity of FloridaGainesvilleFloridaUSA
- Spatial Ecology and Conservation (SPEC) Lab, Center for Latin American StudiesUniversity of FloridaGainesvilleFloridaUSA
| | - Angelica M. Almeyda Zambrano
- Spatial Ecology and Conservation (SPEC) Lab, Center for Latin American StudiesUniversity of FloridaGainesvilleFloridaUSA
| | | | - Matteo Detto
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Smithsonian Tropical Research InstituteBalboaPanama
| | - Hans Verbeeck
- CAVElab—Computational and Applied Vegetation EcologyDepartment of EnvironmentGhent UniversityGhentBelgium
| |
Collapse
|
20
|
Župunski M, Arsenov D, Borišev M, Nikolić N, Pajević S. Should I GROW or should I SLOW: A meta-analysis of fast-growing tree-species grown in cadmium perturbed environment. PHYSIOLOGIA PLANTARUM 2022; 174:e13594. [PMID: 34766630 DOI: 10.1111/ppl.13594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Variations in soil chemical composition may lead to disturbances in plant growth and survival. Which strategies of biomass allocation fast-growing species acquire to overcome the disturbances in the rhizosphere remains an open research challenge. We conducted a series of greenhouse pot experiments to collect enough experimental evidence to elucidate the answer. A tiered analytical approach was applied to collected data to fingerprint both the intraspecies and interspecies differences. We investigated the biomass allocation patterns in Robinia pseudoacacia L., Populus × euramericana, Populus deltoides, Salix alba, Salix matsudana Koidz., and Salix viminalis L. (18 fast-growing genotypes in total) under cadmium-free and cadmium-perturbed soil conditions. Further, we explored the intraspecific and interspecific differences between tested plants and looked for different strategies employed under perturbed conditions. We show that fast-growing species tend to strengthen their roots toward the Cd triggered perturbances in the rhizosphere and allocate more biomass to that plant organ/part. Intraspecies analyses pointed to differences in resource use efficiency and acquisition strategy based on specific leaf area, pointing toward P. deltoides genotypes PE19/66 and PD3, and S. alba B44 as strong, fast-growing oriented genotypes. Others exhibited more or less a conservative resource use and acquisition strategy under perturbed conditions. Our study highlights the intraspecies and interspecies specificity of fast-growing species to Cd occurrence in the rhizosphere. Association of growth traits and Cd-related traits tested with structural equation model highlighted the shoots bioconcentration index as a proxy-trait which directly interplay with the functional traits performance and modify the biomass shift.
Collapse
Affiliation(s)
- Milan Župunski
- Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | | | - Milan Borišev
- Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Nataša Nikolić
- Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | | |
Collapse
|
21
|
Zhang KY, Yang D, Zhang YB, Ellsworth DS, Xu K, Zhang YP, Chen YJ, He F, Zhang JL. Differentiation in stem and leaf traits among sympatric lianas, scandent shrubs and trees in a subalpine cold temperate forest. TREE PHYSIOLOGY 2021; 41:1992-2003. [PMID: 33823048 PMCID: PMC8597974 DOI: 10.1093/treephys/tpab049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/02/2021] [Accepted: 03/30/2021] [Indexed: 05/25/2023]
Abstract
The scandent shrub plant form is a variant of liana that has upright and self-supporting stems when young but later becomes a climber. We aimed to explore the associations of stem and leaf traits among sympatric lianas, scandent shrubs and trees, and the effects of growth form and leaf habit on variation in stem or leaf traits. We measured 16 functional traits related to stem xylem anatomy, leaf morphology and nutrient stoichiometry in eight liana, eight scandent shrub and 21 tree species co-occurring in a subalpine cold temperate forest at an elevation of 2600-3200 m in Southwest China. Overall, lianas, scandent shrubs and trees were ordered along a fast-slow continuum of stem and leaf functional traits, with some traits overlapping. We found a consistent pattern of lianas > scandent shrubs > trees for hydraulically weighted vessel diameter, maximum vessel diameter and theoretical hydraulic conductivity. Vessel density and sapwood density showed a pattern of lianas = scandent shrubs < trees, and lianas < scandent shrubs = trees, respectively. Lianas had significantly higher specific leaf area and lower carbon concentration than co-occurring trees, with scandent shrubs showing intermediate values that overlapped with lianas and trees. The differentiation among lianas, scandent shrubs and trees was mainly explained by variation in stem traits. Additionally, deciduous lianas were positioned at the fast end of the trait spectrum, and evergreen trees at the slow end of the spectrum. Our results showed for the first time clear differentiation in stem and leaf traits among sympatric liana, scandent shrub and tree species in a subalpine cold temperate forest. This work will contribute to understanding the mechanisms responsible for variation in ecological strategies of different growth forms of woody plants.
