1
|
Tang H, Chen LH, Friml J. Auxin fluctuation and PIN polarization in moss leaf cell reprogramming. PLANT & CELL PHYSIOLOGY 2025; 66:658-667. [PMID: 39829340 DOI: 10.1093/pcp/pcaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/11/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Auxin and its PIN-FORMED (PIN) exporters are essential for tissue repair and regeneration in flowering plants. To gain insight into the evolution of this mechanism, we investigated their roles in leaves excised from Physcomitrium patens, a bryophyte known for its remarkable cell reprogramming capacity. We used various approaches to manipulate auxin levels, including exogenous application, pharmacological manipulations, and auxin biosynthesis mutants. We observed no significant effect on the rate of cell reprogramming. Rather, our analysis of auxin dynamics revealed a decrease in auxin levels upon excision, which was followed by a local increase before the reprogramming process began. Mutant analysis revealed that PpPINs are required for effective cell reprogramming, and endogenously expressed PpPINA-GFP accumulates polarly at sites that will develop into future filamentous stem cells. In addition, hyperpolarized PpPINA variants carrying mutated phosphorylation sites showed a marked delay in reprogramming, whereas endogenous or nonpolar versions do not have this effect. These results underscore that both the levels and the polarity of PpPINA are important for efficient cell reprogramming. Overall, these findings highlight the pivotal role of PIN polarity in plant regeneration. Furthermore, they suggest that understanding polarity mechanisms could have broader implications for improving regenerative processes across various plant species.
Collapse
Affiliation(s)
- Han Tang
- Graduate Institute of Biochemistry, National Chung Hsing University, No. 145 Xingda Rd., South Dist., Taichung 40227, Taiwan (R.O.C.)
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, No. 145 Xingda Rd., South Dist., Taichung 40227, Taiwan (R.O.C.)
| | - Li-Hang Chen
- Graduate Institute of Biochemistry, National Chung Hsing University, No. 145 Xingda Rd., South Dist., Taichung 40227, Taiwan (R.O.C.)
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| |
Collapse
|
2
|
Becker A, Chen X, Dresselhaus T, Gutsche N, Müller-Schüssele SJ, Sprunck S, Theißen G, de Vries S, Zachgo S. Sexual reproduction in land plants: an evolutionary perspective. PLANT REPRODUCTION 2025; 38:12. [PMID: 40355640 PMCID: PMC12069490 DOI: 10.1007/s00497-025-00522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/23/2025] [Indexed: 05/14/2025]
Abstract
KEY MESSAGE We link key aspects of land plant reproductive evolution and detail how successive molecular changes leading to novel tissues and organs require co-evolution of communication systems between tissues. The transition of water-dependent reproduction of algae to mechanisms with very limited water dependence in many land plant lineages allowed plants to colonize diverse terrestrial environments, leading to the vast variety of extant plant species. The emergence of modified cell types, novel tissues, and organs enabled this transition; their origin is associated with the co-evolution of novel or adapted molecular communication systems and gene regulatory networks. In the light of an increasing number of genome sequences in combination with the establishment of novel genetic model organisms from diverse green plant lineages, our knowledge and understanding about the origin and evolution of individual traits that arose in a concerted way increases steadily. For example, novel members of gene families in signaling pathways emerged for communication between gametes and gametophytes with additional tissues surrounding the gametes. Here, we provide a comprehensive overview on the origin and evolution of reproductive novelties such as pollen grains, immobile sperms, ovules and seeds, carpels, gamete/gametophytic communication systems, double fertilization, and the molecular mechanisms that have arisen anew or have been co-opted during evolution, including but not limited to the incorporation of phytohormones, reactive oxygen species and redox signaling as well as small RNAs in regulatory modules that contributed to the evolution of land plant sexual reproduction.
Collapse
Affiliation(s)
- Annette Becker
- Institute of Botany, Justus Liebig University, Heinrich-Buff-Ring 38, 35392, Giessen, Germany.
| | - Xia Chen
- Institute of Plant Sciences, Cell Biology and Plant Biochemistry, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Thomas Dresselhaus
- Institute of Plant Sciences, Cell Biology and Plant Biochemistry, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Nora Gutsche
- Division of Botany, Osnabrück University, Barbarastr. 11, 49076, Osnabrück, Germany
| | | | - Stefanie Sprunck
- Institute of Plant Sciences, Cell Biology and Plant Biochemistry, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Günter Theißen
- Matthias Schleiden Institute/Genetics I, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Göttingen, Goldschmidtstraße 1, 37077, Göttingen, Germany
| | - Sabine Zachgo
- Division of Botany, Osnabrück University, Barbarastr. 11, 49076, Osnabrück, Germany
| |
Collapse
|
3
|
Nemec-Venza Z, Greiff GRL, Harrison CJ. Diversification of CLE expression patterns and nonmeristematic roles for CLAVATA receptor-like kinases in a moss. THE NEW PHYTOLOGIST 2025. [PMID: 40329602 DOI: 10.1111/nph.70170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025]
Abstract
The CLAVATA pathway controls meristematic cell proliferation and multiple nonmeristematic processes in Arabidopsis development. While CLAVATA ancestrally regulates meristematic proliferation in nonseed plant gametophytes, ancestral sporophytic and nonmeristematic functions in land plants are unknown. Here, we analysed the promoter activities of all peptide (PpCLE) and receptor-encoding (PpCLV1a, PpCLV1b and PpRPK2) genes throughout the moss (Physcomitrium patens) life cycle and validated our expression analyses using mutant phenotype data. In gametophore apices, PpCLE3 expression marked apical cells, and PpCLV1b and PpRPK2 overlapped. In nonmeristematic tissues, gametophytes showed highly focal PpCLE but broader receptor-encoding gene expression, and many genes were co-expressed. Mutant phenotype analysis revealed roles for PpCLV1a, PpCLV1b and PpRPK2 in fertility and male and female reproductive development. In sporophytes, no PpCLE expression specifically marked the apical cells, and PpCLV1b and PpRPK2 expression initially marked distinct apical and basal domains, but later overlapped at the intercalary meristem. Overall, fewer genes were co-expressed in sporophytes than in gametophytes, but all genes were co-expressed in guard cells. Our data indicate that nonmeristematic CLAVATA functions in gametangium development and stomatal development may be ancestral within land plants. Peptide encoding (CLE) gene copy numbers amplified in mosses, and promoter evolution was a likely driver of cell type diversification during moss evolution.
