1
|
Hodač L, Karbstein K, Kösters L, Rzanny M, Wittich HC, Boho D, Šubrt D, Mäder P, Wäldchen J. Deep learning to capture leaf shape in plant images: Validation by geometric morphometrics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1343-1357. [PMID: 39383323 DOI: 10.1111/tpj.17053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 10/11/2024]
Abstract
Plant leaves play a pivotal role in automated species identification using deep learning (DL). However, achieving reproducible capture of leaf variation remains challenging due to the inherent "black box" problem of DL models. To evaluate the effectiveness of DL in capturing leaf shape, we used geometric morphometrics (GM), an emerging component of eXplainable Artificial Intelligence (XAI) toolkits. We photographed Ranunculus auricomus leaves directly in situ and after herbarization. From these corresponding leaf images, we automatically extracted DL features using a neural network and digitized leaf shapes using GM. The association between the extracted DL features and GM shapes was then evaluated using dimension reduction and covariation models. DL features facilitated the clustering of leaf images by source populations in both in situ and herbarized leaf image datasets, and certain DL features were significantly associated with biological leaf shape variation as inferred by GM. DL features also enabled leaf classification into morpho-phylogenomic groups within the intricate R. auricomus species complex. We demonstrated that simple in situ leaf imaging and DL reproducibly captured leaf shape variation at the population level, while combining this approach with GM provided key insights into the shape information extracted from images by computer vision, a necessary prerequisite for reliable automated plant phenotyping.
Collapse
Affiliation(s)
- Ladislav Hodač
- Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Kevin Karbstein
- Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Lara Kösters
- Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Michael Rzanny
- Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Hans Christian Wittich
- Data-intensive Systems and Visualization Group, Technische Universität Ilmenau, Ilmenau, Germany
| | - David Boho
- Data-intensive Systems and Visualization Group, Technische Universität Ilmenau, Ilmenau, Germany
| | - David Šubrt
- Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Patrick Mäder
- Data-intensive Systems and Visualization Group, Technische Universität Ilmenau, Ilmenau, Germany
- German Centre for Integrative Biodiversity Research - iDiv (Halle-Jena-Leipzig), Leipzig, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Jana Wäldchen
- Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
- German Centre for Integrative Biodiversity Research - iDiv (Halle-Jena-Leipzig), Leipzig, Germany
| |
Collapse
|
2
|
Martínez-Gómez J, Park S, Hartogs SR, Soza VL, Park SJ, Di Stilio VS. Flower morphology as a predictor of pollination mode in a biotic to abiotic pollination continuum. ANNALS OF BOTANY 2023; 132:61-76. [PMID: 37235981 PMCID: PMC10550269 DOI: 10.1093/aob/mcad069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/25/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS Wind pollination has evolved repeatedly in flowering plants, yet the identification of a wind pollination syndrome as a set of integrated floral traits can be elusive. Thalictrum (Ranunculaceae) comprises temperate perennial herbs that have transitioned repeatedly from insect to wind pollination while also exhibiting mixed pollination, providing an ideal system to test for evolutionary correlation between floral morphology and pollination mode in a biotic to abiotic continuum. Moreover, the lack of floral organ fusion across this genus allows testing for specialization to pollination vectors in the absence of this feature. METHODS We expanded phylogenetic sampling in the genus from a previous study using six chloroplast loci, which allowed us to test whether species cluster into distinct pollination syndromes based on floral morphology. We then used multivariate analyses on floral traits followed by ancestral state reconstruction of the emerging flower morphotypes and determined whether these traits are evolutionarily correlated under a Bayesian framework with Brownian motion. KEY RESULTS Floral traits fell into five distinct clusters, which were reduced to three after considering phylogenetic relatedness and were largely consistent with flower morphotypes and associated pollination vectors. Multivariate evolutionary analyses found a positive correlation between the lengths of floral reproductive structures (styles, stigmas, filaments and anthers). Shorter reproductive structures tracked insect-pollinated species and clades in the phylogeny, whereas longer structures tracked wind-pollinated ones, consistent with selective pressures exerted by biotic vs. abiotic pollination vectors, respectively. CONCLUSIONS Although detectable suites of integrated floral traits across Thalictrum were correlated with wind or insect pollination at the extremes of the morphospace distribution, a presumed intermediate, mixed pollination mode morphospace was also detected. Thus, our data broadly support the existence of detectable flower morphotypes from convergent evolution underlying the evolution of pollination mode in Thalictrum, presumably via different paths from an ancestral mixed pollination state.