Collapse
Affiliation(s)
| | | | | | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Kun Xu
- Lijiang Forest Ecosystem Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang 674100, Yunnan, China
| | - Yi-Ping Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Ya-Jun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Fangliang He
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| | | |
Collapse
|
22
|
Huang C, Durán SM, Hu K, Li H, Swenson NG, Enquist BJ. Remotely sensed assessment of increasing chronic and episodic drought effects on a Costa Rican tropical dry forest. Ecosphere 2021. [DOI: 10.1002/ecs2.3824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Cho‐ying Huang
- Department of Geography National Taiwan University Taipei 10617 Taiwan
- Research Center for Future Earth National Taiwan University Taipei 10617 Taiwan
| | - Sandra M. Durán
- Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona 85721 USA
| | - Kai‐ting Hu
- Earth & Environment Boston University Boston Massachusetts 02215 USA
| | - Hsin‐Ju Li
- Department of Geography National Taiwan University Taipei 10617 Taiwan
| | - Nathan G. Swenson
- Department of Biology University of Maryland College Park Maryland 20742 USA
| | - Brian J. Enquist
- Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona 85721 USA
- The Santa Fe Institute Santa Fe New Mexico 87501 USA
| |
Collapse
|
23
|
Vargas G G, Brodribb TJ, Dupuy JM, González-M R, Hulshof CM, Medvigy D, Allerton TAP, Pizano C, Salgado-Negret B, Schwartz NB, Van Bloem SJ, Waring BG, Powers JS. Beyond leaf habit: generalities in plant function across 97 tropical dry forest tree species. THE NEW PHYTOLOGIST 2021; 232:148-161. [PMID: 34171131 DOI: 10.1111/nph.17584] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/15/2021] [Indexed: 05/12/2023]
Abstract
Leaf habit has been hypothesized to define a linkage between the slow-fast plant economic spectrum and the drought resistance-avoidance trade-off in tropical forests ('slow-safe vs fast-risky'). However, variation in hydraulic traits as a function of leaf habit has rarely been explored for a large number of species. We sampled leaf and branch functional traits of 97 tropical dry forest tree species from four sites to investigate whether patterns of trait variation varied consistently in relation to leaf habit along the 'slow-safe vs fast-risky' trade-off. Leaf habit explained from 0% to 43.69% of individual trait variation. We found that evergreen and semi-deciduous species differed in their location along the multivariate trait ordination when compared to deciduous species. While deciduous species showed consistent trait values, evergreen species trait values varied as a function of the site. Last, trait values varied in relation to the proportion of deciduous species in the plant community. We found that leaf habit describes the strategies that define drought avoidance and plant economics in tropical trees. However, leaf habit alone does not explain patterns of trait variation, which suggests quantifying site-specific or species-specific uncertainty in trait variation as the way forward.