Collapse
Affiliation(s)
- Zoe Nemec-Venza
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Laboratoire Reproduction et Développement des Plantes, École Normale Supérieure de Lyon, Lyon, 69342, France
| | - George R L Greiff
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| |
Collapse
|
4
|
Yoro E, Suzuki S, Akiyoshi N, Kofuji R, Sakakibara K. The transcription factor PpRKD evokes female developmental fate in the sexual reproductive organs of Physcomitrium patens. THE NEW PHYTOLOGIST 2025; 245:653-667. [PMID: 39574395 PMCID: PMC11655435 DOI: 10.1111/nph.20262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/11/2024] [Indexed: 12/20/2024]
Abstract
The sexual reproductive organs of bryophytes - in which gametes necessary for fertilization are produced, namely, male antheridia and female archegonia - are formed from vegetative haploid gametophytes. In dioicous bryophytes such as Marchantia polymorpha, the genes within the sex-determining regions in distinct sexual strains have been identified. However, in monoicous bryophytes such as Physcomitrium patens, how the two sex fates are specified on the same gametophyte remained unknown. Here, we identified an RWP-RK domain-containing transcription factor in P. patens, PpRKD, as a factor required for the development of female organs, based on the absence of archegonia in loss-of-function Pprkd mutants and the specific expression of PpRKD in archegonia. When ectopically induced, the expression of PpRKD resulted in the repression of antheridial development and the emergence of archegonium-like organs. Furthermore, the young primordia inside the antheridial bundle displayed typical archegonial division patterns, suggesting that PpRKD confer female fate to antheridium primordia. This study represents the first instance where the function of sex determination has been identified among RKD orthologs in land plants. This finding should provide a new framework for the molecular evolutionary context of the genes in the RKD family, considering the recent elucidation of their roles in algae.
Collapse
Affiliation(s)
- Emiko Yoro
- Department of Life ScienceRikkyo UniversityTokyo171‐8501Japan
| | - Seiya Suzuki
- Department of Life ScienceRikkyo UniversityTokyo171‐8501Japan
| | | | - Rumiko Kofuji
- College of Science and EngineeringKanazawa UniversityKanazawa920‐1192Japan
| | | |
Collapse
|
5
|
Woudenberg S, Alvarez MD, Rienstra J, Levitsky V, Mironova V, Scarpella E, Kuhn A, Weijers D. Analysis of auxin responses in the fern Ceratopteris richardii identifies the developmental phase as a major determinant for response properties. Development 2024; 151:dev203026. [PMID: 39324436 PMCID: PMC11449451 DOI: 10.1242/dev.203026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024]
Abstract
The auxin signaling molecule regulates a range of plant growth and developmental processes. The core transcriptional machinery responsible for auxin-mediated responses is conserved across all land plants. Genetic, physiological and molecular exploration in bryophyte and angiosperm model species have shown both qualitative and quantitative differences in auxin responses. Given the highly divergent ontogeny of the dominant gametophyte (bryophytes) and sporophyte (angiosperms) generations, however, it is unclear whether such differences derive from distinct phylogeny or ontogeny. Here, we address this question by comparing a range of physiological, developmental and molecular responses to auxin in both generations of the model fern Ceratopteris richardii. We find that auxin response in Ceratopteris gametophytes closely resembles that of a thalloid bryophyte, whereas the sporophyte mimics auxin response in flowering plants. This resemblance manifests both at the phenotypic and transcriptional levels. Furthermore, we show that disrupting auxin transport can lead to ectopic sporophyte induction on the gametophyte, suggesting a role for auxin in the alternation of generations. Our study thus identifies developmental phase, rather than phylogeny, as a major determinant of auxin response properties in land plants.
Collapse
Affiliation(s)
- Sjoerd Woudenberg
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Melissa Dipp Alvarez
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Juriaan Rienstra
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Victor Levitsky
- Institute of Cytology and Genetics, Lavrentyeva Avenue 10, Novosibirsk 630090, Russian Federation
| | - Victoria Mironova
- Department of Plant Systems Physiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB T6G 2E9, Canada
| | - Andre Kuhn
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
6
|
Woudenberg S, Hadid F, Weijers D, Borassi C. The maternal embrace: the protection of plant embryos. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4210-4218. [PMID: 38400751 PMCID: PMC11263485 DOI: 10.1093/jxb/erae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
All land plants-the embryophytes-produce multicellular embryos, as do other multicellular organisms, such as brown algae and animals. A unique characteristic of plant embryos is their immobile and confined nature. Their embedding in maternal tissues may offer protection from the environment, but also physically constrains development. Across the different land plants, a huge discrepancy is present between their reproductive structures whilst leading to similarly complex embryos. Therefore, we review the roles that maternal tissues play in the control of embryogenesis across land plants. These nurturing, constraining, and protective roles include both direct and indirect effects. In this review, we explore how the maternal surroundings affect embryogenesis and which chemical and mechanical barriers are in place. We regard these questions through the lens of evolution, and identify key questions for future research.