Collapse
Affiliation(s)
- Jesús Martínez-Gómez
- Department of Biology, University of Washington, PO Box 351800, Seattle, WA 98195, USA
- School of Integrative Plant Sciences and L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA
| | - Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Samantha R Hartogs
- Department of Biology, University of Washington, PO Box 351800, Seattle, WA 98195, USA
| | - Valerie L Soza
- Department of Biology, University of Washington, PO Box 351800, Seattle, WA 98195, USA
| | - Seon Joo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Verónica S Di Stilio
- Department of Biology, University of Washington, PO Box 351800, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Kriebel R, Rose JP, Bastide P, Jolles D, Reginato M, Sytsma KJ. The evolution of Ericaceae flowers and their pollination syndromes at a global scale. AMERICAN JOURNAL OF BOTANY 2023; 110:e16220. [PMID: 37551426 DOI: 10.1002/ajb2.16220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 08/09/2023]
Abstract
PREMISE Floral evolution in large clades is difficult to study not only because of the number of species involved, but also because they often are geographically widespread and include a diversity of outcrossing pollination systems. The cosmopolitan blueberry family (Ericaceae) is one such example, most notably pollinated by bees and multiple clades of nectarivorous birds. METHODS We combined data on floral traits, pollination ecology, and geography with a comprehensive phylogeny to examine the structuring of floral diversity across pollination systems and continents. We focused on ornithophilous systems to test the hypothesis that some Old World Ericaceae were pollinated by now-extinct hummingbirds. RESULTS Despite some support for floral differentiation at a continental scale, we found a large amount of variability within and among landmasses, due to both phylogenetic conservatism and parallel evolution. We found support for floral differentiation in anther and corolla traits across pollination systems, including among different ornithophilous systems. Corolla traits show inconclusive evidence that some Old World Ericaceae were pollinated by hummingbirds, while anther traits show stronger evidence. Some major shifts in floral traits are associated with changes in pollination system, but shifts within bee systems are likely also important. CONCLUSIONS Studying the floral evolution of large, morphologically diverse, and widespread clades is feasible. We demonstrate that continent-specific radiations have led to widespread parallel evolution of floral morphology. We show that traits outside of the perianth may hold important clues to the ecological history of lineages.
Collapse
Affiliation(s)
- Ricardo Kriebel
- Department of Botany, California Academy of Sciences, San Francisco, California, 94118, USA
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Jeffrey P Rose
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Paul Bastide
- IMAG, Université de Montpellier, CNRS, Montpellier, France
| | - Diana Jolles
- Department of Biological Sciences, Plymouth State University, 17 High Street, Plymouth, New Hampshire, 03264-1594, USA
| | - Marcelo Reginato
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Kenneth J Sytsma
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
4
|
Wolcott KA, Stanley EL, Gutierrez OA, Wuchty S, Whitlock BA. 3D pollination biology using micro-computed tomography and geometric morphometrics in Theobroma cacao. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11549. [PMID: 37915432 PMCID: PMC10617321 DOI: 10.1002/aps3.11549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 11/03/2023]
Abstract
Premise Imaging technologies that capture three-dimensional (3D) variation in floral morphology at micro- and nano-resolutions are increasingly accessible. In herkogamous flowers, such as those of Theobroma cacao, structural barriers between anthers and stigmas represent bottlenecks that restrict pollinator size and access to reproductive organs. To study the unresolved pollination biology of cacao, we present a novel application of micro-computed tomography (micro-CT) using floral dimensions to quantify pollinator functional size limits. Methods We generated micro-CT data sets from field-collected flowers and museum specimens of potential pollinators. To compare floral variation, we used 3D Slicer to place landmarks on the surface models and performed a geometric morphometric (GMM) analysis using geomorph R. We identified the petal side door (an opening between the petal hoods and filament) as the main bottleneck for pollinator access. We compared its mean dimensions with proposed pollinators to identify viable candidates. Results We identified three levels of likelihood for putative pollinators based on the number of morphological (body) dimensions that fit through the petal side door. We also found floral reward microstructures whose presence and location were previously unclear. Discussion Using micro-CT and GMM to study the 3D pollination biology of cacao provides new evidence for predicting unknown pollinators. Incorporating geometry and floral rewards will strengthen plant-pollinator trait matching models for cacao and other species.
Collapse
Affiliation(s)
| | - Edward L. Stanley
- Department of Natural HistoryFlorida Museum of Natural HistoryGainesvilleFloridaUSA
| | - Osman A. Gutierrez
- Subtropical Horticultural Research StationUnited States Department of Agriculture–Agricultural Research Service (USDA‐ARS)MiamiFlorida33158USA
| | - Stefan Wuchty
- Department of BiologyUniversity of MiamiCoral GablesFlorida33124USA
- Department of Computer ScienceUniversity of MiamiCoral GablesFlorida33146USA
- Institute of Data Science and ComputingUniversity of MiamiCoral GablesFlorida33146USA
- Sylvester Comprehensive Cancer CenterUniversity of MiamiMiamiFlorida33136USA
| | | |
Collapse
|
5
|
Herting J, Schönenberger J, Sauquet H. Profile of a flower: How rates of morphological evolution drive floral diversification in Ericales and angiosperms. AMERICAN JOURNAL OF BOTANY 2023; 110:e16213. [PMID: 37459475 DOI: 10.1002/ajb2.16213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 08/12/2023]
Abstract
PREMISE Recent studies of floral disparity in the asterid order Ericales have shown that flowers vary strongly among families and that disparity is unequally distributed between the three flower modules (perianth, androecium, gynoecium). However, it remains unknown whether these patterns are driven by heterogeneous rates of morphological evolution or other factors. METHODS Here, we compiled a data set of 33 floral characters scored for 414 species of Ericales sampled from 346 genera and all 22 families. We conducted ancestral state reconstructions using an equal-rates Markov model for each character. We estimated rates of morphological evolution for Ericales and for a separate angiosperm-wide data set of 19 characters and 792 species, creating "rate profiles" for Ericales, angiosperms, and major angiosperm subclades. We compared morphological rates among flower modules within each data set separately and between data sets, and we compared rates among angiosperm subclades using the angiosperm data set. RESULTS The androecium exhibits the highest evolutionary rates across most characters, whereas most perianth and gynoecium characters evolve more slowly in both Ericales and angiosperms. Both high and low rates of morphological evolution can result in high floral disparity in Ericales. Analyses of an angiosperm-wide floral data set reveal that this pattern appears to be conserved across most major angiosperm clades. CONCLUSIONS Elevated rates of morphological evolution in the androecium of Ericales may explain the higher disparity reported for this floral module. Comparing rates of morphological evolution through rate profiles proves to be a powerful tool in understanding floral evolution.
