1
|
Nie L, Fang Y, Xia Z, Wei X, Wu Z, Yan Y, Wang F. Relationships within Bolbitis sinensis Species Complex Using RAD Sequencing. PLANTS (BASEL, SWITZERLAND) 2024; 13:1987. [PMID: 39065514 PMCID: PMC11280518 DOI: 10.3390/plants13141987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Species identification and phylogenetic relationship clarification are fundamental goals in species delimitation. However, these tasks pose challenges when based on morphologies, geographic distribution, and genomic data. Previously, two species of the fern genus Bolbitis, B. × multipinna and B. longiaurita were described based on morphological traits; they are phylogenetically intertwined with B. sinensis and fail to form monophyletic groups. To address the unclear phylogenetic relationships within the B. sinensis species complex, RAD sequencing was performed on 65 individuals from five populations. Our integrated analysis of phylogenetic trees, neighbor nets, and genetic structures indicate that the B. sinensis species complex should not be considered as separate species. Moreover, our findings reveal differences in the degree of genetic differentiation among the five populations, ranging from low to moderate, which might be influenced by geographical distance and gene flow. The Fst values also confirmed that genetic differentiation intensifies with increasing geographic distance. Collectively, this study clarifies the complex phylogenetic relationships within the B. sinensis species complex, elucidates the genetic diversity and differentiation across the studied populations, and offers valuable genetic insights that contribute to the broader study of evolutionary relationships and population genetics within the Bolbitis species.
Collapse
Affiliation(s)
- Liyun Nie
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Yuhan Fang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
| | - Zengqiang Xia
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueying Wei
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China;
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Yuehong Yan
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China;
| | - Faguo Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Yu Y, Fan MY, Zhou HX, Song YQ. The global pattern of epiphytic liverwort disparity: insights from Frullania. BMC Ecol Evol 2024; 24:63. [PMID: 38741051 DOI: 10.1186/s12862-024-02254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
The geographical and ecological patterns of morphological disparity are crucial to understand how species are assembled within communities in the context of the evolutionary history, morphological evolution and ecological interactions. However, with limited exceptions, rather few studies have been conducted on the global pattern of disparity, particularly in early land plants. Here we explored the spatial accumulation of disparity in a morphologically variable and species rich liverwort genus Frullania in order to test the hypothesis of latitude disparity gradient. We compiled a morphological data set consisting of eight continuous traits for 244 currently accepted species, and scored the species distribution into 19 floristic regions worldwide. By reconstructing the morphospace of all defined regions and comparisons, we identified a general Gondwana-Laurasia pattern of disparity in Frullania. This likely results from an increase of ecological opportunities and / or relaxed constraints towards low latitudes. The lowest disparity occurred in arid tropical regions, largely due to a high extinction rate as a consequence of paleoaridification. There was weak correlation between species diversity and disparity at different spatial scales. Furthermore, long-distance dispersal may have partially shaped the present-day distribution of Frullania disparity, given its frequency and the great contribution of widely distributed species to local morphospace. This study not only highlighted the crucial roles of paleoenvironmental changes, ecological opportunities, and efficient dispersal on the global pattern of plant disparity, but also implied its dependence on the ecological and physiological function of traits.
Collapse
Affiliation(s)
- Ying Yu
- College of Life and Environmental Sciences, Huangshan University, Huangshan, 245041, China.
