1
|
Wang Y, Li G, Ma J, Su H, Hu W, Lin J, Fu W, Zeng Y, Tao L, Fu G, Xiong J, Chen T. Energy Deficiency and Misdistribution Leads to Disrupted Formation in Grain Yield and Rice Quality. Int J Mol Sci 2024; 25:12751. [PMID: 39684462 DOI: 10.3390/ijms252312751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
With the progress of society and the improvement of agricultural scientific technology, the single focus on high yield for rice production has gradually shifted to high quality. Coordinated development of grain yield and rice quality has become a core issue for researchers, and the underlying mechanisms remain to be solved. Two varieties, Zhongzheyou1 (ZZY1) and Zhongzheyou8 (ZZY8), were used as study materials under field conditions. The yield of ZZY1 was higher than that of ZZY8, which was mainly characterized by a higher seed-setting rate and grain weight. The rice quality of ZZY8 was better than that of ZZY1, primarily due to lower chalkiness and a higher head rice rate. The total dry matter weight of ZZY1 was lower than that of ZZY8, but the proportion of panicle dry matter weight or nonstructural carbohydrate to the total in the former was higher than that of the latter. The maximum grain-filling rate, average grain-filling rate, and key enzyme activities of ZZY1 were significantly higher than those of ZZY8, while the active grain-filling period was shorter than that of ZZY8. Furthermore, the ATP/ATPase content and energy charge values in the grains of ZZY1 were higher than those of ZZY8 at the early grain-filling stage. Transcriptome analysis showed that carbohydrate and energy metabolism were the main ways affecting the yield and quality of the two varieties. The energy production of ZZY1 was insufficient to simultaneously supply the needs thus leading to the discordant formation in its grain yield and rice quality formation.
Collapse
Affiliation(s)
- Yiding Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, China
| | - Guangyan Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, China
- Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Jiaying Ma
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, China
| | - Haoran Su
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, China
| | - Wenfei Hu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, China
| | - Junjiang Lin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, China
| | - Weimeng Fu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, China
| | - Yvxiang Zeng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, China
| | - Longxing Tao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, China
| | - Guanfu Fu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, China
| | - Jie Xiong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tingting Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, China
| |
Collapse
|
2
|
Chen J, Zhao L, Li H, Yang C, Lin X, Lin Y, Zhang H, Zhang M, Bie X, Zhao P, Xu S, Seung D, Zhang X, Zhang X, Yao Y, Wang D, Xiao J. Nuclear factor-Y-polycomb repressive complex2 dynamically orchestrates starch and seed storage protein biosynthesis in wheat. THE PLANT CELL 2024; 36:4786-4803. [PMID: 39293039 PMCID: PMC11530772 DOI: 10.1093/plcell/koae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/15/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
The endosperm in cereal grains is instrumental in determining grain yield and seed quality, as it controls starch and seed storage protein (SSP) production. In this study, we identified a specific nuclear factor-Y (NF-Y) trimeric complex in wheat (Triticum aestivum L.), consisting of TaNF-YA3-D, TaNF-YB7-B, and TaNF-YC6-B, and exhibiting robust expression within the endosperm during grain filling. Knockdown of either TaNF-YA3 or TaNF-YC6 led to reduced starch but increased gluten protein levels. TaNF-Y indirectly boosted starch biosynthesis genes by repressing TaNAC019, a repressor of cytosolic small ADP-glucose pyrophosphorylase 1a (TacAGPS1a), sucrose synthase 2 (TaSuS2), and other genes involved in starch biosynthesis. Conversely, TaNF-Y directly inhibited the expression of Gliadin-γ-700 (TaGli-γ-700) and low molecular weight-400 (TaLMW-400). Furthermore, TaNF-Y components interacted with SWINGER (TaSWN), the histone methyltransferase subunit of Polycomb repressive complex 2 (PRC2), to repress TaNAC019, TaGli-γ-700, and TaLMW-400 expression through trimethylation of histone H3 at lysine 27 (H3K27me3) modifications. Notably, weak mutation of FERTILIZATION INDEPENDENT ENDOSPERM (TaFIE), a core PRC2 subunit, reduced starch but elevated gliadin and LMW-GS contents. Intriguingly, sequence variation within the TaNF-YB7-B coding region was linked to differences in starch and SSP content. Distinct TaNF-YB7-B haplotypes affect its interaction with TaSWN-B, influencing the repression of targets like TaNAC019 and TaGli-γ-700. Our findings illuminate the intricate molecular mechanisms governing TaNF-Y-PRC2-mediated epigenetic regulation for wheat endosperm development. Manipulating the TaNF-Y complex holds potential for optimizing grain yield and enhancing grain quality.