Collapse
Affiliation(s)
- German Vargas G
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - Tim J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Juan M Dupuy
- Centro de Investigación Científica de Yucatán, Unidad de Recursos Naturales, Calle 43 # 130 entre 32 y 34, Col. Chuburná de Hidalgo, Mérida, Yucatán, CP 97205, México
| | - Roy González-M
- Programa Ciencias de la Biodiversidad, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Carrera #1 16-20, Bogotá, 111311, Colombia
| | - Catherine M Hulshof
- Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - David Medvigy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tristan A P Allerton
- Baruch Institute of Coastal Ecology and Forest Science, Clemson University, PO Box 596, Georgetown, SC, 29442, USA
| | - Camila Pizano
- Departamento de Biología, Universidad ICESI, Calle 18 # 122-135, Cali, 760031, Colombia
| | - Beatriz Salgado-Negret
- Departamento de Biología, Universidad Nacional de Colombia, sede Bogotá, Carrera 30 Calle 45, Bogotá, 111321, Colombia
| | - Naomi B Schwartz
- Department of Geography, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Skip J Van Bloem
- Baruch Institute of Coastal Ecology and Forest Science, Clemson University, PO Box 596, Georgetown, SC, 29442, USA
| | - Bonnie G Waring
- Department of Biology, Utah State University, Logan, UT, 84322, USA
| | - Jennifer S Powers
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| |
Collapse
|
24
|
Wright CL, de Lima ALA, de Souza ES, West JB, Wilcox BP. Plant functional types broadly describe water use strategies in the Caatinga, a seasonally dry tropical forest in northeast Brazil. Ecol Evol 2021; 11:11808-11825. [PMID: 34522343 PMCID: PMC8427645 DOI: 10.1002/ece3.7949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/11/2022] Open
Abstract
In seasonally dry tropical forests, plant functional type can be classified as deciduous low wood density, deciduous high wood density, or evergreen high wood density species. While deciduousness is often associated with drought-avoidance and low wood density is often associated with tissue water storage, the degree to which these functional types may correspond to diverging and unique water use strategies has not been extensively tested.We examined (a) tolerance to water stress, measured by predawn and mid-day leaf water potential; (b) water use efficiency, measured via foliar δ13C; and (c) access to soil water, measured via stem water δ18O.We found that deciduous low wood density species maintain high leaf water potential and low water use efficiency. Deciduous high wood density species have lower leaf water potential and variable water use efficiency. Both groups rely on shallow soil water. Evergreen high wood density species have low leaf water potential, higher water use efficiency, and access alternative water sources. These findings indicate that deciduous low wood density species are drought avoiders, with a specialized strategy for storing root and stem water. Deciduous high wood density species are moderately drought tolerant, and evergreen high wood density species are the most drought tolerant group.Synthesis. Our results broadly support the plant functional type framework as a way to understand water use strategies, but also highlight species-level differences.
Collapse
Affiliation(s)
- Cynthia L. Wright
- Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Ecology and Conservation BiologyTexas A&M UniversityCollege StationTXUSA
| | - André L. A. de Lima
- Universidade Federal Rural de Pernambuco/Unidade Acadêmica de Serra Talhada (UFRPE/UAST)Serra TalhadaBrasil
| | - Eduardo S. de Souza
- Universidade Federal Rural de Pernambuco/Unidade Acadêmica de Serra Talhada (UFRPE/UAST)Serra TalhadaBrasil
| | - Jason B. West
- Ecology and Conservation BiologyTexas A&M UniversityCollege StationTXUSA
| | - Bradford P. Wilcox
- Ecology and Conservation BiologyTexas A&M UniversityCollege StationTXUSA