Collapse
Affiliation(s)
- Sjoerd Woudenberg
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Feras Hadid
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Cecilia Borassi
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
7
|
Wang Y, Jiang L, Kong D, Meng J, Song M, Cui W, Song Y, Wang X, Liu J, Wang R, He Y, Chang C, Ju C. Ethylene controls three-dimensional growth involving reduced auxin levels in the moss Physcomitrium patens. THE NEW PHYTOLOGIST 2024. [PMID: 38571393 DOI: 10.1111/nph.19728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
The conquest of land by plants was concomitant with, and possibly enabled by, the evolution of three-dimensional (3D) growth. The moss Physcomitrium patens provides a model system for elucidating molecular mechanisms in the initiation of 3D growth. Here, we investigate whether the phytohormone ethylene, which is believed to have been a signal before land plant emergence, plays a role in 3D growth regulation in P. patens. We report ethylene controls 3D gametophore formation, based on results from exogenously applied ethylene and genetic manipulation of PpEIN2, which is a central component in the ethylene signaling pathway. Overexpression (OE) of PpEIN2 activates ethylene responses and leads to earlier formation of gametophores with fewer gametophores produced thereafter, phenocopying ethylene-treated wild-type. Conversely, Ppein2 knockout mutants, which are ethylene insensitive, show initially delayed gametophore formation with more gametophores produced later. Furthermore, pharmacological and biochemical analyses reveal auxin levels are decreased in the OE lines but increased in the knockout mutants. Our results suggest that evolutionarily, ethylene and auxin molecular networks were recruited to build the plant body plan in ancestral land plants. This might have played a role in enabling ancient plants to acclimate to the continental surfaces of the planet.
Collapse
Affiliation(s)
- Yidong Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Lanlan Jiang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Dongdong Kong
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jie Meng
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Meifang Song
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing, 100050, China
| | - Wenxiu Cui
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yaqi Song
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xiaofan Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jiao Liu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Rui Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Chuanli Ju
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
8
|
Yoro E, Sakakibara K. Sexual reproduction: Is the genetic pathway for female germ cell specification conserved in land plants? Curr Biol 2024; 34:R241-R244. [PMID: 38531316 DOI: 10.1016/j.cub.2024.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Land plants share several core factors responsible for female gametophyte development, despite their differing structures and developmental programs. New work providing molecular dissection of reproductive phases in non-angiosperm plants is a powerful tool for elucidating the underlying genetic network.
Collapse
Affiliation(s)
- Emiko Yoro
- Department of Life Science, Rikkyo University, Tokyo 171-8501, Japan.
| | - Keiko Sakakibara
- Department of Life Science, Rikkyo University, Tokyo 171-8501, Japan
| |
Collapse
|
9
|
Flores-Sandoval E, Nishihama R, Bowman JL. Hormonal and genetic control of pluripotency in bryophyte model systems. CURRENT OPINION IN PLANT BIOLOGY 2024; 77:102486. [PMID: 38041967 DOI: 10.1016/j.pbi.2023.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 12/04/2023]
Abstract
Land plant meristems are reservoirs of pluripotent stem cells where new tissues emerge, grow and eventually differentiate into specific cell identities. Compared to algae, where cells are produced in two-dimensional tissues via tip or marginal growth, land plants have meristems that allow three-dimensional growth for successful exploration of the terrestrial environment. In land plants, meristem maintenance leads to indeterminate growth and the production of new meristems leads to branching or regeneration via reprogramming of wounded somatic cells. Emerging model systems in the haploid dominant and monophyletic bryophytes are allowing comparative analyses of meristem gene regulatory networks to address whether all plants use common or diverse programs to organise, maintain, and regenerate meristems. In this piece we aim to discuss recent advances in genetic and hormonal control of bryophyte meristems and possible convergence or discrepancies in an exciting and emerging field in plant biology.
Collapse
Affiliation(s)
- Eduardo Flores-Sandoval
- School of Biological Sciences, Monash University, Melbourne, Vic, 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Vic, 3800, Australia.
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Vic, 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Vic, 3800, Australia
| |
Collapse
|
10
|
Yadav S, Kumar H, Mahajan M, Sahu SK, Singh SK, Yadav RK. Local auxin biosynthesis promotes shoot patterning and stem cell differentiation in Arabidopsis shoot apex. Development 2023; 150:dev202014. [PMID: 38054970 DOI: 10.1242/dev.202014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/19/2023] [Indexed: 12/07/2023]
Abstract
The shoot apical meristem (SAM) of higher plants comprises distinct functional zones. The central zone (CZ) is located at the meristem summit and harbors pluripotent stem cells. Stem cells undergo cell division within the CZ and give rise to descendants, which enter the peripheral zone (PZ) and become recruited into lateral organs. Stem cell daughters that are pushed underneath the CZ form rib meristem (RM). To unravel the mechanism of meristem development, it is essential to know how stem cells adopt distinct cell fates in the SAM. Here, we show that meristem patterning and floral organ primordia formation, besides auxin transport, are regulated by auxin biosynthesis mediated by two closely related genes of the TRYPTOPHAN AMINOTRANSFERASE family. In Arabidopsis SAM, TAA1 and TAR2 played a role in maintaining auxin responses and the identity of PZ cell types. In the absence of auxin biosynthesis and transport, the expression pattern of the marker genes linked to the patterning of the SAM is perturbed. Our results prove that local auxin biosynthesis, in concert with transport, controls the patterning of the SAM into the CZ, PZ and RM.
Collapse
Affiliation(s)
- Shalini Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Harish Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Monika Mahajan
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Sangram Keshari Sahu
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Sharad Kumar Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Ram Kishor Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| |
Collapse
|
11
|
Cammarata J, Roeder AHK, Scanlon MJ. The ratio of auxin to cytokinin controls leaf development and meristem initiation in Physcomitrium patens. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6541-6550. [PMID: 37498739 DOI: 10.1093/jxb/erad299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Crosstalk between auxin and cytokinin contributes to widespread developmental processes, including root and shoot meristem maintenance, phyllotaxy, and vascular patterning. However, our understanding of crosstalk between these hormones is limited primarily to angiosperms. The moss Physcomitrium patens (formerly Physcomitrella patens) is a powerful system for studying plant hormone function. Auxin and cytokinin play similar roles in regulating moss gametophore (shoot) architecture, to those in flowering plant shoots. However, auxin-cytokinin crosstalk is poorly understood in moss. Here we find that the ratio of auxin to cytokinin is an important determinant of development in P. patens, especially during leaf development and branch stem cell initiation. Addition of high levels of auxin to P. patens gametophores blocks leaf outgrowth. However, simultaneous addition of high levels of both auxin and cytokinin partially restores leaf outgrowth, suggesting that the ratio of these hormones is the predominant factor. Likewise, during branch initiation and outgrowth, chemical inhibition of auxin synthesis phenocopies cytokinin application. Finally, cytokinin-insensitive mutants resemble plants with altered auxin signaling and are hypersensitive to auxin. In summary, our results suggest that the ratio between auxin and cytokinin signaling is the basis for developmental decisions in the moss gametophore.
