1
|
Guarnizo ÁL, Marqués-Gálvez JE, Arenas F, Navarro-Ródenas A, Morte A. Morphological and molecular development of Terfezia claveryi ectendomycorrhizae exhibits three well-defined stages. MYCORRHIZA 2025; 35:31. [PMID: 40232537 PMCID: PMC12000269 DOI: 10.1007/s00572-025-01205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
The normal development of mycorrhizal symbiosis is a dynamic process, requiring elaborately regulated interactions between plant roots and compatible fungi, mandatory for both partners´ survival. In the present study, we further elucidated the mycorrhizal development of the desert truffles Terfezia claveryi with the host plant Helianthemum almeriense as an ectendomycorrhizal symbiosis model under greenhouse conditions. To investigate this, we evaluated the morphology of mycorrhizal colonization, concomitantly with the dynamic expression of selected marker genes (6 fungal and 11 plant genes) measured every week until mycorrhiza maturation (three months). We were able to determine 3 main stages in the mycorrhization process, 1) pre-symbiosis stage where mycelium is growing in the soil with no direct interaction with roots, 2) early symbiosis stage when the fungus spreads along the roots intercellularly and plant-fungal signaling is proceeding, and 3) late symbiosis stage where the fungus consolidates and matures with intracellular hyphal colonization; this is characterized by the regulation of cell-wall remodeling processes.
Collapse
Affiliation(s)
- Ángel Luigi Guarnizo
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN), Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - José Eduardo Marqués-Gálvez
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN), Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Francisco Arenas
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN), Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Alfonso Navarro-Ródenas
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN), Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain.
| | - Asunción Morte
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN), Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
2
|
Martín-Díaz A, de Vega C, Martín-Hernanz S, Aparicio A, Albaladejo RG. De novo transcriptome assembly of the plant Helianthemum marifolium for the study of adaptive mechanisms. Sci Data 2025; 12:515. [PMID: 40148317 PMCID: PMC11950303 DOI: 10.1038/s41597-025-04888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/24/2025] [Indexed: 03/29/2025] Open
Abstract
The genus Helianthemum, commonly known as rockroses, encompasses 140 species primarily distributed in the Palearctic region, with notable diversification driven by climatic and geological changes. These plants are valuable for studying speciation processes and ecological divergence. The chemical properties of the leaves have also been investigated for containing valuable bioactive compounds with several therapeutic properties. However, the availability of genomic resources for species in this genus are almost entirely lacking. Here, we assembled and annotated the first reference transcriptome of Helianthemum marifolium, a species with wide morphological variability and infraspecific diversity. Illumina paired-end RNA sequences were generated using leaves from 16 individuals, representing the four recognized subspecies, all cultivated in a greenhouse. RNA reads were assembled with Trinity and Oases, and EvidentialGene produced a transcriptome with 122,002 transcripts. The transcriptome showed 59524 hits on the UniProtBK database through BLASTx. This transcriptome will be an invaluable resource for transcriptome-level population studies, conservation genetics of the many endangered species within the genus, and for deepen into the metabolic pathways of leaf-derived compounds.