Collapse
Affiliation(s)
- Julian Herting
- National Herbarium of New South Wales, Botanic Gardens Sydney, Locked Bag 6002, Mount Annan, NSW 2567, Australia
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, A-1030, Austria
| | - Hervé Sauquet
- National Herbarium of New South Wales, Botanic Gardens Sydney, Locked Bag 6002, Mount Annan, NSW 2567, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Jantzen JR, Laliberté E, Carteron A, Beauchamp-Rioux R, Blanchard F, Crofts AL, Girard A, Hacker PW, Pardo J, Schweiger AK, Demers-Thibeault S, Coops NC, Kalacska M, Vellend M, Bruneau A. Evolutionary history explains foliar spectral differences between arbuscular and ectomycorrhizal plant species. THE NEW PHYTOLOGIST 2023; 238:2651-2667. [PMID: 36960543 DOI: 10.1111/nph.18902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/16/2023] [Indexed: 05/19/2023]
Abstract
Leaf spectra are integrated foliar phenotypes that capture a range of traits and can provide insight into ecological processes. Leaf traits, and therefore leaf spectra, may reflect belowground processes such as mycorrhizal associations. However, evidence for the relationship between leaf traits and mycorrhizal association is mixed, and few studies account for shared evolutionary history. We conduct partial least squares discriminant analysis to assess the ability of spectra to predict mycorrhizal type. We model the evolution of leaf spectra for 92 vascular plant species and use phylogenetic comparative methods to assess differences in spectral properties between arbuscular mycorrhizal and ectomycorrhizal plant species. Partial least squares discriminant analysis classified spectra by mycorrhizal type with 90% (arbuscular) and 85% (ectomycorrhizal) accuracy. Univariate models of principal components identified multiple spectral optima corresponding with mycorrhizal type due to the close relationship between mycorrhizal type and phylogeny. Importantly, we found that spectra of arbuscular mycorrhizal and ectomycorrhizal species do not statistically differ from each other after accounting for phylogeny. While mycorrhizal type can be predicted from spectra, enabling the use of spectra to identify belowground traits using remote sensing, this is due to evolutionary history and not because of fundamental differences in leaf spectra due to mycorrhizal type.
Collapse
Affiliation(s)
- Johanna R Jantzen
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Etienne Laliberté
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Alexis Carteron
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Rosalie Beauchamp-Rioux
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Florence Blanchard
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Anna L Crofts
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2X9, Canada
| | - Alizée Girard
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Paul W Hacker
- Department of Forest Resources Management, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Juliana Pardo
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Anna K Schweiger
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
- Department of Geography, Remote Sensing Laboratories, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Sabrina Demers-Thibeault
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Nicholas C Coops
- Department of Forest Resources Management, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Margaret Kalacska
- Department of Geography, McGill University, Montréal, QC, H3A 0B9, Canada
| | - Mark Vellend
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2X9, Canada
| | - Anne Bruneau
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| |
Collapse
|
7
|
Xiang GJ, Lázaro A, Dai XK, Xia J, Yang CF. Pollinator Proboscis Length Plays a Key Role in Floral Integration of Honeysuckle Flowers ( Lonicera spp.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1629. [PMID: 37111853 PMCID: PMC10144162 DOI: 10.3390/plants12081629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Pollinator-mediated selection is supposed to influence floral integration. However, the potential pathway through which pollinators drive floral integration needs further investigations. We propose that pollinator proboscis length may play a key role in the evolution of floral integration. We first assessed the divergence of floral traits in 11 Lonicera species. Further, we detected the influence of pollinator proboscis length and eight floral traits on floral integration. We then used phylogenetic structural equation models (PSEMs) to illustrate the pathway through which pollinators drive the divergence of floral integration. Results of PCA indicated that species significantly differed in floral traits. Floral integration increased along with corolla tube length, stigma height, lip length, and the main pollinators' proboscis length. PSEMs revealed a potential pathway by which pollinator proboscis length directly selected on corolla tube length and stigma height, while lip length co-varied with stigma height. Compared to species with short corolla tubes, long-tube flowers may experience more intense pollinator-mediated selection due to more specialized pollination systems and thus reduce variation in the floral traits. Along elongation of corolla tube and stigma height, the covariation of other relevant traits might help to maintain pollination success. The direct and indirect pollinator-mediation selection collectively enhances floral integration.