Collapse
Affiliation(s)
- Joseph Cammarata
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Adrienne H K Roeder
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Scanlon
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
12
|
Saito M, Momiki R, Ebine K, Yoshitake Y, Nishihama R, Miyakawa T, Nakano T, Mitsuda N, Araki T, Kohchi T, Yamaoka S. A bHLH heterodimer regulates germ cell differentiation in land plant gametophytes. Curr Biol 2023; 33:4980-4987.e6. [PMID: 37776860 DOI: 10.1016/j.cub.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/20/2023] [Accepted: 09/07/2023] [Indexed: 10/02/2023]
Abstract
Land plants are a monophyletic group of photosynthetic eukaryotes that diverged from streptophyte algae about 470 million years ago. During both the alternating haploid and diploid stages of the life cycle, land plants form multicellular bodies.1,2,3,4 The haploid multicellular body (gametophyte) produces progenitor cells that give rise to gametes and the reproductive organs.5,6,7,8 In the liverwort Marchantia polymorpha, differentiation of the initial cells of gamete-producing organs (gametangia) from the gametophyte is regulated by MpBONOBO (MpBNB), a member of the basic helix-loop-helix (bHLH) transcription factor subfamily VIIIa. In Arabidopsis thaliana, specification of generative cells in developing male gametophytes (pollen) requires redundant action of BNB1 and BNB2.9 Subfamily XI bHLHs, such as LOTUS JAPONICUS ROOTHAIRLESS LIKE1 (LRL1)/DEFECTIVE REGION OF POLLEN1 (DROP1) and LRL2/DROP2 in A. thaliana and the single LRL/DROP protein MpLRL in M. polymorpha, are the evolutionarily conserved regulators of rooting system development.10 Although the role of LRL1/DROP1 and LRL2/DROP2 in gametogenesis remains unclear, their loss leads to the formation of abnormal pollen devoid of sperm cells.11 Here, we show that BNBs and LRL/DROPs co-localize to gametophytic cell nuclei and form heterodimers. LRL1/DROP1 and LRL2/DROP2 act redundantly to regulate BNB expression for generative cell specification in A. thaliana after asymmetric division of the haploid microspore. MpLRL is required for differentiation of MpBNB-expressing gametangium initial cells in M. polymorpha gametophytes. Our findings suggest that broadly expressed LRL/DROP stabilizes BNB expression, leading to the formation of an evolutionarily conserved bHLH heterodimer, which regulates germ cell differentiation in the haploid gametophyte of land plants.
Collapse
Affiliation(s)
- Misaki Saito
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryosuke Momiki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuo Ebine
- National Institute for Basic Biology (NIBB), Okazaki, Aichi 444-8585, Japan; The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | | | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Takuya Miyakawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takeshi Nakano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
13
|
Li M, Wu S. Root evolution: Evidence for convergent evolution of root meristem. Curr Biol 2023; 33:R1009-R1010. [PMID: 37816319 DOI: 10.1016/j.cub.2023.08.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The root system is thought to have evolved independently during the process of plant terrestrialization. It is unclear how the molecular regulation of the root meristem has been modified during these independent root evolutions. Two new reports provide important evidence in support of the putative convergent evolution of lycophyte roots.
Collapse
Affiliation(s)
- Meng Li
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuang Wu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
14
|
Fisher TJ, Flores-Sandoval E, Alvarez JP, Bowman JL. PIN-FORMED is required for shoot phototropism/gravitropism and facilitates meristem formation in Marchantia polymorpha. THE NEW PHYTOLOGIST 2023; 238:1498-1515. [PMID: 36880411 DOI: 10.1111/nph.18854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
PIN-FORMED auxin efflux transporters, a subclass of which is plasma membrane-localised, mediate a variety of land-plant developmental processes via their polar localisation and subsequent directional auxin transport. We provide the first characterisation of PIN proteins in liverworts using Marchantia polymorpha as a model system. Marchantia polymorpha possesses a single PIN-FORMED gene, whose protein product is predicted to be plasma membrane-localised, MpPIN1. To characterise MpPIN1, we created loss-of-function alleles and produced complementation lines in both M. polymorpha and Arabidopsis. In M. polymorpha, gene expression and protein localisation were tracked using an MpPIN1 transgene encoding a translationally fused fluorescent protein. Overexpression of MpPIN1 can partially complement loss of an orthologous gene, PIN-FORMED1, in Arabidopsis. In M. polymorpha, MpPIN1 influences development in numerous ways throughout its life cycle. Most notably, MpPIN1 is required to establish gemmaling dorsiventral polarity and for orthotropic growth of gametangiophore stalks, where MpPIN1 is basally polarised. PIN activity is largely conserved within land plants, with PIN-mediated auxin flow providing a flexible mechanism to organise growth. Specifically, PIN is fundamentally linked to orthotropism and to the establishment of de novo meristems, the latter potentially involving the formation of both auxin biosynthesis maxima and auxin-signalling minima.