Collapse
Affiliation(s)
- Andrea Martín-Díaz
- Departamento de Biología Vegetal y Ecología. Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Departamento de Ecología y Evolución. Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Clara de Vega
- Departamento de Biología Vegetal y Ecología. Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Sara Martín-Hernanz
- Departamento de Biodiversidad, Ecología y Evolución. Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Abelardo Aparicio
- Departamento de Biología Vegetal y Ecología. Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Rafael G Albaladejo
- Departamento de Biología Vegetal y Ecología. Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
3
|
Malygina EV, Imidoeva NA, Belyshenko AY, Dmitrieva ME, Shelkovnikova VN, Vlasova A, Telnova TY, Morgunova MM, Konovalov AS, Axenov-Gribanov DV. Comparative Study of Mechanical and Biological Pretreatment for Releasing Spores of Black Truffle Tuber aestivum. MYCOBIOLOGY 2024; 52:278-286. [PMID: 39649142 PMCID: PMC11619011 DOI: 10.1080/12298093.2024.2391627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 12/10/2024]
Abstract
It is well known that the number of true truffles in the wild is decreasing. The aim of the study was to develop an effective, simple and affordable method of asci disruption to release black truffle spores. It was shown that the spore release can be achieved by different ways, such as mechanical or biological destruction. Mechanical homogenization of fruiting bodies using an immersion blender in tandem with a ball mill was shown to be effective and led to destruction of at least 85% of asci and release of spores. Also, the first approach we applied was the biological method of spore activation performed by African and grape snails. As a result of digestion of truffle fruiting bodies, the spores not only lost their protective shells, but also changed their morphology, which promoted their germination in vitro. The spores obtained using these two methods are capable of forming mycelial hyphae on nutrient media. The results of our study can be used to prepare inoculum of Tuber spp. and to obtain their pure cultures in agriculture.
Collapse
Affiliation(s)
- E. V. Malygina
- Laboratory of Experimental Neurophysiology, Department of Research and Development, Biological Faculty, Irkutsk State University, Irkutsk, Russia
| | - N. A. Imidoeva
- Laboratory of Experimental Neurophysiology, Department of Research and Development, Biological Faculty, Irkutsk State University, Irkutsk, Russia
| | - A. Yu. Belyshenko
- Laboratory of Experimental Neurophysiology, Department of Research and Development, Biological Faculty, Irkutsk State University, Irkutsk, Russia
| | - M. E. Dmitrieva
- Laboratory of Experimental Neurophysiology, Department of Research and Development, Biological Faculty, Irkutsk State University, Irkutsk, Russia
| | - V. N. Shelkovnikova
- Laboratory of Experimental Neurophysiology, Department of Research and Development, Biological Faculty, Irkutsk State University, Irkutsk, Russia
| | - A. A. Vlasova
- Laboratory of Experimental Neurophysiology, Department of Research and Development, Biological Faculty, Irkutsk State University, Irkutsk, Russia
| | - T. Yu. Telnova
- Laboratory of Experimental Neurophysiology, Department of Research and Development, Biological Faculty, Irkutsk State University, Irkutsk, Russia
| | - M. M. Morgunova
- Laboratory of Experimental Neurophysiology, Department of Research and Development, Biological Faculty, Irkutsk State University, Irkutsk, Russia
| | - A. S. Konovalov
- Laboratory of Experimental Neurophysiology, Department of Research and Development, Biological Faculty, Irkutsk State University, Irkutsk, Russia
| | - D. V. Axenov-Gribanov
- Laboratory of Experimental Neurophysiology, Department of Research and Development, Biological Faculty, Irkutsk State University, Irkutsk, Russia
| |
Collapse
|
4
|
Martin FM, van der Heijden MGA. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. THE NEW PHYTOLOGIST 2024; 242:1486-1506. [PMID: 38297461 DOI: 10.1111/nph.19541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research.