Collapse
Affiliation(s)
- Gan-Ju Xiang
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Amparo Lázaro
- Global Change Research Group, Mediterranean Institute of Advanced Studies (IMEDEA; UIB-CSIC), 07190 Esporles, Balearic Islands, Spain
- Department of Biology, Ecology Area, University of the Balearic Islands, 07190 Palma, Balearic Islands, Spain
| | - Xiao-Kang Dai
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Xia
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Chun-Feng Yang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
8
|
Leménager M, Burkiewicz J, Schoen DJ, Joly S. Studying flowers in 3D using photogrammetry. THE NEW PHYTOLOGIST 2023; 237:1922-1933. [PMID: 36263728 DOI: 10.1111/nph.18553] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Flowers are intricate and integrated three-dimensional (3D) structures predominantly studied in 2D due to the difficulty in quantitatively characterising their morphology in 3D. Given the recent development of analytical methods for high-dimensional data, the reconstruction of flower models in three dimensions represents the limiting factor to studying flowers in 3D. We developed a floral photogrammetry protocol to reconstruct 3D models of flowers based on images taken with a digital single-lens reflex camera, a turntable and a portable lightbox. We demonstrate that photogrammetry allows a rapid and accurate reconstruction of 3D models of flowers from 2D images. It can reconstruct all visible parts of flowers and has the advantage of keeping colour information. We illustrated its use by studying the shape and colour of 18 Gesneriaceae species. Photogrammetry is an affordable alternative to micro-computed tomography (micro-CT) that requires minimal investment and equipment, allowing it to be used directly in the field. It has the potential to stimulate research on the evolution and ecology of flowers by providing a simple way to access 3D morphological data from a variety of flower types.
Collapse
Affiliation(s)
- Marion Leménager
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke E, Montréal, QC, H1X 2B2, Canada
| | - Jérôme Burkiewicz
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke E, Montréal, QC, H1X 2B2, Canada
| | - Daniel J Schoen
- Biology Department, McGill University, 205 Av. du Docteur-Penfield, Montréal, QC, H3A 1B1, Canada
| | - Simon Joly
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke E, Montréal, QC, H1X 2B2, Canada
- Jardin Botanique de Montréal, 4101 Rue Sherbrooke E, Montréal, QC, H1X 2B2, Canada
| |
Collapse
|
9
|
Artuso S, Gamisch A, Staedler YM, Schönenberger J, Comes HP. Evidence for an evo-devo-derived hypothesis on three-dimensional flower shape modularity in a tropical orchid clade. Evolution 2022; 76:2587-2604. [PMID: 36128635 PMCID: PMC9828045 DOI: 10.1111/evo.14621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 01/22/2023]
Abstract
Covarying suites of phenotypic traits, or modules, are increasingly recognized to promote morphological evolution. However, information on how modularity influences flower diversity is rare and lacking for Orchidaceae. Here, we combine high-resolution X-ray computed tomography scanning with three-dimensional geometric morphometrics and phylogenetic comparative methods to test various hypotheses about three-dimensional patterns of flower evolutionary modularity in Malagasy Bulbophyllum orchids and examine rates and modes of module evolution. Based on the four evolutionary modules identified (i.e., sepals, lateral petals, labellum + column-foot, and column-part), our data support the hypothesis that both genetic-developmental and functional adaptive factors shaped evolutionary flower trait covariation in these tropical orchids. In line with "evo-devo" studies, we also find that the labellum evolved independently from the rest of the petal whorl. Finally, we show that modules evolved with different rates, and either in a neutral fashion (only column-part) or under selective constraints, as likely imposed by pollinators. Overall, this study supports current views that modular units can enhance the range and rate of morphological evolution.
Collapse
Affiliation(s)
- Silvia Artuso
- Department of Environment and BiodiversityUniversity of SalzburgSalzburg5020Austria
| | - Alexander Gamisch
- Department of Environment and BiodiversityUniversity of SalzburgSalzburg5020Austria
| | - Yannick M. Staedler
- Department of Botany and Biodiversity ResearchUniversity of ViennaVienna1030Austria
| | - Jürg Schönenberger
- Department of Botany and Biodiversity ResearchUniversity of ViennaVienna1030Austria
| | - Hans Peter Comes
- Department of Environment and BiodiversityUniversity of SalzburgSalzburg5020Austria
| |
Collapse
|
10
|
Opedal ØH, Hildesheim LS, Armbruster WS. Evolvability and constraint in the evolution of three-dimensional flower morphology. AMERICAN JOURNAL OF BOTANY 2022; 109:1906-1917. [PMID: 36371715 PMCID: PMC9827957 DOI: 10.1002/ajb2.16092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 05/31/2023]
Abstract
PREMISE Flower phenotypes evolve to attract pollinators and to ensure efficient pollen transfer to and from the bodies of pollinators or, in self-compatible bisexual flowers, between anthers and stigmas. If functionally interacting traits are genetically correlated, response to selection may be subject to genetic constraints. Genetic constraints can be assessed by quantifying standing genetic variation in (multivariate) phenotypic traits and by asking how much the available variation is reduced under specific assumptions about phenotypic selection on functionally interacting and genetically correlated traits. METHODS We evaluated multivariate evolvability and potential genetic constraints underlying the evolution of the three-dimensional structure of Dalechampia blossoms. First, we used data from a greenhouse crossing design to estimate the G matrix for traits representing the relative positions of male and female sexual organs (anthers and stigmas) and used the G matrix to ask how genetic variation is distributed in multivariate space. To assess the evolutionary importance of genetic constraints, we related standing genetic variation across phenotypic space to evolutionary divergence of population and species in the same phenotypic directions. RESULTS Evolvabilities varied substantially across phenotype space, suggesting that certain traits or trait combinations may be subject to strong genetic constraint. Traits involved functionally in flower-pollinator fit and autonomous selfing exhibited considerable independent evolutionary potential, but population and species divergence tended to occur in phenotypic directions associated with greater-than-average evolvability. CONCLUSIONS These results are consistent with the hypothesis that genetic constraints can hamper joint trait evolution towards optimum flower-pollinator fit and optimum self-pollination rates.