Collapse
Affiliation(s)
- Tom J Fisher
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Vic., 3800, Australia
| | - Eduardo Flores-Sandoval
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Vic., 3800, Australia
| | - John P Alvarez
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Vic., 3800, Australia
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Vic., 3800, Australia
| |
Collapse
|
15
|
Lüth VM, Rempfer C, van Gessel N, Herzog O, Hanser M, Braun M, Decker EL, Reski R. A Physcomitrella PIN protein acts in spermatogenesis and sporophyte retention. THE NEW PHYTOLOGIST 2023; 237:2118-2135. [PMID: 36696950 DOI: 10.1111/nph.18691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The auxin efflux PIN-FORMED (PIN) proteins are conserved in all land plants and important players in plant development. In the moss Physcomitrella (Physcomitrium patens), three canonical PINs (PpPINA-C) are expressed in the leafy shoot (gametophore). PpPINA and PpPINB show functional activity in vegetative growth and sporophyte development. Here, we examined the role of PpPINC in the life cycle of Physcomitrella. We established reporter and knockout lines for PpPINC and analysed vegetative and reproductive tissues using microscopy and transcriptomic sequencing of moss gametangia. PpPINC is expressed in immature leaves, mature gametangia and during sporophyte development. The sperm cells (spermatozoids) of pinC knockout mutants exhibit increased motility and an altered flagella phenotype. Furthermore, the pinC mutants have a higher portion of differentially expressed genes related to spermatogenesis, increased fertility and an increased abortion rate of premeiotic sporophytes. Here, we show that PpPINC is important for spermatogenesis and sporophyte retention. We propose an evolutionary conserved way of polar growth during early moss embryo development and sporophyte attachment to the gametophore while suggesting the mechanical function in sporophyte retention of a ring structure, the Lorch ring.
Collapse
Affiliation(s)
- Volker M Lüth
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Christine Rempfer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Oliver Herzog
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Melanie Hanser
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Marion Braun
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
| |
Collapse
|
16
|
Rieseberg TP, Dadras A, Fürst-Jansen JMR, Dhabalia Ashok A, Darienko T, de Vries S, Irisarri I, de Vries J. Crossroads in the evolution of plant specialized metabolism. Semin Cell Dev Biol 2023; 134:37-58. [PMID: 35292191 DOI: 10.1016/j.semcdb.2022.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 12/25/2022]
Abstract
The monophyletic group of embryophytes (land plants) stands out among photosynthetic eukaryotes: they are the sole constituents of the macroscopic flora on land. In their entirety, embryophytes account for the majority of the biomass on land and constitute an astounding biodiversity. What allowed for the massive radiation of this particular lineage? One of the defining features of all land plants is the production of an array of specialized metabolites. The compounds that the specialized metabolic pathways of embryophytes produce have diverse functions, ranging from superabundant structural polymers and compounds that ward off abiotic and biotic challenges, to signaling molecules whose abundance is measured at the nanomolar scale. These specialized metabolites govern the growth, development, and physiology of land plants-including their response to the environment. Hence, specialized metabolites define the biology of land plants as we know it. And they were likely a foundation for their success. It is thus intriguing to find that the closest algal relatives of land plants, freshwater organisms from the grade of streptophyte algae, possess homologs for key enzymes of specialized metabolic pathways known from land plants. Indeed, some studies suggest that signature metabolites emerging from these pathways can be found in streptophyte algae. Here we synthesize the current understanding of which routes of the specialized metabolism of embryophytes can be traced to a time before plants had conquered land.
Collapse
Affiliation(s)
- Tim P Rieseberg
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Armin Dadras
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Janine M R Fürst-Jansen
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Amra Dhabalia Ashok
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tatyana Darienko
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Sophie de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Iker Irisarri
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtsr. 1, 37077 Goettingen, Germany.
| |
Collapse
|
17
|
Organ Patterning at the Shoot Apical Meristem (SAM): The Potential Role of the Vascular System. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Auxin, which is transported in the outermost cell layer, is one of the major players involved in plant organ initiation and positioning at the shoot apical meristem (SAM). However, recent studies have recognized the role of putative internal signals as an important factor collaborating with the well-described superficial pathway of organogenesis regulation. Different internal signals have been proposed; however, their nature and transport route have not been precisely determined. Therefore, in this mini-review, we aimed to summarize the current knowledge regarding the auxin-dependent regulation of organ positioning at the SAM and to discuss the vascular system as a potential route for internal signals. In addition, as regular organ patterning is a universal phenomenon, we focus on the role of the vasculature in this process in the major lineages of land plants, i.e., bryophytes, lycophytes, ferns, gymnosperms, and angiosperms.
Collapse
|
18
|
Landberg K, Lopez‐Obando M, Sanchez Vera V, Sundberg E, Thelander M. MS1/MMD1 homologues in the moss Physcomitrium patens are required for male and female gametogenesis. THE NEW PHYTOLOGIST 2022; 236:512-524. [PMID: 35775827 PMCID: PMC9796955 DOI: 10.1111/nph.18352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The Arabidopsis Plant HomeoDomain (PHD) proteins AtMS1 and AtMMD1 provide chromatin-mediated transcriptional regulation essential for tapetum-dependent pollen formation. This pollen-based male gametogenesis is a derived trait of seed plants. Male gametogenesis in the common ancestors of land plants is instead likely to have been reminiscent of that in extant bryophytes where flagellated sperms are produced by an elaborate gametophyte generation. Still, also bryophytes possess MS1/MMD1-related PHD proteins. We addressed the function of two MS1/MMD1-homologues in the bryophyte model moss Physcomitrium patens by the generation and analysis of reporter and loss-of-function lines. The two genes are together essential for both male and female fertility by providing functions in the gamete-producing inner cells of antheridia and archegonia. They are furthermore expressed in the diploid sporophyte generation suggesting a function during sporogenesis, a process proposed related by descent to pollen formation in angiosperms. We propose that the moss MS1/MMD1-related regulatory network required for completion of male and female gametogenesis, and possibly for sporogenesis, represent a heritage from ancestral land plants.