Collapse
Affiliation(s)
- Francis M Martin
- Université de Lorraine, INRAE, UMR IAM, Champenoux, 54280, France
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Marcel G A van der Heijden
- Department of Agroecology & Environment, Plant-Soil Interactions, Agroscope, Zürich, 8046, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zürich, 8057, Switzerland
| |
Collapse
|
5
|
Müller M, Kües U, Budde KB, Gailing O. Applying molecular and genetic methods to trees and their fungal communities. Appl Microbiol Biotechnol 2023; 107:2783-2830. [PMID: 36988668 PMCID: PMC10106355 DOI: 10.1007/s00253-023-12480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Forests provide invaluable economic, ecological, and social services. At the same time, they are exposed to several threats, such as fragmentation, changing climatic conditions, or increasingly destructive pests and pathogens. Trees, the inherent species of forests, cannot be viewed as isolated organisms. Manifold (micro)organisms are associated with trees playing a pivotal role in forest ecosystems. Of these organisms, fungi may have the greatest impact on the life of trees. A multitude of molecular and genetic methods are now available to investigate tree species and their associated organisms. Due to their smaller genome sizes compared to tree species, whole genomes of different fungi are routinely compared. Such studies have only recently started in forest tree species. Here, we summarize the application of molecular and genetic methods in forest conservation genetics, tree breeding, and association genetics as well as for the investigation of fungal communities and their interrelated ecological functions. These techniques provide valuable insights into the molecular basis of adaptive traits, the impacts of forest management, and changing environmental conditions on tree species and fungal communities and can enhance tree-breeding cycles due to reduced time for field testing. It becomes clear that there are multifaceted interactions among microbial species as well as between these organisms and trees. We demonstrate the versatility of the different approaches based on case studies on trees and fungi. KEY POINTS: • Current knowledge of genetic methods applied to forest trees and associated fungi. • Genomic methods are essential in conservation, breeding, management, and research. • Important role of phytobiomes for trees and their ecosystems.
Collapse
Affiliation(s)
- Markus Müller
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany.
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Katharina B Budde
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
6
|
Role of carbohydrate-active enzymes in mycorrhizal symbioses. Essays Biochem 2022; 67:471-478. [PMID: 36562143 DOI: 10.1042/ebc20220127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Mycorrhizal fungi form mutually beneficial interactions with a wide range of terrestrial plants. During this symbiosis, the associated fungus provides mineral nutrients, such as phosphorus and nitrogen, to its host plant in exchange of photosynthesis-derived carbohydrates. Genome sequencing of mycorrhizal fungi has shown that arbuscular mycorrhizal fungi and ectomycorrhizal fungi have a restricted set of plant-cell wall degrading enzymes (PCWDE) genes, while orchid and ericoid mycorrhizal fungi have an extended PCWDE repertoire similar to soil decomposers and wood-decay fungi. On the other hand, mycorrhizal fungi have retained a substantial set of carbohydrate active enzymes (CAZymes) acting on microbial polysaccharides. Functional analysis has shown that several of the remaining PCWDEs are involved in the fungal root colonization and establishment of the symbiotic interface. In this review, we highlight the current knowledge on the evolution and function of PCWDEs in mycorrhizal fungi.
Collapse
|
7
|
Wang W, Jia T, Qi T, Li S, Degen AA, Han J, Bai Y, Zhang T, Qi S, Huang M, Li Z, Jiao J, Shang Z. Root exudates enhanced rhizobacteria complexity and microbial carbon metabolism of toxic plants. iScience 2022; 25:105243. [PMID: 36274956 PMCID: PMC9579507 DOI: 10.1016/j.isci.2022.105243] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Root exudates and rhizosphere microorganisms play key roles in the colonization of toxic plants under climate change and land degradation. However, how root exudates affect the rhizosphere microorganisms and soil nutrients of toxic plants in degraded grasslands remains unknown. We compared the interaction of soil microbial communities, root exudates, microbial carbon metabolism, and environmental factors in the rhizosphere of toxic and non-toxic plants. Deterministic processes had a greater effect on toxic than non-toxic plants, as root exudates affected rhizosphere microorganisms directly. The 328 up-regulated compounds in root exudates of toxic plants affected the diversity of rhizosphere microorganisms. Rhizosphere bacteria-enriched enzymes were involved in the phenylpropanoid biosynthesis pathway. Root exudates of toxic plants form complex networks of rhizosphere microorganisms, provide high rhizosphere nutrients, and increase microbial carbon metabolism. The interaction between root exudates and rhizosphere microorganisms is the key mechanism that enables toxic plants to spread in degraded grassland habitats.