Collapse
Affiliation(s)
| | | | - W. Scott Armbruster
- School of Biological SciencesUniversity of PortsmouthPortsmouthPO1 2DYUK
- Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksAK99775USA
| |
Collapse
|
11
|
Huang L, Liu Y, Dou L, Pan S, Li Z, Zhang J, Li J. Mutualist- and antagonist-mediated selection contribute to trait diversification of flowers. PeerJ 2022; 10:e14107. [PMID: 36196403 PMCID: PMC9527018 DOI: 10.7717/peerj.14107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/01/2022] [Indexed: 01/21/2023] Open
Abstract
Flowers are generally short-lived, and they all face a multidimensional challenge because they have to attract mutualists, compel them to vector pollen with minimal investment in rewards, and repel floral enemies during this short time window. Their displays are under complex selection, either consistent or conflicting, to maximize reproductive fitness under heterogeneous environments. The phenological or morphological mismatches between flowers and visitors will influence interspecific competition, resource access, mating success and, ultimately, population and community dynamics. To better understand the effects of the plant visitors on floral traits, it is necessary to determine the functional significance of specific floral traits for the visitors; how plants respond to both mutualists and antagonists through adaptive changes; and to evaluate the net fitness effects of biological mutualisms and antagonism on plants. In this review, we bring together insights from fields as diverse as floral biology, insect behavioral responses, and evolutionary biology to explain the processes and patterns of floral diversity evolution. Then, we discuss the ecological significance of plant responses to mutualists and antagonists from a community perspective, and propose a set of research questions that can guide the research field to integrate studies of plant defense and reproduction.
Collapse
Affiliation(s)
- Luyao Huang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liwen Dou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shaobin Pan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Jin Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jia Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
12
|
Soza VL, Kriebel R, Ramage E, Hall BD, Twyford AD. The symmetry spectrum in a hybridising, tropical group of rhododendrons. THE NEW PHYTOLOGIST 2022; 234:1491-1506. [PMID: 35274743 PMCID: PMC9313591 DOI: 10.1111/nph.18083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Many diverse plant clades possess bilaterally symmetrical flowers and specialised pollination syndromes, suggesting that these traits may promote diversification. We examined the evolution of diverse floral morphologies in a species-rich tropical radiation of Rhododendron. We used restriction-site associated DNA sequencing on 114 taxa from Rhododendron sect. Schistanthe to reconstruct phylogenetic relationships and examine hybridisation. We then captured and quantified floral variation using geometric morphometric analyses, which we interpreted in a phylogenetic context. We uncovered phylogenetic conflict and uncertainty caused by introgression within and between clades. Morphometric analyses revealed flower symmetry to be a morphological continuum without clear transitions between radial and bilateral symmetry. Tropical Rhododendron species that began diversifying into New Guinea c. 6 million years ago expanded into novel floral morphological space. Our results showed that the evolution of tropical Rhododendron is characterised by recent speciation, recurrent hybridisation and the origin of floral novelty. Floral variation evolved via changes to multiple components of the corolla that are only recognised in geometric morphometrics with both front and side views of flowers.
Collapse
Affiliation(s)
- Valerie L. Soza
- Department of BiologyUniversity of WashingtonSeattleWA98115USA
| | - Ricardo Kriebel
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | | | | | - Alex D. Twyford
- Institute of Evolutionary BiologySchool of Biological SciencesUniversity of EdinburghCharlotte Auerbach RoadEdinburghEH9 3FLUK
- Royal Botanic Garden Edinburgh20A Inverleith RowEdinburghEH3 5LRUK
| |
Collapse
|
13
|
Duncan KE, Czymmek KJ, Jiang N, Thies AC, Topp CN. X-ray microscopy enables multiscale high-resolution 3D imaging of plant cells, tissues, and organs. PLANT PHYSIOLOGY 2022; 188:831-845. [PMID: 34618094 PMCID: PMC8825331 DOI: 10.1093/plphys/kiab405] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/29/2021] [Indexed: 05/12/2023]
Abstract
Capturing complete internal anatomies of plant organs and tissues within their relevant morphological context remains a key challenge in plant science. While plant growth and development are inherently multiscale, conventional light, fluorescence, and electron microscopy platforms are typically limited to imaging of plant microstructure from small flat samples that lack a direct spatial context to, and represent only a small portion of, the relevant plant macrostructures. We demonstrate technical advances with a lab-based X-ray microscope (XRM) that bridge the imaging gap by providing multiscale high-resolution three-dimensional (3D) volumes of intact plant samples from the cell to the whole plant level. Serial imaging of a single sample is shown to provide sub-micron 3D volumes co-registered with lower magnification scans for explicit contextual reference. High-quality 3D volume data from our enhanced methods facilitate sophisticated and effective computational segmentation. Advances in sample preparation make multimodal correlative imaging workflows possible, where a single resin-embedded plant sample is scanned via XRM to generate a 3D cell-level map, and then used to identify and zoom in on sub-cellular regions of interest for high-resolution scanning electron microscopy. In total, we present the methodologies for use of XRM in the multiscale and multimodal analysis of 3D plant features using numerous economically and scientifically important plant systems.