Collapse
Affiliation(s)
- Katarina Landberg
- Department of Plant BiologyThe Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural SciencesPO Box 7080SE‐75007UppsalaSweden
| | - Mauricio Lopez‐Obando
- Department of Plant BiologyThe Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural SciencesPO Box 7080SE‐75007UppsalaSweden
| | - Victoria Sanchez Vera
- Department of Plant BiologyThe Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural SciencesPO Box 7080SE‐75007UppsalaSweden
| | - Eva Sundberg
- Department of Plant BiologyThe Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural SciencesPO Box 7080SE‐75007UppsalaSweden
| | - Mattias Thelander
- Department of Plant BiologyThe Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural SciencesPO Box 7080SE‐75007UppsalaSweden
| |
Collapse
|
19
|
Reinhardt D, Gola EM. Law and order in plants - the origin and functional relevance of phyllotaxis. TRENDS IN PLANT SCIENCE 2022; 27:1017-1032. [PMID: 35643801 DOI: 10.1016/j.tplants.2022.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
The regular arrangement of organs (phyllotaxis) in vegetative shoots and flowers is one of the most stunning features of plants. Spiral patterns characterized by Fibonacci numbers have attracted the particular interest of natural scientists and mathematicians. Numerous reviews have dealt with the molecular genetic mechanisms underlying phyllotaxis, and modeling studies have sought to recreate phyllotaxis according to mathematical, biochemical, or physical laws. However, what is the functional significance of regular plant architecture, and how did it evolve? We discuss the developmental constraints and selective forces that may have favored the selection of phyllotaxis, and we argue that a central driver of regular phyllotaxis may have been limitations in the allocation of founder cells and metabolic resources to the different tissues in the shoot apex.
Collapse
Affiliation(s)
- Didier Reinhardt
- Department of Biology, Route Albert Gockel 3, University of Fribourg, 1700 Fribourg, Switzerland.
| | - Edyta M Gola
- Department of Plant Developmental Biology, Faculty of Plant Sciences, University of Wroclaw, Kanonia 6/8, 50-328, Wroclaw, Poland
| |
Collapse
|
20
|
Thelander M, Landberg K, Muller A, Cloarec G, Cunniffe N, Huguet S, Soubigou-Taconnat L, Brunaud V, Coudert Y. Apical dominance control by TAR-YUC-mediated auxin biosynthesis is a deep homology of land plants. Curr Biol 2022; 32:3838-3846.e5. [PMID: 35841890 DOI: 10.1016/j.cub.2022.06.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/17/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
Abstract
A key aim in biology is to identify which genetic changes contributed to the evolution of form through time. Apical dominance, the inhibitory effect exerted by shoot apices on the initiation or outgrowth of distant lateral buds, is a major regulatory mechanism of plant form.1 Nearly a century of studies in the sporophyte of flowering plants have established the phytohormone auxin as a front-runner in the search for key factors controlling apical dominance,2,3 identifying critical roles for long-range polar auxin transport and local auxin biosynthesis in modulating shoot branching.4-10 A capacity for lateral branching evolved by convergence in the gametophytic shoot of mosses and primed its diversification;11 however, polar auxin transport is relatively unimportant in this developmental process,12 the contribution of auxin biosynthesis genes has not been assessed, and more generally, the extent of conservation in apical dominance regulation within the land plants remains largely unknown. To fill this knowledge gap, we sought to identify genetic determinants of apical dominance in the moss Physcomitrium patens. Here, we show that leafy shoot apex decapitation releases apical dominance through massive and rapid transcriptional reprogramming of auxin-responsive genes and altering auxin biosynthesis gene activity. We pinpoint a subset of P. patens TRYPTOPHAN AMINO-TRANSFERASE (TAR) and YUCCA FLAVIN MONOOXYGENASE-LIKE (YUC) auxin biosynthesis genes expressed in the main and lateral shoot apices and show that they are essential for coordinating branch initiation and outgrowth. Our results demonstrate that local auxin biosynthesis acts as a pivotal regulator of apical dominance in moss and constitutes a shared mechanism underpinning shoot architecture control in land plants.
Collapse
Affiliation(s)
- Mattias Thelander
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre for Plant Biology in Uppsala, 750 07 Uppsala, Sweden
| | - Katarina Landberg
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre for Plant Biology in Uppsala, 750 07 Uppsala, Sweden
| | - Arthur Muller
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon 69007, France; Experimental Biology Research Group, Institute of Biology, Faculty of Sciences, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Gladys Cloarec
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon 69007, France; Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Nik Cunniffe
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Stéphanie Huguet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France; Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
| | - Ludivine Soubigou-Taconnat
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France; Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
| | - Véronique Brunaud
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France; Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
| | - Yoan Coudert
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon 69007, France.
| |
Collapse
|
21
|
Lopez‐Obando M, Landberg K, Sundberg E, Thelander M. Dependence on clade II bHLH transcription factors for nursing of haploid products by tapetal-like cells is conserved between moss sporangia and angiosperm anthers. THE NEW PHYTOLOGIST 2022; 235:718-731. [PMID: 35037245 PMCID: PMC9306660 DOI: 10.1111/nph.17972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/28/2021] [Indexed: 05/16/2023]
Abstract
Clade II basic helix-loop-helix transcription factors (bHLH TFs) are essential for pollen production and tapetal nursing functions in angiosperm anthers. As pollen has been suggested to be related to bryophyte spores by descent, we characterized two Physcomitrium (Physcomitrella) patens clade II bHLH TFs (PpbHLH092 and PpbHLH098), to test if regulation of sporogenous cells and the nursing cells surrounding them is conserved between angiosperm anthers and bryophyte sporangia. We made CRISPR-Cas9 reporter and loss-of-function lines to address the function of PpbHLH092/098. We sectioned and analyzed WT and mutant sporophytes for a comprehensive stage-by-stage comparison of sporangium development. Spore precursors in the P. patens sporangium are surrounded by nursing cells showing striking similarities to tapetal cells in angiosperms. Moss clade II bHLH TFs are essential for the differentiation of these tapetal-like cells and for the production of functional spores. Clade II bHLH TFs provide a conserved role in controlling the sporophytic somatic cells surrounding and nursing the sporogenous cells in both moss sporangia and angiosperm anthers. This supports the hypothesis that such nursing functions in mosses and angiosperms, lineages separated by c. 450 million years, are related by descent.