| |
Collapse
|
25
|
Iversen CM, McCormack ML. Filling gaps in our understanding of belowground plant traits across the world: an introduction to a Virtual Issue. THE NEW PHYTOLOGIST 2021; 231:2097-2103. [PMID: 34405907 DOI: 10.1111/nph.17326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Colleen M Iversen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37830-6301, USA
| | - M Luke McCormack
- Center for Tree Science, The Morton Arboretum, Liesle, IL, 60515, USA
| |
Collapse
|
26
|
Chitra‐Tarak R, Xu C, Aguilar S, Anderson‐Teixeira KJ, Chambers J, Detto M, Faybishenko B, Fisher RA, Knox RG, Koven CD, Kueppers LM, Kunert N, Kupers SJ, McDowell NG, Newman BD, Paton SR, Pérez R, Ruiz L, Sack L, Warren JM, Wolfe BT, Wright C, Wright SJ, Zailaa J, McMahon SM. Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest. THE NEW PHYTOLOGIST 2021; 231:1798-1813. [PMID: 33993520 PMCID: PMC8457149 DOI: 10.1111/nph.17464] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/29/2021] [Indexed: 05/24/2023]
Abstract
Deep-water access is arguably the most effective, but under-studied, mechanism that plants employ to survive during drought. Vulnerability to embolism and hydraulic safety margins can predict mortality risk at given levels of dehydration, but deep-water access may delay plant dehydration. Here, we tested the role of deep-water access in enabling survival within a diverse tropical forest community in Panama using a novel data-model approach. We inversely estimated the effective rooting depth (ERD, as the average depth of water extraction), for 29 canopy species by linking diameter growth dynamics (1990-2015) to vapor pressure deficit, water potentials in the whole-soil column, and leaf hydraulic vulnerability curves. We validated ERD estimates against existing isotopic data of potential water-access depths. Across species, deeper ERD was associated with higher maximum stem hydraulic conductivity, greater vulnerability to xylem embolism, narrower safety margins, and lower mortality rates during extreme droughts over 35 years (1981-2015) among evergreen species. Species exposure to water stress declined with deeper ERD indicating that trees compensate for water stress-related mortality risk through deep-water access. The role of deep-water access in mitigating mortality of hydraulically-vulnerable trees has important implications for our predictive understanding of forest dynamics under current and future climates.
Collapse
|
27
|
Chen YJ, Choat B, Sterck F, Maenpuen P, Katabuchi M, Zhang SB, Tomlinson KW, Oliveira RS, Zhang YJ, Shen JX, Cao KF, Jansen S. Hydraulic prediction of drought-induced plant dieback and top-kill depends on leaf habit and growth form. Ecol Lett 2021; 24:2350-2363. [PMID: 34409716 DOI: 10.1111/ele.13856] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 04/19/2021] [Accepted: 07/11/2021] [Indexed: 01/05/2023]
Abstract
Hydraulic failure caused by severe drought contributes to aboveground dieback and whole-plant death. The extent to which dieback or whole-plant death can be predicted by plant hydraulic traits has rarely been tested among species with different leaf habits and/or growth forms. We investigated 19 hydraulic traits in 40 woody species in a tropical savanna and their potential correlations with drought response during an extreme drought event during the El Niño-Southern Oscillation in 2015. Plant hydraulic trait variation was partitioned substantially by leaf habit but not growth form along a trade-off axis between traits that support drought tolerance versus avoidance. Semi-deciduous species and shrubs had the highest branch dieback and top-kill (complete aboveground death) among the leaf habits or growth forms. Dieback and top-kill were well explained by combining hydraulic traits with leaf habit and growth form, suggesting integrating life history traits with hydraulic traits will yield better predictions.