Collapse
Affiliation(s)
- Keith E Duncan
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Ni Jiang
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | | | - Christopher N Topp
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
- Author for communication:
| |
Collapse
|
14
|
Liao IT, Rifkin JL, Cao G, Rausher MD. Modularity and selection of nectar traits in the evolution of the selfing syndrome in Ipomoea lacunosa (Convolvulaceae). THE NEW PHYTOLOGIST 2022; 233:1505-1519. [PMID: 34783034 DOI: 10.1111/nph.17863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Although the evolution of the selfing syndrome often involves reductions in floral size, pollen and nectar, few studies of selfing syndrome divergence have examined nectar. We investigate whether nectar traits have evolved independently of other floral size traits in the selfing syndrome, whether nectar traits diverged due to drift or selection, and the extent to which quantitative trait locus (QTL) analyses predict genetic correlations. We use F5 recombinant inbred lines (RILs) generated from a cross between Ipomoea cordatotriloba and Ipomoea lacunosa. We calculate genetic correlations to identify evolutionary modules, test whether trait divergence was due to selection, identify QTLs and perform correlation analyses to evaluate how well QTL properties reflect genetic correlations. Nectar and floral size traits form separate evolutionary modules. Selection has acted to reduce nectar traits in the selfing I. lacunosa. Genetic correlations predicted from QTL properties are consistent with observed genetic correlations. Changes in floral traits associated with the selfing syndrome reflect independent evolution of at least two evolutionary modules: nectar and floral size traits. We also demonstrate directional selection on nectar traits, which is likely to be independent of selection on floral size traits. Our study also supports the expected mechanistic link between QTL properties and genetic correlations.
Collapse
Affiliation(s)
- Irene T Liao
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Department of Molecular, Cell, and Developmental Biology, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Joanna L Rifkin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Gongyuan Cao
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Mark D Rausher
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
15
|
Dobreva MP, Camacho J, Abzhanov A. Time to synchronize our clocks: Connecting developmental mechanisms and evolutionary consequences of heterochrony. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:87-106. [PMID: 34826199 DOI: 10.1002/jez.b.23103] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Heterochrony, defined as a change in the timing of developmental events altering the course of evolution, was first recognized by Ernst Haeckel in 1866. Haeckel's original definition was meant to explain the observed parallels between ontogeny and phylogeny, but the interpretation of his work became a source of controversy over time. Heterochrony took its modern meaning following the now classical work in the 1970-80s by Steven J. Gould, Pere Alberch, and co-workers. Predicted and described heterochronic scenarios emphasize the many ways in which developmental changes can influence evolution. However, while important examples of heterochrony detected with comparative morphological methods have multiplied, the more mechanistic understanding of this phenomenon lagged conspicuously behind. Considering the rapid progress in imaging and molecular tools available now for developmental biologists, this review aims to stress the need to take heterochrony research to the next level. It is time to synchronize the different levels of heterochrony research into a single analysis flow: from studies on organismal-level morphology to cells to molecules and genes, using complementary techniques. To illustrate how to achieve a more comprehensive understanding of phyletic morphological diversification associated with heterochrony, we discuss several recent case studies at various phylogenetic scales that combine morphological, cellular, and molecular analyses. Such a synergistic approach offers to more fully integrate phylogenetic and ontogenetic dimensions of the fascinating evolutionary phenomenon of heterochrony.
Collapse
Affiliation(s)
| | - Jasmin Camacho
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Arkhat Abzhanov
- Department of Life Sciences, Imperial College London, Ascot, UK
- Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
16
|
Artuso S, Gamisch A, Staedler YM, Schönenberger J, Comes HP. Evidence for selectively constrained 3D flower shape evolution in a Late Miocene clade of Malagasy Bulbophyllum orchids. THE NEW PHYTOLOGIST 2021; 232:853-867. [PMID: 34309843 DOI: 10.1111/nph.17643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Questions concerning the evolution of complex biological structures are central to the field of evolutionary biology. Yet, still little information is known about the modes and temporal dynamics of three-dimensional (3D) flower shape evolution across the history of clades. Here, we combined high-resolution X-ray computed tomography with 3D geometric morphometrics and phylogenetic comparative methods to test models of whole-flower shape evolution in the orchid family, using an early Late Miocene clade (c. 50 spp.) of Malagasy Bulbophyllum as model system. Based on landmark data of 38 species, our high-dimensional model fitting decisively rejects a purely neutral mode of evolution, suggesting instead that flower shapes evolved towards a primary adaptive optimum. Only a small number of recently evolved species/lineages attained alternative shape optima, resulting in an increased rate of phenotypic evolution. Our findings provide evidence of constrained 3D flower shape evolution in a small-sized clade of tropical orchids, resulting in low rates of phenotypic evolution and uncoupled trait-diversification rates. We hypothesise that this deep imprint of evolutionary constraint on highly complex floral structures might reflect long-term (directional and/or stabilizing) selection exerted by the group's main pollinators (flies).