Collapse
Affiliation(s)
- Wenyin Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Tianhua Jia
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Tianyun Qi
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Shanshan Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - A. Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 8410500, Israel
| | - Jin Han
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yanfu Bai
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Tao Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Shuai Qi
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Mei Huang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Zihao Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jianxin Jiao
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Zhanhuan Shang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Arenas F, Morte A, Navarro-Ródenas A. Design and Validation of qPCR-Specific Primers for Quantification of the Marketed Terfezia claveryi and Terfezia crassiverrucosa in Soil. J Fungi (Basel) 2022; 8:1095. [PMID: 36294660 PMCID: PMC9605127 DOI: 10.3390/jof8101095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Desert truffle crop is a pioneer in southeastern Spain, a region where native edible hypogeous fungi are adapted to the semiarid areas with low annual rainfall. Terfezia claveryi Chatin was the first species of desert truffle to be cultivated, and has been increasing in recent years as an alternative rainfed crop in the Iberian Peninsula. However, its behaviour in the field has yet not been investigated. For this purpose, specific primers were designed for the soil DNA quantification of both T. claveryi and Terfezia crassiverrucosa and a real-time qPCR protocol was developed, using the ITS rDNA region as a target. Moreover, a young desert truffle orchard was sampled for environmental validation. The results showed the highest efficiency for the TerclaF3/TerclaR1 primers pair, 89%, and the minimal fungal biomass that could be reliable detected was set at 4.23 µg mycelium/g soil. The spatial distribution of fungal biomass was heterogeneous, and there was not a direct relationship between the quantity of winter soil mycelium and the location/productivity of desert truffles. This protocol could be applied to tracking these species in soil and understand their mycelial dynamics in plantations and wild areas.
Collapse
Affiliation(s)
- Francisco Arenas
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100 Murcia, Spain
- Forest Science and Technology Centre of Catalonia (CTFC), Carretera de Sant Llorenç de Morunys, Km 2, 25280 Solsona, Spain
| | - Asunción Morte
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100 Murcia, Spain
| | - Alfonso Navarro-Ródenas
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
9
|
Lu B, Zhang FM, Yu FQ, Rinaldi AC. Ethnobiological notes and volatile profiles of two rare Chinese desert truffles. Mycology 2022; 13:177-184. [PMID: 35938077 PMCID: PMC9354632 DOI: 10.1080/21501203.2022.2035005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Bin Lu
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Southwest Forestry University, Kunming, China
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Feng-Ming Zhang
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Fu-Qiang Yu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Andrea C. Rinaldi
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
10
|
Hill R, Buggs RJ, Vu DT, Gaya E. Lifestyle Transitions in Fusarioid Fungi are Frequent and Lack Clear Genomic Signatures. Mol Biol Evol 2022; 39:msac085. [PMID: 35484861 PMCID: PMC9051438 DOI: 10.1093/molbev/msac085] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The fungal genus Fusarium (Ascomycota) includes well-known plant pathogens that are implicated in diseases worldwide, and many of which have been genome sequenced. The genus also encompasses other diverse lifestyles, including species found ubiquitously as asymptomatic-plant inhabitants (endophytes). Here, we produced structurally annotated genome assemblies for five endophytic Fusarium strains, including the first whole-genome data for Fusarium chuoi. Phylogenomic reconstruction of Fusarium and closely related genera revealed multiple and frequent lifestyle transitions, the major exception being a monophyletic clade of mutualist insect symbionts. Differential codon usage bias and increased codon optimisation separated Fusarium sensu stricto from allied genera. We performed computational prediction of candidate secreted effector proteins (CSEPs) and carbohydrate-active enzymes (CAZymes)-both likely to be involved in the host-fungal interaction-and sought evidence that their frequencies could predict lifestyle. However, phylogenetic distance described gene variance better than lifestyle did. There was no significant difference in CSEP, CAZyme, or gene repertoires between phytopathogenic and endophytic strains, although we did find some evidence that gene copy number variation may be contributing to pathogenicity. Large numbers of accessory CSEPs (i.e., present in more than one taxon but not all) and a comparatively low number of strain-specific CSEPs suggested there is a limited specialisation among plant associated Fusarium species. We also found half of the core genes to be under positive selection and identified specific CSEPs and CAZymes predicted to be positively selected on certain lineages. Our results depict fusarioid fungi as prolific generalists and highlight the difficulty in predicting pathogenic potential in the group.