Collapse
Affiliation(s)
- Ya-Jun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.,Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Yunnan, China.,Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan, China.,Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Frank Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Phisamai Maenpuen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Masatoshi Katabuchi
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Shu-Bin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.,Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan, China
| | - Kyle W Tomlinson
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, CP6109, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
| | - Jing-Xian Shen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.,Institute of Ecology and Geobotany, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, China
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| |
Collapse
|
28
|
Waring BG, De Guzman ME, Du DV, Dupuy JM, Gei M, Gutknecht J, Hulshof C, Jelinski N, Margenot AJ, Medvigy D, Pizano C, Salgado‐Negret B, Schwartz NB, Trierweiler AM, Van Bloem SJ, Vargas G. G, Powers JS. Soil biogeochemistry across Central and South American tropical dry forests. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Bonnie G. Waring
- Department of Biology and Ecology Center Utah State University Logan Utah 84321 USA
| | - Mark E. De Guzman
- Ecology, Evolution and Behavior University of Minnesota St. Paul Minnesota 55108 USA
| | - Dan V. Du
- Department of Soil & Water Systems University of Idaho Moscow Idaho 83844 USA
| | - Juan M. Dupuy
- Unidad de Recursos Naturales Centro de Investigación Científica de Yucatán, A.C. (CICY) Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo Mérida Yucatán C.P. 97205 México
| | - Maga Gei
- Ecology, Evolution and Behavior University of Minnesota St. Paul Minnesota 55108 USA
| | - Jessica Gutknecht
- Department of Soil, Water, and Climate University of Minnesota St. Paul Minnesota 55108 USA
| | - Catherine Hulshof
- Department of Biology Virginia Commonwealth University Richmond Virginia 23284 USA
| | - Nicolas Jelinski
- Department of Soil, Water, and Climate University of Minnesota St. Paul Minnesota 55108 USA
| | - Andrew J. Margenot
- Department of Crop Sciences University of Illinois Urbana‐Champaign Urbana Illinois 61801 USA
| | - David Medvigy
- Department of Biological Sciences University of Notre Dame Notre Dame Indiana 46556 USA
| | - Camila Pizano
- Departamento de Ciencias Biológicas Universidad Icesi Calle 18 # 122‐135 Cali Colombia
| | - Beatriz Salgado‐Negret
- Departamento de Biología Universidad Nacional de Colombia, sede Bogotá Carrera 30 Calle 45 Bogotá Colombia
| | - Naomi B. Schwartz
- Department of Geography University of British Columbia 1984 West Mall Vancouver British Columbia V6T 1Z2 Canada
| | | | - Skip J. Van Bloem
- Baruch Institute of Coastal Ecology and Forest Science Clemson University Georgetown South Carolina 29634 USA
| | - German Vargas G.
- Department of Plant and Microbial Biology University of Minnesota St. Paul Minnesota 55108 USA
| | - Jennifer S. Powers
- Ecology, Evolution and Behavior University of Minnesota St. Paul Minnesota 55108 USA
- Department of Plant and Microbial Biology University of Minnesota St. Paul Minnesota 55108 USA
| |
Collapse
|
29
|
Why is Tree Drought Mortality so Hard to Predict? Trends Ecol Evol 2021; 36:520-532. [PMID: 33674131 DOI: 10.1016/j.tree.2021.02.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 01/18/2023]
Abstract
Widespread tree mortality following droughts has emerged as an environmentally and economically devastating 'ecological surprise'. It is well established that tree physiology is important in understanding drought-driven mortality; however, the accuracy of predictions based on physiology alone has been limited. We propose that complicating factors at two levels stymie predictions of drought-driven mortality: (i) organismal-level physiological and site factors that obscure understanding of drought exposure and vulnerability and (ii) community-level ecological interactions, particularly with biotic agents whose effects on tree mortality may reverse expectations based on stress physiology. We conclude with a path forward that emphasizes the need for an integrative approach to stress physiology and biotic agent dynamics when assessing forest risk to drought-driven morality in a changing climate.
Collapse
|
30
|
Lianas do not reduce tree biomass accumulation in young successional tropical dry forests. Oecologia 2021; 195:1019-1029. [PMID: 33675408 DOI: 10.1007/s00442-021-04877-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Young successional tropical forests are crucial in the global carbon cycle because they can quickly sequester large quantities of atmospheric carbon. However, lianas (woody vines) can significantly decrease biomass accumulation in young regenerating forests. Lianas are abundant in tropical dry forests, and thus we hypothesized that lianas reduce biomass accretion in dry forests. Lianas may be particularly detrimental to the growth of young trees, which are vulnerable to competition from lianas. Alternatively, lianas may have a stronger negative effect on the largest trees because lianas seek the high-light environment at the top of the forest canopy. We tested these hypotheses using a liana-removal experiment in 13 dry forest stands that ranged from 1 to 70 years in southwestern Panama. We measured biomass accumulation annually for more than 10,000 stems from 2013 to 2017. Contrary to our expectations, liana removal had no effect on tree biomass accumulation across our successional forests and throughout our study period. Liana removal did not benefit smaller trees or larger trees. Lianas did not increase biomass accumulation on recruits, and did not increase biomass loss due to mortality. Surprisingly, removing lianas had a negative effect on three out of 41 tree species. Lianas had no effect on biomass accumulation and loss, possibly because: (1) trees allocated resources to roots instead of stems, (2) trees and lianas partitioned water, (3) higher irradiance after liana removal reduced soil moisture, or (4) low water availability might have been such a strong stressor that it reduced plant-plant competition.
