1
|
Coker J, Zhalnina K, Marotz C, Thiruppathy D, Tjuanta M, D’Elia G, Hailu R, Mahosky T, Rowan M, Northen TR, Zengler K. A Reproducible and Tunable Synthetic Soil Microbial Community Provides New Insights into Microbial Ecology. mSystems 2022; 7:e0095122. [PMID: 36472419 PMCID: PMC9765266 DOI: 10.1128/msystems.00951-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022] Open
Abstract
Microbial soil communities form commensal relationships with plants to promote the growth of both parties. The optimization of plant-microbe interactions to advance sustainable agriculture is an important field in agricultural research. However, investigation in this field is hindered by a lack of model microbial community systems and efficient approaches for building these communities. Two key challenges in developing standardized model communities are maintaining community diversity over time and storing/resuscitating these communities after cryopreservation, especially considering the different growth rates of organisms. Here, a model synthetic community (SynCom) of 16 soil microorganisms commonly found in the rhizosphere of diverse plant species, isolated from soil surrounding a single switchgrass plant, has been developed and optimized for in vitro experiments. The model soil community grows reproducibly between replicates and experiments, with a high community α-diversity being achieved through growth in low-nutrient media and through the adjustment of the starting composition ratios for the growth of individual organisms. The community can additionally be cryopreserved with glycerol, allowing for easy replication and dissemination of this in vitro system. Furthermore, the SynCom also grows reproducibly in fabricated ecosystem devices (EcoFABs), demonstrating the application of this community to an existing in vitro plant-microbe system. EcoFABs allow reproducible research in model plant systems, offering the precise control of environmental conditions and the easy measurement of plant microbe metrics. Our results demonstrate the generation of a stable and diverse microbial SynCom for the rhizosphere that can be used with EcoFAB devices and can be shared between research groups for maximum reproducibility. IMPORTANCE Microbes associate with plants in distinct soil communities to the benefit of both the soil microbes and the plants. Interactions between plants and these microbes can improve plant growth and health and are therefore a field of study in sustainable agricultural research. In this study, a model community of 16 soil bacteria has been developed to further the reproducible study of plant-soil microbe interactions. The preservation of the microbial community has been optimized for dissemination to other research settings. Overall, this work will advance soil microbe research through the optimization of a robust, reproducible model community.
Collapse
Affiliation(s)
- Joanna Coker
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Kateryna Zhalnina
- Environmental Genomics and Systems Biology Division, Berkeley Lab, Berkeley, California, USA
| | - Clarisse Marotz
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Deepan Thiruppathy
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Megan Tjuanta
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Gavin D’Elia
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Rodas Hailu
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Talon Mahosky
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Meagan Rowan
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Trent R. Northen
- Environmental Genomics and Systems Biology Division, Berkeley Lab, Berkeley, California, USA
- The DOE Joint Genome Institute, Berkeley Lab, Berkeley, California, USA
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Wu Q, Cui Y, Jin X, Wang G, Yan L, Zhong C, Yu M, Li W, Wang Y, Wang L, Wang H, Dang C, Zhang X, Chen Y, Zhang P, Zhao X, Wu J, Fu D, Xia L, Nevo E, Vogel J, Huo N, Li D, Gu YQ, Jackson AO, Zhang Y, Liu Z. The CC-NB-LRR protein BSR1 from Brachypodium confers resistance to Barley stripe mosaic virus in gramineous plants by recognising TGB1 movement protein. THE NEW PHYTOLOGIST 2022; 236:2233-2248. [PMID: 36059081 DOI: 10.1111/nph.18457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Although some nucleotide binding, leucine-rich repeat immune receptor (NLR) proteins conferring resistance to specific viruses have been identified in dicot plants, NLR proteins involved in viral resistance have not been described in monocots. We have used map-based cloning to isolate the CC-NB-LRR (CNL) Barley stripe mosaic virus (BSMV) resistance gene barley stripe resistance 1 (BSR1) from Brachypodium distachyon Bd3-1 inbred line. Stable BSR1 transgenic Brachypodium line Bd21-3, barley (Golden Promise) and wheat (Kenong 199) plants developed resistance against BSMV ND18 strain. Allelic variation analyses indicated that BSR1 is present in several Brachypodium accessions collected from countries in the Middle East. Protein domain swaps revealed that the intact LRR domain and the C-terminus of BSR1 are required for resistance. BSR1 interacts with the BSMV ND18 TGB1 protein in planta and shows temperature-sensitive antiviral resistance. The R390 and T392 residues of TGB1ND (ND18 strain) and the G196 and K197 residues within the BSR1 P-loop motif are key amino acids required for immune activation. BSR1 is the first cloned virus resistance gene encoding a typical CNL protein in monocots, highlighting the utility of the Brachypodium model for isolation and analysis of agronomically important genes for crop improvement.