Collapse
Affiliation(s)
- Rowena Hill
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond, United Kingdom
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Richard J.A. Buggs
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond, United Kingdom
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Dang Toan Vu
- Research Planning and International Cooperation Department, Plant Resources Center, Hanoi, Vietnam
| | - Ester Gaya
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond, United Kingdom
| |
Collapse
|
11
|
Kumagai Y, Kishimura H, Lang W, Tagami T, Okuyama M, Kimura A. Characterization of an Unknown Region Linked to the Glycoside Hydrolase Family 17 β-1,3-Glucanase of Vibrio vulnificus Reveals a Novel Glucan-Binding Domain. Mar Drugs 2022; 20:md20040250. [PMID: 35447923 PMCID: PMC9026390 DOI: 10.3390/md20040250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
The glycoside hydrolase family 17 β-1,3-glucanase of Vibrio vulnificus (VvGH17) has two unknown regions in the N- and C-termini. Here, we characterized these domains by preparing mutant enzymes. VvGH17 demonstrated hydrolytic activity of β-(1→3)-glucan, mainly producing laminaribiose, but not of β-(1→3)/β-(1→4)-glucan. The C-terminal-truncated mutants (ΔC466 and ΔC441) showed decreased activity, approximately one-third of that of the WT, and ΔC415 lost almost all activity. An analysis using affinity gel containing laminarin or barley β-glucan revealed a shift in the mobility of the ΔC466, ΔC441, and ΔC415 mutants compared to the WT. Tryptophan residues showed a strong affinity for carbohydrates. Three of four point-mutations of the tryptophan in the C-terminus (W472A, W499A, and W542A) showed a reduction in binding ability to laminarin and barley β-glucan. The C-terminus was predicted to have a β-sandwich structure, and three tryptophan residues (Trp472, Trp499, and Trp542) constituted a putative substrate-binding cave. Linker and substrate-binding functions were assigned to the C-terminus. The N-terminal-truncated mutants also showed decreased activity. The WT formed a trimer, while the N-terminal truncations formed monomers, indicating that the N-terminus contributed to the multimeric form of VvGH17. The results of this study are useful for understanding the structure and the function of GH17 β-1,3-glucanases.
Collapse
Affiliation(s)
- Yuya Kumagai
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan;
- Correspondence: (Y.K.); (A.K.)
| | - Hideki Kishimura
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan;
| | - Weeranuch Lang
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; (W.L.); (T.T.); (M.O.)
| | - Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; (W.L.); (T.T.); (M.O.)
| | - Masayuki Okuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; (W.L.); (T.T.); (M.O.)
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; (W.L.); (T.T.); (M.O.)
- Correspondence: (Y.K.); (A.K.)
| |
Collapse
|
12
|
Wu G, Miyauchi S, Morin E, Kuo A, Drula E, Varga T, Kohler A, Feng B, Cao Y, Lipzen A, Daum C, Hundley H, Pangilinan J, Johnson J, Barry K, LaButti K, Ng V, Ahrendt S, Min B, Choi IG, Park H, Plett JM, Magnuson J, Spatafora JW, Nagy LG, Henrissat B, Grigoriev IV, Yang ZL, Xu J, Martin FM. Evolutionary innovations through gain and loss of genes in the ectomycorrhizal Boletales. THE NEW PHYTOLOGIST 2022; 233:1383-1400. [PMID: 34767630 DOI: 10.1111/nph.17858] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
We aimed to identify genomic traits of transitions to ectomycorrhizal ecology within the Boletales by comparing the genomes of 21 symbiotrophic species with their saprotrophic brown-rot relatives. Gene duplication rate is constant along the backbone of Boletales phylogeny with large loss events in several lineages, while gene family expansion sharply increased in the late Miocene, mostly in the Boletaceae. Ectomycorrhizal Boletales have a reduced set of plant cell-wall-degrading enzymes (PCWDEs) compared with their brown-rot relatives. However, the various lineages retain distinct sets of PCWDEs, suggesting that, over their evolutionary history, symbiotic Boletales have become functionally diverse. A smaller PCWDE repertoire was found in Sclerodermatineae. The gene repertoire of several lignocellulose oxidoreductases (e.g. laccases) is similar in brown-rot and ectomycorrhizal species, suggesting that symbiotic Boletales are capable of mild lignocellulose decomposition. Transposable element (TE) proliferation contributed to the higher evolutionary rate of genes encoding effector-like small secreted proteins, proteases, and lipases. On the other hand, we showed that the loss of secreted CAZymes was not related to TE activity but to DNA decay. This study provides novel insights on our understanding of the mechanisms influencing the evolutionary diversification of symbiotic boletes.
