1
|
Minadakis N, Kaderli L, Horvath R, Bourgeois Y, Xu W, Thieme M, Woods DP, Roulin AC. Polygenic architecture of flowering time and its relationship with local environments in the grass Brachypodium distachyon. Genetics 2024; 227:iyae042. [PMID: 38504651 PMCID: PMC11075549 DOI: 10.1093/genetics/iyae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/12/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Synchronizing the timing of reproduction with the environment is crucial in the wild. Among the multiple mechanisms, annual plants evolved to sense their environment, the requirement of cold-mediated vernalization is a major process that prevents individuals from flowering during winter. In many annual plants including crops, both a long and short vernalization requirement can be observed within species, resulting in so-called early-(spring) and late-(winter) flowering genotypes. Here, using the grass model Brachypodium distachyon, we explored the link between flowering-time-related traits (vernalization requirement and flowering time), environmental variation, and diversity at flowering-time genes by combining measurements under greenhouse and outdoor conditions. These experiments confirmed that B. distachyon natural accessions display large differences regarding vernalization requirements and ultimately flowering time. We underline significant, albeit quantitative effects of current environmental conditions on flowering-time-related traits. While disentangling the confounding effects of population structure on flowering-time-related traits remains challenging, population genomics analyses indicate that well-characterized flowering-time genes may contribute significantly to flowering-time variation and display signs of polygenic selection. Flowering-time genes, however, do not colocalize with genome-wide association peaks obtained with outdoor measurements, suggesting that additional genetic factors contribute to flowering-time variation in the wild. Altogether, our study fosters our understanding of the polygenic architecture of flowering time in a natural grass system and opens new avenues of research to investigate the gene-by-environment interaction at play for this trait.
Collapse
Affiliation(s)
- Nikolaos Minadakis
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Lars Kaderli
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Robert Horvath
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Yann Bourgeois
- DIADE, University of Montpellier, CIRAD, IRD, 34 000 Montpellier, France
| | - Wenbo Xu
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Michael Thieme
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Daniel P Woods
- Department of Plant Sciences, University of California-Davis, 104 Robbins Hall, Davis, CA 95616, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA
| | - Anne C Roulin
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| |
Collapse
|
2
|
Wang B, Li W, Xu K, Lei Y, Zhao D, Li X, Zhang J, Zhang Z. A splice site mutation in the FvePHP gene is associated with leaf development and flowering time in woodland strawberry. HORTICULTURE RESEARCH 2022; 10:uhac249. [PMID: 36643753 PMCID: PMC9832950 DOI: 10.1093/hr/uhac249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Leaves and flowers are crucial for the growth and development of higher plants. In this study we identified a mutant with narrow leaflets and early flowering (nlef) in an ethyl methanesulfonate-mutagenized population of woodland strawberry (Fragaria vesca) and aimed to identify the candidate gene. Genetic analysis revealed that a single recessive gene, nlef, controlled the mutant phenotype. We found that FvH4_1g25470, which encodes a putative DNA polymerase α with a polymerase and histidinol phosphatase domain (PHP), might be the candidate gene, using bulked segregant analysis with whole-genome sequencing, molecular markers, and cloning analyses. A splice donor site mutation (C to T) at the 5' end of the second intron led to an erroneous splice event that reduced the expression level of the full-length transcript of FvePHP in mutant plants. FvePHP was localized in the nucleus and was highly expressed in leaves. Silencing of FvePHP using the virus-induced gene silencing method resulted in partial developmental defects in strawberry leaves. Overexpression of the FvePHP gene can largely restore the mutant phenotype. The expression levels of FveSEP1, FveSEP3, FveAP1, FveFUL, and FveFT were higher in the mutants than those in 'Yellow Wonder' plants, probably contributing to the early flowering phenotype in mutant plants. Our results indicate that mutation in FvePHP is associated with multiple developmental pathways. These results aid in understanding the role of DNA polymerase in strawberry development.
Collapse
Affiliation(s)
- Baotian Wang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, People’s Republic of China
| | - Weijia Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, People’s Republic of China
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, 037009, China
| | - Kexin Xu
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, People’s Republic of China
| | - Yingying Lei
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, People’s Republic of China
| | - Di Zhao
- Analytical and Testing Center, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xue Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, People’s Republic of China
| | - Junxiang Zhang
- Correspondence: Zhihong Zhang, E-mail: ; Tel: +86 024 88487143; Fax: +86 024 88487143. Junxiang Zhang, E-mail: ; Tel: +86 024 88487143; Fax: +86 024 88487143
| | - Zhihong Zhang
- Correspondence: Zhihong Zhang, E-mail: ; Tel: +86 024 88487143; Fax: +86 024 88487143. Junxiang Zhang, E-mail: ; Tel: +86 024 88487143; Fax: +86 024 88487143
| |
Collapse
|
3
|
Raissig MT, Woods DP. The wild grass Brachypodium distachyon as a developmental model system. Curr Top Dev Biol 2022; 147:33-71. [PMID: 35337454 DOI: 10.1016/bs.ctdb.2021.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The arrival of cheap and high-throughput sequencing paired with efficient gene editing technologies allows us to use non-traditional model systems and mechanistically approach biological phenomena beyond what was conceivable just a decade ago. Venturing into different model systems enables us to explore for example clade-specific environmental responses to changing climates or the genetics and development of clade-specific organs, tissues and cell types. We-both early career researchers working with the wild grass model Brachypodium distachyon-want to use this review to (1) highlight why we think B. distachyon is a fantastic grass developmental model system, (2) summarize the tools and resources that have enabled discoveries made in B. distachyon, and (3) discuss a handful of developmental biology vignettes made possible by using B. distachyon as a model system. Finally, we want to conclude by (4) relating our personal stories with this emerging model system and (5) share what we think is important to consider before starting work with an emerging model system.
Collapse
Affiliation(s)
- Michael T Raissig
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany; Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| | - Daniel P Woods
- Department of Plant Sciences, University of California, Davis, CA, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
4
|
Catalán P, Vogel JP. Advances on genomics, biology, ecology and evolution of Brachypodium, a bridging model grass system for cereals and biofuel grasses. THE NEW PHYTOLOGIST 2020; 227:1587-1590. [PMID: 33439505 DOI: 10.1111/nph.16831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Pilar Catalán
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, 22071, Huesca, Spain
| | - John P Vogel
- United States Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| |
Collapse
|