Collapse
|
31
|
Maia VA, Santos ABM, Aguiar‐Campos N, Souza CRD, Morel JD, Oliveira MCFD, Alencar Fagundes NC, Gianasi FM, Fontes MAL, Santos RMD. Climate and soil mediate the effects of liana density on forest dynamics. Biotropica 2021. [DOI: 10.1111/btp.12894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Meunier F, Verbeeck H, Cowdery B, Schnitzer SA, Smith‐Martin CM, Powers JS, Xu X, Slot M, De Deurwaerder HPT, Detto M, Bonal D, Longo M, Santiago LS, Dietze M. Unraveling the relative role of light and water competition between lianas and trees in tropical forests: A vegetation model analysis. THE JOURNAL OF ECOLOGY 2021; 109:519-540. [PMID: 33536686 PMCID: PMC7839527 DOI: 10.1111/1365-2745.13540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/16/2020] [Indexed: 05/05/2023]
Abstract
Despite their low contribution to forest carbon stocks, lianas (woody vines) play an important role in the carbon dynamics of tropical forests. As structural parasites, they hinder tree survival, growth and fecundity; hence, they negatively impact net ecosystem productivity and long-term carbon sequestration.Competition (for water and light) drives various forest processes and depends on the local abundance of resources over time. However, evaluating the relative role of resource availability on the interactions between lianas and trees from empirical observations is particularly challenging. Previous approaches have used labour-intensive and ecosystem-scale manipulation experiments, which are infeasible in most situations.We propose to circumvent this challenge by evaluating the uncertainty of water and light capture processes of a process-based vegetation model (ED2) including the liana growth form. We further developed the liana plant functional type in ED2 to mechanistically simulate water uptake and transport from roots to leaves, and start the model from prescribed initial conditions. We then used the PEcAn bioinformatics platform to constrain liana parameters and run uncertainty analyses.Baseline runs successfully reproduced ecosystem gas exchange fluxes (gross primary productivity and latent heat) and forest structural features (leaf area index, aboveground biomass) in two sites (Barro Colorado Island, Panama and Paracou, French Guiana) characterized by different rainfall regimes and levels of liana abundance.Model uncertainty analyses revealed that water limitation was the factor driving the competition between trees and lianas at the drier site (BCI), and during the relatively short dry season of the wetter site (Paracou). In young patches, light competition dominated in Paracou but alternated with water competition between the wet and the dry season on BCI according to the model simulations.The modelling workflow also identified key liana traits (photosynthetic quantum efficiency, stomatal regulation parameters, allometric relationships) and processes (water use, respiration, climbing) driving the model uncertainty. They should be considered as priorities for future data acquisition and model development to improve predictions of the carbon dynamics of liana-infested forests. Synthesis. Competition for water plays a larger role in the interaction between lianas and trees than previously hypothesized, as demonstrated by simulations from a process-based vegetation model.