Collapse
Affiliation(s)
- Jinchao Chen
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoran Li
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Changfeng Yang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yujing Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Zhang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengxia Zhang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaomin Bie
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Peng Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - David Seung
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Xiansheng Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Dongzhi Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
| |
Collapse
|
3
|
Kalapos MP, de Bari L. The evolutionary arch of bioenergetics from prebiotic mechanisms to the emergence of a cellular respiratory chain. Biosystems 2024; 244:105288. [PMID: 39128646 DOI: 10.1016/j.biosystems.2024.105288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
This article proposes an evolutionary trajectory for the development of biological energy producing systems. Six main stages of energy producing system evolution are described, from early evolutionary pyrite-pulled mechanism through the Last Universal Common Ancestor (LUCA) to contemporary systems. We define the Last Pure Chemical Entity (LPCE) as the last completely non-enzymatic entity. LPCE could have had some life-like properties, but lacked genetic information carriers, thus showed greater instability and environmental dependence than LUCA. A double bubble model is proposed for compartmentalization and cellularization as a prerequisite to both highly efficient protein synthesis and transmembrane ion-gradient. The article finds that although LUCA predominantly functioned anaerobically, it was a non-exclusive anaerobe, and sulfur dominated metabolism preceded phosphate dominated one.
Collapse
Affiliation(s)
| | - Lidia de Bari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| |
Collapse
|
4
|
Park H, Youn B, Park DJ, Puthanveettil SV, Kang C. Functional implication of the homotrimeric multidomain vacuolar sorting receptor 1 (VSR1) from Arabidopsis thaliana. Sci Rep 2024; 14:9622. [PMID: 38671060 PMCID: PMC11052993 DOI: 10.1038/s41598-024-57975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
The vacuolar sorting receptors (VSRs) are specific to plants and are responsible for sorting and transporting particular proteins from the trans-Golgi network to the vacuole. This process is critically important for various cellular functions, including storing nutrients during seed development. Despite many years of intense studies on VSRs, a complete relation between function and structure has not yet been revealed. Here, we present the crystal structure of the entire luminal region of glycosylated VSR1 from Arabidopsis thaliana (AtVSR1) for the first time. The structure provides insights into the tertiary and quaternary structures of VSR1, which are composed of an N-terminal protease-associated (PA) domain, a unique central region, and one epidermal growth factor (EGF)-like domain followed by two disordered EGF-like domains. The structure of VSR1 exhibits unique characteristics, the significance of which is yet to be fully understood.
Collapse
Affiliation(s)
- HaJeung Park
- X-Ray Core, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, 33458, USA
| | - BuHyun Youn
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Daniel J Park
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| | | | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
5
|
Zhong C, Huang J, Jiang D, Zhong Y, Wang X, Cai J, Chen W, Zhou Q. Metabolomic Analysis Reveals Patterns of Whole Wheat and Pearling Fraction Flour Quality Response to Nitrogen in Two Wheat Lines with Contrasting Protein Content. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2290-2300. [PMID: 36706242 DOI: 10.1021/acs.jafc.2c07413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) application increases wheat yield and protein content and affects the nutritional quality of the grain. Analysis of N use efficiency revealed that N uptake efficiency is a key factor affecting protein content. Two wheat lines with significant differences in protein content were used to investigate the response of differential accumulation of metabolites to N levels and the spatial variation pattern of metabolites related to nutritional quality in wheat grains using widely targeted metabolomics analysis. The results showed that amino acids, nucleic acids, and phytohormones and their derivatives and glycolytic processes are the crucial factors affecting protein content in two wheat lines. Amino acids and derivatives, lipids, and flavonoids are the main contributors to metabolite spatial variation of grains, which were interactively regulated by nitrogen and genotypes. N application significantly increased the relative accumulation of beneficial bioactive substances in the inner layer (P3 to P5), but excessive N application may inhibit this effect and lead to poor nutritional quality.
Collapse
Affiliation(s)
- Chuan Zhong
- College of Agriculture, Nanjing Agricultural University, Nanjing210095, China
| | - Jiawen Huang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Dong Jiang
- College of Agriculture, Nanjing Agricultural University, Nanjing210095, China
| | - Yingxin Zhong
- College of Agriculture, Nanjing Agricultural University, Nanjing210095, China
| | - Xiao Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing210095, China
| | - Jian Cai
- College of Agriculture, Nanjing Agricultural University, Nanjing210095, China
| | - Wei Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Qin Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
6
|
Arcalís E, Hörmann-Dietrich U, Stöger E. Multiscale imaging reveals the presence of autophagic vacuoles in developing maize endosperm. FRONTIERS IN PLANT SCIENCE 2023; 13:1082890. [PMID: 36684761 PMCID: PMC9853038 DOI: 10.3389/fpls.2022.1082890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Cereal endosperm is solely devoted to the storage of proteins and starch that will be used by the embryo upon germination. The high degree of specialization of this tissue is reflected in its endomembrane system, in which ER derived protein bodies and protein storage vacuoles (PSVs) are of particular interest. In maize seeds, the main storage proteins are zeins, that form transport incompetent aggregates within the ER lumen and finally build protein bodies that bud from the ER. In contrast to the zeins, the maize globulins are not very abundant and the vacuolar storage compartment of maize endosperm is not fully described. Whereas in other cereals, including wheat and barley, the PSV serves as the main protein storage compartment, only small, globulin-containing PSVs have been identified in maize so far. We present here a multi-scale set of data, ranging from live-cell imaging to more sophisticated 3D electron microscopy techniques (SBF-SEM), that has allowed us to investigate in detail the vacuoles in maize endosperm cells, including a novel, autophagic vacuole that is present in early developmental stages.