Collapse
Affiliation(s)
- Mauricio Lopez‐Obando
- Department of Plant BiologyThe Linnean Centre of Plant Biology in UppsalaSwedish University of Agricultural SciencesPO Box 7080UppsalaSE‐75007Sweden
- VEDAS Corporación de Investigación e Innovación (VEDASCII)Cl 8 B 65‐261 050024MedellínColombia
| | - Katarina Landberg
- Department of Plant BiologyThe Linnean Centre of Plant Biology in UppsalaSwedish University of Agricultural SciencesPO Box 7080UppsalaSE‐75007Sweden
| | - Eva Sundberg
- Department of Plant BiologyThe Linnean Centre of Plant Biology in UppsalaSwedish University of Agricultural SciencesPO Box 7080UppsalaSE‐75007Sweden
| | - Mattias Thelander
- Department of Plant BiologyThe Linnean Centre of Plant Biology in UppsalaSwedish University of Agricultural SciencesPO Box 7080UppsalaSE‐75007Sweden
| |
Collapse
|
22
|
Sanchez-Vera V, Landberg K, Lopez-Obando M, Thelander M, Lagercrantz U, Muñoz-Viana R, Schmidt A, Grossniklaus U, Sundberg E. The Physcomitrium patens egg cell expresses several distinct epigenetic components and utilizes homologues of BONOBO genes for cell specification. THE NEW PHYTOLOGIST 2022; 233:2614-2628. [PMID: 34942024 DOI: 10.1111/nph.17938] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Although land plant germ cells have received much attention, knowledge about their specification is still limited. We thus identified transcripts enriched in egg cells of the bryophyte model species Physcomitrium patens, compared the results with angiosperm egg cells, and selected important candidate genes for functional analysis. We used laser-assisted microdissection to perform a cell-type-specific transcriptome analysis on egg cells for comparison with available expression profiles of vegetative tissues and male reproductive organs. We made reporter lines and knockout mutants of the two BONOBO (PbBNB) genes and studied their role in reproduction. We observed an overlap in gene activity between bryophyte and angiosperm egg cells, but also clear differences. Strikingly, several processes that are male-germline specific in Arabidopsis are active in the P. patens egg cell. Among those were the moss PbBNB genes, which control proliferation and identity of both female and male germlines. Pathways shared between male and female germlines were most likely present in the common ancestors of land plants, besides sex-specifying factors. A set of genes may also be involved in the switches between the diploid and haploid moss generations. Nonangiosperm gene networks also contribute to the specification of the P. patens egg cell.
Collapse
Affiliation(s)
- Victoria Sanchez-Vera
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Katarina Landberg
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Mauricio Lopez-Obando
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Mattias Thelander
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Ulf Lagercrantz
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18 D, Uppsala, SE-752 36, Sweden
| | - Rafael Muñoz-Viana
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Anja Schmidt
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich, CH-8008, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich, CH-8008, Switzerland
| | - Eva Sundberg
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| |
Collapse
|
23
|
Colin L, Martin-Arevalillo R, Bovio S, Bauer A, Vernoux T, Caillaud MC, Landrein B, Jaillais Y. Imaging the living plant cell: From probes to quantification. THE PLANT CELL 2022; 34:247-272. [PMID: 34586412 PMCID: PMC8774089 DOI: 10.1093/plcell/koab237] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 05/20/2023]
Abstract
At the center of cell biology is our ability to image the cell and its various components, either in isolation or within an organism. Given its importance, biological imaging has emerged as a field of its own, which is inherently highly interdisciplinary. Indeed, biologists rely on physicists and engineers to build new microscopes and imaging techniques, chemists to develop better imaging probes, and mathematicians and computer scientists for image analysis and quantification. Live imaging collectively involves all the techniques aimed at imaging live samples. It is a rapidly evolving field, with countless new techniques, probes, and dyes being continuously developed. Some of these new methods or reagents are readily amenable to image plant samples, while others are not and require specific modifications for the plant field. Here, we review some recent advances in live imaging of plant cells. In particular, we discuss the solutions that plant biologists use to live image membrane-bound organelles, cytoskeleton components, hormones, and the mechanical properties of cells or tissues. We not only consider the imaging techniques per se, but also how the construction of new fluorescent probes and analysis pipelines are driving the field of plant cell biology.
Collapse
Affiliation(s)
- Leia Colin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Raquel Martin-Arevalillo
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Simone Bovio
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
- LYMIC-PLATIM imaging and microscopy core facility, Univ Lyon, SFR Biosciences, ENS de Lyon, Inserm US8, CNRS UMS3444, UCBL-50 Avenue Tony Garnier, 69007 Lyon, France
| | - Amélie Bauer
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Marie-Cecile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| |
Collapse
|
24
|
Pernisová M, Vernoux T. Auxin Does the SAMba: Auxin Signaling in the Shoot Apical Meristem. Cold Spring Harb Perspect Biol 2021; 13:a039925. [PMID: 33903154 PMCID: PMC8634999 DOI: 10.1101/cshperspect.a039925] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plants, in contrast to animals, are unique in their capacity to postembryonically develop new organs due to the activity of stem cell populations, located in specialized tissues called meristems. Above ground, the shoot apical meristem generates aerial organs and tissues throughout plant life. It is well established that auxin plays a central role in the functioning of the shoot apical meristem. Auxin distribution in the meristem is not uniform and depends on the interplay between biosynthesis, transport, and degradation. Auxin maxima and minima are created, and result in transcriptional outputs that drive the development of new organs and contribute to meristem maintenance. To uncover and understand complex signaling networks such as the one regulating auxin responses in the shoot apical meristem remains a challenge. Here, we will discuss our current understanding and point to important research directions for the future.