Collapse
Affiliation(s)
- Silvia Artuso
- Department of Biosciences, University of Salzburg, Salzburg, A-5020, Austria
| | - Alexander Gamisch
- Department of Biosciences, University of Salzburg, Salzburg, A-5020, Austria
| | - Yannick M Staedler
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, A-1030, Austria
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, A-1030, Austria
| | - Hans Peter Comes
- Department of Biosciences, University of Salzburg, Salzburg, A-5020, Austria
| |
Collapse
|
17
|
Bilbao G, Bruneau A, Joly S. Judge it by its shape: a pollinator-blind approach reveals convergence in petal shape and infers pollination modes in the genus Erythrina. AMERICAN JOURNAL OF BOTANY 2021; 108:1716-1730. [PMID: 34590308 DOI: 10.1002/ajb2.1735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Pollinators are thought to exert selective pressures on plants, mediating the evolution of convergent floral shape often recognized as pollination syndromes. However, little is known about the accuracy of using petal shape for inferring convergence in pollination mode without a priori pollination information. Here we studied the genus Erythrina L. as a test case to assess whether ornithophyllous pollination modes (hummingbirds, passerines, sunbirds, or mixed pollination) can be inferred based on the evolutionary analysis of petal shape. METHODS We characterized the two-dimensional dissected shape of standard, keel, and wing petals from 106 Erythrina species using geometric morphometrics and reconstructed a phylogenetic tree of 83 Erythrina species based on plastid trnL-F and nuclear ribosomal ITS sequences. We then used two phylogenetic comparative methods based on Ornstein-Uhlenbeck models, SURFACE and l1OU, to infer distinct morphological groups using petal shape and identify instances of convergent evolution. The effectiveness of these methods was evaluated by comparing the groups inferred to known pollinators. RESULTS We found significant petal shape differences between hummingbird- and passerine-pollinated Erythrina species. Our analyses also revealed that petal combinations generally provided better inferences of pollinator types than individual petals and that the method and optimization criterion can affect the results. CONCLUSIONS We show that model-based approaches using petal shape can detect convergent evolution of floral shape and relatively accurately infer pollination modes in Erythrina. The inference power of the keel petals argues for a deeper investigation of their role in the pollination biology of Erythrina and other bird-pollinated legumes.
Collapse
Affiliation(s)
- Gonzalo Bilbao
- Institut de recherche en biologie végétale and Département de Sciences biologiques, Université de Montréal, 4101 Sherbrooke East, Montréal (QC), H1X 2B2, Canada
| | - Anne Bruneau
- Institut de recherche en biologie végétale and Département de Sciences biologiques, Université de Montréal, 4101 Sherbrooke East, Montréal (QC), H1X 2B2, Canada
| | - Simon Joly
- Institut de recherche en biologie végétale and Département de Sciences biologiques, Université de Montréal, 4101 Sherbrooke East, Montréal (QC), H1X 2B2, Canada
- Montreal Botanical Garden, 4101 Sherbrooke East, Montréal (QC), H1X 2B2, Canada
| |
Collapse
|
18
|
Nectar Uptake of a Long-Proboscid Prosoeca Fly (Nemestrinidae)-Proboscis Morphology and Flower Shape. INSECTS 2021; 12:insects12040371. [PMID: 33924274 PMCID: PMC8074905 DOI: 10.3390/insects12040371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 11/17/2022]
Abstract
Several Prosoeca (Nemestinidae) species use a greatly elongated proboscis to drink nectar from long-tubed flowers. We studied morphological adaptations for nectar uptake of Prosoecamarinusi that were endemic to the Northern Cape of South Africa. Our study site was a small isolated area of semi-natural habitat, where the long-tubed flowers of Babiana vanzijliae (Iridaceae) were the only nectar source of P. marinusi, and these flies were the only insects with matching proboscis. On average, the proboscis measured 32.63 ± 2.93 mm in length and less than 0.5 mm in diameter. The short labella at the tip are equipped with pseudotracheae that open at the apical margin, indicating that nectar is extracted out of the floral tube with closed labella. To quantify the available nectar resources, measurements of the nectar volume were taken before the flies were active and after observed flower visits. On average, an individual fly took up approximately 1 µL of nectar per flower visit. The measured nectar quantities and the flower geometry allowed estimations of the nectar heights and predictions of necessary proboscis lengths to access nectar in a range of flower tube lengths.