Collapse
Affiliation(s)
- Qiuhong Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
| | - Yu Cui
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Guoxin Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lijie Yan
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chenchen Zhong
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Meihua Yu
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wenli Li
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hao Wang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chen Dang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xinyu Zhang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Panpan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofei Zhao
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jiajie Wu
- College of Agronomy, Shandong Agriculture University, Taian, 271018, China
| | - Daolin Fu
- College of Agronomy, Shandong Agriculture University, Taian, 271018, China
| | - Lanqin Xia
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Eviatar Nevo
- Institute of Evolution, Haifa University, Haifa, 31905, Israel
| | - John Vogel
- Joint Genome Institute, DOE, Walnut Creek, CA, 94598, USA
| | - Naxin Huo
- USDA-ARS Western Regional Research Center, Albany, CA, 94710, USA
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yong Q Gu
- USDA-ARS Western Regional Research Center, Albany, CA, 94710, USA
| | - Andrew O Jackson
- Department of Plant and Microbiology, University of California, Berkeley, CA, 94720, USA
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Hasterok R, Catalan P, Hazen SP, Roulin AC, Vogel JP, Wang K, Mur LAJ. Brachypodium: 20 years as a grass biology model system; the way forward? TRENDS IN PLANT SCIENCE 2022; 27:1002-1016. [PMID: 35644781 DOI: 10.1016/j.tplants.2022.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
It has been 20 years since Brachypodium distachyon was suggested as a model grass species, but ongoing research now encompasses the entire genus. Extensive Brachypodium genome sequencing programmes have provided resources to explore the determinants and drivers of population diversity. This has been accompanied by cytomolecular studies to make Brachypodium a platform to investigate speciation, polyploidisation, perenniality, and various aspects of chromosome and interphase nucleus organisation. The value of Brachypodium as a functional genomic platform has been underscored by the identification of key genes for development, biotic and abiotic stress, and cell wall structure and function. While Brachypodium is relevant to the biofuel industry, its impact goes far beyond that as an intriguing model to study climate change and combinatorial stress.
Collapse
Affiliation(s)
- Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland.
| | - Pilar Catalan
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca 22071, Spain; Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza E-50059, Spain
| | - Samuel P Hazen
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Anne C Roulin
- Department of Plant and Microbial Biology, University of Zürich, Zürich 8008, Switzerland
| | - John P Vogel
- DOE Joint Genome Institute, Berkeley, CA 94720, USA; University California, Berkeley, Berkeley, CA 94720, USA
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, China
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Edward Llwyd Building, Aberystwyth SY23 3DA, UK; College of Agronomy, Shanxi Agricultural University, Taiyuan 030801, Shanxi, China.
| |
Collapse
|
4
|
Sancho R, Inda LA, Díaz-Pérez A, Des Marais DL, Gordon S, Vogel JP, Lusinska J, Hasterok R, Contreras-Moreira B, Catalán P. Tracking the ancestry of known and 'ghost' homeologous subgenomes in model grass Brachypodium polyploids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1535-1558. [PMID: 34951515 DOI: 10.1111/tpj.15650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Rubén Sancho
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Luis A Inda
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Zaragoza, Spain
| | - Antonio Díaz-Pérez
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain
- Instituto de Genética, Facultad de Agronomía, Universidad Central de Venezuela, Caracas, Venezuela
| | | | - Sean Gordon
- DOE Joint Genome Institute, Berkeley, California, USA
| | - John P Vogel
- DOE Joint Genome Institute, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Joanna Lusinska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Bruno Contreras-Moreira
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
- Department of Genetics and Plant Breeding, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Pilar Catalán
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
- Tomsk State University, Tomsk, Russia
| |
Collapse
|