Collapse
Affiliation(s)
- Félicien Meunier
- Computational and Applied Vegetation EcologyDepartment of EnvironmentGhent UniversityGhentBelgium
- Department of Earth and EnvironmentBoston UniversityBostonMAUSA
| | - Hans Verbeeck
- Computational and Applied Vegetation EcologyDepartment of EnvironmentGhent UniversityGhentBelgium
| | - Betsy Cowdery
- Department of Earth and EnvironmentBoston UniversityBostonMAUSA
| | - Stefan A. Schnitzer
- Smithsonian Tropical Research InstituteApartadoPanama
- Department of Biological SciencesMarquette UniversityMilwaukeeWIUSA
| | - Chris M. Smith‐Martin
- Department of Ecology, Evolution and Evolutionary BiologyColumbia UniversityNew YorkNYUSA
| | - Jennifer S. Powers
- Smithsonian Tropical Research InstituteApartadoPanama
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| | - Xiangtao Xu
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
| | - Martijn Slot
- Smithsonian Tropical Research InstituteApartadoPanama
| | - Hannes P. T. De Deurwaerder
- Computational and Applied Vegetation EcologyDepartment of EnvironmentGhent UniversityGhentBelgium
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNJUSA
| | - Matteo Detto
- Smithsonian Tropical Research InstituteApartadoPanama
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNJUSA
| | - Damien Bonal
- Université de LorraineAgroParisTechINRAEUMR SilvaNancyFrance
| | - Marcos Longo
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Louis S. Santiago
- Smithsonian Tropical Research InstituteApartadoPanama
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCAUSA
| | - Michael Dietze
- Department of Earth and EnvironmentBoston UniversityBostonMAUSA
| |
Collapse
|
33
|
Medina‐Vega JA, Bongers F, Schnitzer SA, Sterck FJ. Lianas explore the forest canopy more effectively than trees under drier conditions. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- José A. Medina‐Vega
- Forest Ecology and Forest Management Group Wageningen University and Research Centre Wageningen The Netherlands
- Smithsonian Tropical Research Institute Balboa Republic of Panama
| | - Frans Bongers
- Forest Ecology and Forest Management Group Wageningen University and Research Centre Wageningen The Netherlands
| | - Stefan A. Schnitzer
- Smithsonian Tropical Research Institute Balboa Republic of Panama
- Department of Biological Sciences Marquette University Milwaukee WI USA
| | - Frank J. Sterck
- Forest Ecology and Forest Management Group Wageningen University and Research Centre Wageningen The Netherlands
| |
Collapse
|
34
|
Dolezal J, Jandova V, Macek M, Liancourt P. Contrasting biomass allocation responses across ontogeny and stress gradients reveal plant adaptations to drought and cold. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiri Dolezal
- Institute of Botany of the Czech Academy of Science Průhonice Czech Republic
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Veronika Jandova
- Institute of Botany of the Czech Academy of Science Průhonice Czech Republic
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Martin Macek
- Institute of Botany of the Czech Academy of Science Průhonice Czech Republic
| | - Pierre Liancourt
- Institute of Botany of the Czech Academy of Science Průhonice Czech Republic
- Plant Ecology Group University of Tübingen Tübingen Germany
| |
Collapse
|
35
|
Within-Site Variability of Liana Wood Anatomical Traits: A Case Study in Laussat, French Guiana. FORESTS 2020. [DOI: 10.3390/f11050523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research Highlights: We investigated the variability of vessel diameter distributions within the liana growth form among liana individuals originating from a single site in Laussat, French Guiana. Background and Objectives: Lianas (woody vines) are key components of tropical forests. Lianas are believed to be strong competitors for water, thanks to their presumed efficient vascular systems. However, unlike tropical trees, lianas are overlooked in field data collection. As a result, lianas are often referred to as a homogeneous growth form while little is known about the hydraulic architecture variation among liana individuals. Materials and Methods: We measured several wood hydraulic and structural traits (e.g., basic specific gravity, vessel area, and vessel diameter distribution) of 22 liana individuals in a single sandy site in Laussat, French Guiana. We compared the liana variability of these wood traits and the correlations among them with an existing liana pantropical dataset and two published datasets of trees originating from different, but species-rich, tropical sites. Results: Liana vessel diameter distribution and density were heterogeneous among individuals: there were two orders of magnitude difference between the smallest (4 µm) and the largest (494 µm) vessel