Collapse
Affiliation(s)
- Gang Wu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54 280, France
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, 650201, China
| | - Shingo Miyauchi
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54 280, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54 280, France
| | - Alan Kuo
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (USC1408), INRAE, Marseille, 13009, France
| | - Torda Varga
- Synthetic and Systems Biology Unit, Biological Research Centre, Szeged, 6726, Hungary
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54 280, France
| | - Bang Feng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, 650201, China
| | - Yang Cao
- Yunnan Institute of Tropic Crops, Jinghong, Yunnan, 666100, China
| | - Anna Lipzen
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Christopher Daum
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Hope Hundley
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Jasmyn Pangilinan
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Kerrie Barry
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Kurt LaButti
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Vivian Ng
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Steven Ahrendt
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Byoungnam Min
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 02841, Seoul, Korea
| | - In-Geol Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 02841, Seoul, Korea
| | - Hongjae Park
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Jon Magnuson
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Biological Research Centre, Szeged, 6726, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (USC1408), INRAE, Marseille, 13009, France
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13009, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Igor V Grigoriev
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Zhu-Liang Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, 650201, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Francis M Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54 280, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
13
|
Lebreton A, Zeng Q, Miyauchi S, Kohler A, Dai YC, Martin FM. Evolution of the Mode of Nutrition in Symbiotic and Saprotrophic Fungi in Forest Ecosystems. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012021-114902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this review, we highlight the main insights that have been gathered from recent developments using large-scale genomics of fungal saprotrophs and symbiotrophs (including ectomycorrhizal and orchid and ericoid mycorrhizal fungi) inhabiting forest ecosystems. After assessing the goals and motivations underlying our approach, we explore our current understanding of the limits and future potential of using genomics to understand the ecological roles of these forest fungi. Comparative genomics unraveled the molecular machineries involved in lignocellulose decomposition in wood decayers, soil and litter saprotrophs, and mycorrhizal symbionts. They also showed that transitions from saprotrophy to mutualism entailed widespread losses of lignocellulose-degrading enzymes; diversification of novel, lineage-specific symbiosis-induced genes; and convergent evolution of genetic innovations that facilitate the accommodationof mutualistic symbionts within their plant hosts. We also identify the major questions that remain unanswered and propose new avenues of genome-based research to understand the role of soil fungi in sustainable forest ecosystems.