Collapse
Affiliation(s)
- Markéta Pernisová
- Laboratoire Reproduction et Développement des Plantes, University at Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
- Functional Genomics and Proteomics, National Centre for Biomolecula Research, Faculty of Science, Masaryk University and CEITEC MU, 62500 Brno, Czech Republic
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, University at Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| |
Collapse
|
25
|
Yamaoka S, Inoue K, Araki T. Regulation of gametangia and gametangiophore initiation in the liverwort Marchantia polymorpha. PLANT REPRODUCTION 2021; 34:297-306. [PMID: 34117568 DOI: 10.1007/s00497-021-00419-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
The liverwort Marchantia polymorpha regulates gametangia and gametangiophore development by using evolutionarily conserved regulatory modules that are shared with angiosperm mechanisms regulating flowering and germ cell differentiation. Bryophytes, the earliest diverged lineage of land plants comprised of liverworts, mosses, and hornworts, produce gametes in gametangia, reproductive organs evolutionarily conserved but lost in extant angiosperms. Initiation of gametangium development is dependent on environmental factors such as light, although the underlying mechanisms remain elusive. Recent studies showed that the liverwort Marchantia polymorpha regulates development of gametangia and stalked receptacles called gametangiophores by using conserved regulatory modules which, in angiosperms, are involved in light signaling, microRNA-mediated flowering regulation, and germ cell differentiation. These findings suggest that these modules were acquired by a common ancestor of land plants before divergence of bryophytes, and were later recruited to flowering mechanism in angiosperms.
Collapse
Affiliation(s)
- Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| | - Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
26
|
Balcerowicz M, Shetty KN, Jones AM. Fluorescent biosensors illuminating plant hormone research. PLANT PHYSIOLOGY 2021; 187:590-602. [PMID: 35237816 PMCID: PMC8491072 DOI: 10.1093/plphys/kiab278] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/22/2021] [Indexed: 05/20/2023]
Abstract
Phytohormones act as key regulators of plant growth that coordinate developmental and physiological processes across cells, tissues and organs. As such, their levels and distribution are highly dynamic owing to changes in their biosynthesis, transport, modification and degradation that occur over space and time. Fluorescent biosensors represent ideal tools to track these dynamics with high spatiotemporal resolution in a minimally invasive manner. Substantial progress has been made in generating a diverse set of hormone sensors with recent FRET biosensors for visualising hormone concentrations complementing information provided by transcriptional, translational and degron-based reporters. In this review, we provide an update on fluorescent biosensor designs, examine the key properties that constitute an ideal hormone biosensor, discuss the use of these sensors in conjunction with in vivo hormone perturbations and highlight the latest discoveries made using these tools.
Collapse
Affiliation(s)
| | | | - Alexander M. Jones
- Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, UK
- Author for communication:
| |
Collapse
|
27
|
Koochak H, Ludwig-Müller J. Physcomitrium patens Mutants in Auxin Conjugating GH3 Proteins Show Salt Stress Tolerance but Auxin Homeostasis Is Not Involved in Regulation of Oxidative Stress Factors. PLANTS 2021; 10:plants10071398. [PMID: 34371602 PMCID: PMC8309278 DOI: 10.3390/plants10071398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
Salt stress is among the most challenging abiotic stress situations that a plant can experience. High salt levels do not only occur in areas with obvious salty water, but also during drought periods where salt accumulates in the soil. The moss Physcomitrium patens became a model for studying abiotic stress in non-vascular plants. Here, we show that high salt concentrations can be tolerated in vitro, and that auxin homeostasis is connected to the performance of P. patens under these stress conditions. The auxin levels can be regulated by conjugating IAA to amino acids by two members of the family of GH3 protein auxin amino acid-synthetases that are present in P. patens. Double GH3 gene knock-out mutants were more tolerant to high salt concentrations. Furthermore, free IAA levels were differentially altered during the time points investigated. Since, among the mutant lines, an increase in IAA on at least one NaCl concentration tested was observed, we treated wild type (WT) plants concomitantly with NaCl and IAA. This experiment showed that the salt tolerance to 100 mM NaCl together with 1 and 10 µM IAA was enhanced during the earlier time points. This is an additional indication that the high IAA levels in the double GH3-KO lines could be responsible for survival in high salt conditions. While the high salt concentrations induced several selected stress metabolites including phenols, flavonoids, and enzymes such as peroxidase and superoxide dismutase, the GH3-KO genotype did not generally participate in this upregulation. While we showed that the GH3 double KO mutants were more tolerant of high (250 mM) NaCl concentrations, the altered auxin homeostasis was not directly involved in the upregulation of stress metabolites.
Collapse
Affiliation(s)
- Haniyeh Koochak
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany;
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-5910, USA
| | - Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany;
- Correspondence:
| |
Collapse
|
28
|
Suzuki H, Kohchi T, Nishihama R. Auxin Biology in Bryophyta: A Simple Platform with Versatile Functions. Cold Spring Harb Perspect Biol 2021; 13:a040055. [PMID: 33431584 PMCID: PMC7919391 DOI: 10.1101/cshperspect.a040055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bryophytes, including liverworts, mosses, and hornworts, are gametophyte-dominant land plants that are derived from a common ancestor and underwent independent evolution from the sporophyte-dominant vascular plants since their divergence. The plant hormone auxin has been shown to play pleiotropic roles in the haploid bodies of bryophytes. Pharmacological and chemical studies identified conserved auxin molecules, their inactivated forms, and auxin transport in bryophyte tissues. Recent genomic and molecular biological studies show deep conservation of components and their functions in auxin biosynthesis, inactivation, transport, and signaling in land plants. Low genetic redundancy in model bryophytes enable unique assays, which are elucidating the design principles of the auxin signaling pathway. In this article, the physiological roles of auxin and regulatory mechanisms of gene expression and development by auxin in Bryophyta are reviewed.
Collapse
Affiliation(s)
- Hidemasa Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|