diameters, a 50-fold difference existed between extreme vessel densities ranging from 1.8 to 89.3 vessels mm−2, the mean vessel diameter varied between 26 µm and 271 µm, and the individual theoretical stem hydraulic conductivity estimates ranged between 28 and 1041 kg m−1 s−1 MPa−1. Basic specific gravity varied between 0.26 and 0.61. Consequently, liana wood trait variability, even within a small sample, was comparable in magnitude with tree surveys from other tropical sites and the pantropical liana dataset. Conclusions: This study illustrates that even controlling for site and soil type, liana traits are heterogeneous and cannot be considered as a homogeneous growth form. Our results show that the liana hydraulic architecture heterogeneity across and within sites warrants further investigation in order to categorize lianas into functional groups in the same way as trees
Collapse
|
36
|
Lugli LF. Digging deeper? Biomass allocation patterns in trees and lianas in tropical seasonal forests. THE NEW PHYTOLOGIST 2020; 226:639-640. [PMID: 31904868 DOI: 10.1111/nph.16366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Laynara F Lugli
- National Institute of Amazonian Research (INPA), Manaus, Brazil
| |
Collapse
|
37
|
Powers JS, Vargas G G, Brodribb TJ, Schwartz NB, Pérez-Aviles D, Smith-Martin CM, Becknell JM, Aureli F, Blanco R, Calderón-Morales E, Calvo-Alvarado JC, Calvo-Obando AJ, Chavarría MM, Carvajal-Vanegas D, Jiménez-Rodríguez CD, Murillo Chacon E, Schaffner CM, Werden LK, Xu X, Medvigy D. A catastrophic tropical drought kills hydraulically vulnerable tree species. GLOBAL CHANGE BIOLOGY 2020; 26:3122-3133. [PMID: 32053250 DOI: 10.1111/gcb.15037] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/17/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Drought-related tree mortality is now a widespread phenomenon predicted to increase in magnitude with climate change. However, the patterns of which species and trees are most vulnerable to drought, and the underlying mechanisms have remained elusive, in part due to the lack of relevant data and difficulty of predicting the location of catastrophic drought years in advance. We used long-term demographic records and extensive databases of functional traits and distribution patterns to understand the responses of 20-53 species to an extreme drought in a seasonally dry tropical forest in Costa Rica, which occurred during the 2015 El Niño Southern Oscillation event. Overall, species-specific mortality rates during the drought ranged from 0% to 34%, and varied little as a function of tree size. By contrast, hydraulic safety margins correlated well with probability of mortality among species, while morphological or leaf economics spectrum traits did not. This firmly suggests hydraulic traits as targets for future research.
Collapse
Affiliation(s)
- Jennifer S Powers
- Department of Ecology, Evolution, & Behavior, University of Minnesota, St. Paul, MN, USA
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - German Vargas G
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tas., Australia
| | - Naomi B Schwartz
- Department of Geography, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Pérez-Aviles
- Department of Ecology, Evolution, & Behavior, University of Minnesota, St. Paul, MN, USA
| | - Chris M Smith-Martin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | | | - Filippo Aureli
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
- Instituto de Neuroetologia, Universidad Veracruzana, Xalapa, Mexico
| | - Roger Blanco
- Programa de Investigación, Área de Conservación Guanacaste, Sistema Nacional de Areas de Conservación, Ministerio de Ambiente y Energía, Liberia, Costa Rica
| | - Erick Calderón-Morales
- Department of Ecology, Evolution, & Behavior, University of Minnesota, St. Paul, MN, USA
| | | | | | - María Marta Chavarría
- Programa de Investigación, Área de Conservación Guanacaste, Sistema Nacional de Areas de Conservación, Ministerio de Ambiente y Energía, Liberia, Costa Rica
| | | | - César D Jiménez-Rodríguez
- Escuela de Ingeniería Forestal, Tecnológico de Costa Rica, Cartago, Costa Rica
- Water Resources Section, Delft University of Technology, Delft, The Netherlands
| | - Evin Murillo Chacon
- Programa de Investigación, Área de Conservación Guanacaste, Sistema Nacional de Areas de Conservación, Ministerio de Ambiente y Energía, Liberia, Costa Rica
| | - Colleen M Schaffner
- Instituto de Neuroetologia, Universidad Veracruzana, Xalapa, Mexico
- Psychology Department, Adams State University, Alamosa, CO, USA
| | - Leland K Werden
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Xiangtao Xu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - David Medvigy
- Department of Biological Science, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|