Collapse
Affiliation(s)
- Elsa Arcalís
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | |
Collapse
|
7
|
Transcriptome Analysis Reveals Potential Mechanism in Storage Protein Trafficking within Developing Grains of Common Wheat. Int J Mol Sci 2022; 23:ijms232314851. [PMID: 36499182 PMCID: PMC9738083 DOI: 10.3390/ijms232314851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
Gluten proteins are the major storage protein fraction in the mature wheat grain. They are restricted to the starchy endosperm, which defines the viscoelastic properties of wheat dough. The synthesis of these storage proteins is controlled by the endoplasmic reticulum (ER) and is directed into the vacuole via the Golgi apparatus. In the present study, transcriptome analysis was used to explore the potential mechanism within critical stages of grain development of wheat cultivar "Shaannong 33" and its sister line used as the control (CK). Samples were collected at 10 DPA (days after anthesis), 14 DPA, 20 DPA, and 30 DPA for transcriptomic analysis. The comparative transcriptome analysis identified that a total of 18,875 genes were differentially expressed genes (DEGs) between grains of four groups "T10 vs. CK10, T14 vs. CK14, T20 vs. CK20, and T30 vs. CK30", including 2824 up-regulated and 5423 down-regulated genes in T30 vs. CK30. Further, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment highlighted the maximum number of genes regulating protein processing in the endoplasmic reticulum (ER) during grain enlargement stages (10-20 DPA). In addition, KEGG database analysis reported 1362 and 788 DEGs involved in translation, ribosomal structure, biogenesis, flavonoid biosynthesis pathway and intracellular trafficking, secretion, and vesicular transport through protein processing within ER pathway (ko04141). Notably, consistent with the higher expression of intercellular storage protein trafficking genes at the initial 10 DPA, there was relatively low expression at later stages. Expression levels of nine randomly selected genes were verified by qRT-PCR, which were consistent with the transcriptome data. These data suggested that the initial stages of "cell division" played a significant role in protein quality control within the ER, thus maintaining the protein quality characteristics at grain maturity. Furthermore, our data suggested that the protein synthesis, folding, and trafficking pathways directed by a different number of genes during the grain enlargement stage contributed to the observed high-quality characteristics of gluten protein in Shaannong 33 (Triticum aestivum L.).
Collapse
|
8
|
The molecular basis of cereal grain proteostasis. Essays Biochem 2022; 66:243-253. [PMID: 35818971 PMCID: PMC9400069 DOI: 10.1042/ebc20210041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
Storage proteins deposited in the endosperm of cereal grains are both a nitrogen reserve for seed germination and seedling growth and a primary protein source for human nutrition. Detailed surveys of the patterns of storage protein accumulation in cereal grains during grain development have been undertaken, but an in-depth understanding of the molecular mechanisms that regulate these patterns is still lacking. Accumulation of storage proteins in cereal grains involves a series of subcellular compartments, a set of energy-dependent events that compete with other cellular processes, and a balance of protein synthesis and protein degradation rates at different times during the developmental process. In this review, we focus on the importance of rates in cereal grain storage protein accumulation during grain development and outline the potential implications and applications of this information to accelerate modern agriculture breeding programmes and optimize energy use efficiency in proteostasis.
Collapse
|
9
|
Vitale A, Pedrazzini E. StresSeed: The Unfolded Protein Response During Seed Development. FRONTIERS IN PLANT SCIENCE 2022; 13:869008. [PMID: 35432435 PMCID: PMC9008589 DOI: 10.3389/fpls.2022.869008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
During seed development, the endoplasmic reticulum (ER) takes care of the synthesis and structural maturation of very high amounts of storage proteins in a relatively short time. The ER must thus adjust its extension and machinery to optimize this process. The major signaling mechanism to maintain ER homeostasis is the unfolded protein response (UPR). Both storage proteins that assemble into ER-connected protein bodies and those that are delivered to protein storage vacuoles stimulate the UPR, but its extent and features are specific for the different storage protein classes and even for individual members of each class. Furthermore, evidence exists for anticipatory UPR directly connected to the development of storage seed cells and for selective degradation of certain storage proteins soon after their synthesis, whose signaling details are however still largely unknown. All these events are discussed, also in the light of known features of mammalian UPR.
Collapse
|