Collapse
Affiliation(s)
- Annie Lebreton
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
- Université de Lorraine, Unité Mixte de Recherche (UMR) Interactions Arbres/Microorganismes, Centre INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement) Grand Est-Nancy, INRAE, 54280 Champenoux, France
| | - Qingchao Zeng
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
| | - Shingo Miyauchi
- Max Planck Institute for Plant Breeding Research, Department of Plant–Microbe Interactions, Köln, Germany, D-50829
| | - Annegret Kohler
- Université de Lorraine, Unité Mixte de Recherche (UMR) Interactions Arbres/Microorganismes, Centre INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement) Grand Est-Nancy, INRAE, 54280 Champenoux, France
| | - Yu-Cheng Dai
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
| | - Francis M. Martin
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
- Université de Lorraine, Unité Mixte de Recherche (UMR) Interactions Arbres/Microorganismes, Centre INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement) Grand Est-Nancy, INRAE, 54280 Champenoux, France
| |
Collapse
|
14
|
Mattupalli C, Shiller JB, Kankanala P, Krom N, Marek SM, Mysore KS, Young CA. The First Genomic Resources for Phymatotrichopsis omnivora, a Soilborne Pezizomycete Pathogen with a Broad Host Range. PHYTOPATHOLOGY 2021; 111:1897-1900. [PMID: 33728936 DOI: 10.1094/phyto-01-21-0014-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phymatotrichopsis omnivora is a destructive plant pathogen causing root rot disease of alfalfa, cotton, pecan, grape, and many other important dicotyledonous species. A member of the family Rhizinaceae, in the class Pezizomycetes, P. omnivora is a soilborne ascomycete fungus that is difficult to maintain in culture, currently genetically intractable, and for which there are no publicly available genomic resources. We have generated draft genome sequences of four P. omnivora isolates obtained from cotton and alfalfa, growing in Texas and Oklahoma. These genome sequences will provide new insights into the biology of the fungus, including the factors responsible for its broad host range and pathogenicity.
Collapse
Affiliation(s)
- Chakradhar Mattupalli
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401
- San Luis Valley Research Center, Colorado State University, 0249 East Road 9 North, Center, CO 81125
| | - Jason B Shiller
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401
| | - Prasanna Kankanala
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401
| | - Nick Krom
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401
| | - Stephen M Marek
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078
| | | | - Carolyn A Young
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401
| |
Collapse
|
15
|
Arenas F, Navarro-Ródenas A, Marqués-Gálvez JE, Ghignone S, Mello A, Morte A. Different patterns in root and soil fungal diversity drive plant productivity of the desert truffle Terfezia claveryi in plantation. Environ Microbiol 2021; 23:5917-5933. [PMID: 34320277 DOI: 10.1111/1462-2920.15688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022]
Abstract
The desert truffle Terfezia claveryi is one of the few mycorrhizal fungi currently in cultivation in semiarid and arid areas. Agroclimatic parameters seem to affect its annual yield, but there is no information on the influence of biotic factors. In this study, fungal diversity was analysed by high-throughput sequencing of the ITS2 rDNA region from soil and root samples to compare productive and non-productive mycorrhizal plants in a 4-years old plantation (Murcia, Spain). The fungal metaprofile was dominated by Ascomycota phylum. Desert truffle productivity was driven by different patterns of fungal species composition in soil (species replacement) and root (species richness differences). Moreover, positive associations for ectomycorrhizal and negative for arbuscular mycorrhizal guilds were found in productive roots, and positive associations for fungal parasite-plant pathogen guild in non-productive ones. Soil samples were dominated by pathotroph and saprotroph trophic modes, showing positive associations for Aureobasidium pullulans and Alternaria sp. in productive areas, and positive associations for Fusarium sp. and Mortierella sp. were found in non-productive soils. Finally, some significant OTUs were identified and associated to ascocarp producing patches, which could serve as predictive and location markers of desert truffle production.
Collapse
Affiliation(s)
- Francisco Arenas
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN, Universidad de Murcia, Campus de Espinardo, Murcia, 30100, Spain
| | - Alfonso Navarro-Ródenas
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN, Universidad de Murcia, Campus de Espinardo, Murcia, 30100, Spain
| | - José Eduardo Marqués-Gálvez
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN, Universidad de Murcia, Campus de Espinardo, Murcia, 30100, Spain
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection - SS Turin, CNR, Torino, 10125, Italy
| | - Antonietta Mello
- Institute for Sustainable Plant Protection - SS Turin, CNR, Torino, 10125, Italy
| | - Asunción Morte
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN, Universidad de Murcia, Campus de Espinardo, Murcia, 30100, Spain
| |
Collapse
|