Collapse
|
19
|
van der Niet T. Paucity of natural history data impedes phylogenetic analyses of pollinator-driven evolution. THE NEW PHYTOLOGIST 2021; 229:1201-1205. [PMID: 32786085 DOI: 10.1111/nph.16813] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Timotheüs van der Niet
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, P. Bag X01, Pietermaritzburg, South Africa
| |
Collapse
|
20
|
Dellinger AS. Pollination syndromes in the 21 st century: where do we stand and where may we go? THE NEW PHYTOLOGIST 2020; 228:1193-1213. [PMID: 33460152 DOI: 10.1111/nph.16793] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/31/2020] [Indexed: 06/12/2023]
Abstract
Pollination syndromes, recurring suites of floral traits appearing in connection with specific functional pollinator groups, have served for decades to organise floral diversity under a functional-ecological perspective. Some potential caveats, such as over-simplification of complex plant-animal interactions or lack of empirical observations, have been identified and discussed in recent years. Which of these caveats do indeed cause problems, which have been solved and where do future possibilities lie? I address these questions in a review of the pollination-syndrome literature of 2010 to 2019. I show that the majority of studies was based on detailed empirical pollinator observations and could reliably predict pollinators based on a few floral traits such as colour, shape or reward. Some traits (i.e. colour) were less reliable in predicting pollinators than others (i.e. reward, corolla width), however. I stress that future studies should consider floral traits beyond those traditionally recorded to expand our understanding of mechanisms of floral evolution. I discuss statistical methods suitable for objectively analysing the interplay of system-specific evolutionary constraints, pollinator-mediated selection and adaptive trade-offs at microecological and macroecological scales. I exemplify my arguments on an empirical dataset of floral traits of a neotropical plant radiation in the family Melastomataceae.
Collapse
|
21
|
Westermeier AS, Hiss N, Speck T, Poppinga S. Functional-morphological analyses of the delicate snap-traps of the aquatic carnivorous waterwheel plant (Aldrovanda vesiculosa) with 2D and 3D imaging techniques. ANNALS OF BOTANY 2020; 126:1099-1107. [PMID: 32780092 PMCID: PMC7596371 DOI: 10.1093/aob/mcaa135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS The endangered aquatic carnivorous waterwheel plant (Aldrovanda vesiculosa) catches prey with 3-5-mm-long underwater snap-traps. Trapping lasts 10-20 ms, which is 10-fold faster than in its famous sister, the terrestrial Venus flytrap (Dionaea muscipula). After successful capture, the trap narrows further and forms a 'stomach' for the digestion of prey, the so-called 'sickle-shaped cavity'. To date, knowledge is very scarce regarding the deformation process during narrowing and consequent functional morphology of the trap. METHODS We performed comparative analyses of virtual 3D histology using computed tomography (CT) and conventional 2D histology. For 3D histology we established a contrasting agent-based preparation protocol tailored for delicate underwater plant tissues. KEY RESULTS Our analyses reveal new structural insights into the adaptive architecture of the complex A. vesiculosa snap-trap. In particular, we discuss in detail the arrangement of sensitive trigger hairs inside the trap and present actual 3D representations of traps with prey. In addition, we provide trap volume calculations at different narrowing stages. Furthermore, the motile zone close to the trap midrib, which is thought to promote not only the fast trap closure by hydraulics but also the subsequent trap narrowing and trap reopening, is described and discussed for the first time in its entirety. CONCLUSIONS Our research contributes to the understanding of a complex, fast and reversible underwater plant movement and supplements preparation protocols for CT analyses of other non-lignified and sensitive plant structures.
Collapse
Affiliation(s)
- Anna S Westermeier
- Plant Biomechanics Group and Botanic Garden (PBG), University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Natalie Hiss
- Plant Biomechanics Group and Botanic Garden (PBG), University of Freiburg, Freiburg, Germany
| | - Thomas Speck
- Plant Biomechanics Group and Botanic Garden (PBG), University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Simon Poppinga
- Plant Biomechanics Group and Botanic Garden (PBG), University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Wang YH, Hsu HC, Chou WC, Liang CH, Kuo YF. Automatic Identification of First-Order Veins and Corolla Contours in Three-Dimensional Floral Images. FRONTIERS IN PLANT SCIENCE 2020; 11:549699. [PMID: 33042177 PMCID: PMC7525071 DOI: 10.3389/fpls.2020.549699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/25/2020] [Indexed: 05/03/2023]
Abstract
Defining and quantifying corolla traits are essential for studying corolla shape variation. Three-dimensional (3D) images of corollas contain comprehensive information regarding corolla structures and are optimal for studying corolla shapes. Conventionally, corolla traits are identified and quantified manually from 3D images. Manual identification is time consuming and labor intensive. In this study, approaches are proposed to automatically identify first-order veins and corolla contours in 3D corolla images. The first-order veins of the corollas were identified using Hessian of Gaussian and Dijkstra's algorithm. The contours of the corollas were identified using vector harmony and node distance thresholding. A total of 130 3D images of 28 species in the subtribe Ligeriinae were collected and used to test the proposed approaches. The successful detection rate reached 86.54%. Two derived traits, contour-vein ratio and corolla angle, were defined and quantified using the first-order veins and corolla contour results to investigate the relationship between corolla shapes and pollination types of the subtribe Ligeriinae. Analyses revealed that the mean corolla contour, mean absolute corolla angle, and mean contour-vein ratio of the ornithophilic species were significantly smaller compared with the other species. The mean corolla contour, mean corolla angle, and mean contour-vein ratio of the melittophilic species were significantly larger compared with those of the ornithophilic species. The proposed method was also applied to certain Gesneriaceae species in the subtribes Gloxiniinae, Streptocarpinae, and Didymocarpinae. The results revealed that the method could be applied to most fresh sympetalous flowers for identifying first-order veins and corolla contours.
Collapse
Affiliation(s)
| | | | | | | | - Yan-Fu Kuo
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|