| | - Mei-Ying Fan
- College of Life and Environmental Sciences, Huangshan University, Huangshan, 245041, China
| | - Hong-Xia Zhou
- College of Life and Environmental Sciences, Huangshan University, Huangshan, 245041, China
| | - Yue-Qin Song
- College of Life and Environmental Sciences, Huangshan University, Huangshan, 245041, China
| |
Collapse
|
3
|
Shen T, Song L, Corlett RT, Guisan A, Wang J, Ma WZ, Mouton L, Vanderpoorten A, Collart F. Disentangling the roles of chance, abiotic factors and biotic interactions among epiphytic bryophyte communities in a tropical rainforest (Yunnan, China). PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:880-891. [PMID: 37655516 DOI: 10.1111/plb.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/14/2023] [Indexed: 09/02/2023]
Abstract
Epiphytes offer an appealing framework to disentangle the contributions of chance, biotic and abiotic drivers of species distributions. In the context of the stress-gradient theory, we test the hypotheses that (i) deterministic (i.e., non-random) factors play an increasing role in communities from young to old trees, (ii) negative biotic interactions increase on older trees and towards the tree base, and (iii) positive interactions show the reverse pattern. Bryophyte species distributions and abiotic conditions were recorded on a 1.1 ha tropical rainforest canopy crane site. We analysed co-occurrence patterns in a niche modelling framework to disentangle the roles of chance, abiotic factors and putative biotic interactions among species pairs. 76% of species pairs resulted from chance. Abiotic factors explained 78% of non-randomly associated species pairs, and co-occurrences prevailed over non-coincidences in the remaining species pairs. Positive and negative interactions mostly involved species pairs from the same versus different communities (mosses versus liverworts) and life forms, respectively. There was an increase in randomly associated pairs from large to small trees. No increase in negative interactions from young to old trees or from the canopy to the base was observed. Our results suggest that epiphytic bryophyte community composition is primarily driven by environmental filtering, whose importance increases with niche complexity and diversity. Biotic interactions play a secondary role, with a very marginal contribution of competitive exclusion. Biotic interactions vary among communities (mosses versus liverworts) and life forms, facilitation prevailing among species from the same community and life form, and competition among species from different communities and life forms.
Collapse
Affiliation(s)
- T Shen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Menglun, China
- Institute of Botany, University of Liège, Liège, Belgium
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Menglun, China
- Department of Ecology and Evolution (DEE), University of Lausanne, Lausanne, Switzerland
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - L Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Menglun, China
| | - R T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Menglun, China
| | - A Guisan
- Department of Ecology and Evolution (DEE), University of Lausanne, Lausanne, Switzerland
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - J Wang
- Bryology Laboratory, School of Life Science, East China Normal University, Shanghai, China
| | - W-Z Ma
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - L Mouton
- Institute of Botany, University of Liège, Liège, Belgium
| | | | - F Collart
- Department of Ecology and Evolution (DEE), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Hutsemékers V, Mouton L, Westenbohm H, Collart F, Vanderpoorten A. Disentangling climate change from air pollution effects on epiphytic bryophytes. GLOBAL CHANGE BIOLOGY 2023; 29:3990-4000. [PMID: 37086082 DOI: 10.1111/gcb.16736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
At the interface between atmosphere and vegetation, epiphytic floras have been largely used as indicators of air quality. The recovery of epiphytes from high levels of SO2 pollution has resulted in major range changes, whose interpretation has, however, been challenged by concomitant variation in other pollutants as well as climate change. Here, we combine historical and contemporary information on epiphytic bryophyte species distributions, climatic conditions, and pollution loads since the 1980s in southern Belgium to disentangle the relative impact of climate change and air pollution on temporal shifts in species composition. The relationship between the temporal variation of species composition, climatic conditions, SO2 , NO2 , O3 , and fine particle concentrations, was analyzed by variation partitioning. The temporal shift in species composition was such, that it was, on average, more than twice larger than the change in species composition observed today among communities scattered across the study area. The main driver, contributing to 38% of this temporal shift in species composition, was the variation of air quality. Climate change alone did not contribute to the substantial compositional shifts in epiphytic bryophyte communities in the course of the last 40 years. As a consequence of the substantial drop of N and S loads over the last decades, present-day variations of epiphytic floras were, however, better explained by the spatial variation of climatic conditions than by extant pollution loads. The lack of any signature of recolonization delays of formerly polluted areas in the composition of modern floras suggests that epiphytic bryophytes efficiently disperse at the landscape scale. We suggest that a monitoring of epiphyte communities at 10-year intervals would be desirable to assess the impact of raising pollution sources, and especially pesticides, whose impact on bryophytes remains poorly documented.
Collapse
Affiliation(s)
| | - Lea Mouton
- University of Liège, Institute of Botany, Liège, Belgium
| | | | - Flavien Collart
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
5
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blab175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|