1
|
Amorim CEG, Di C, Lin M, Marsden C, Del Carpio CA, Mah JC, Robinson J, Kim BY, Mooney JA, Cornejo OE, Lohmueller KE. Evolutionary consequences of domestication on the selective effects of new amino acid changing mutations in canids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623529. [PMID: 39605619 PMCID: PMC11601280 DOI: 10.1101/2024.11.13.623529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The domestication of wild canids led to dogs no longer living in the wild but instead residing alongside humans. Extreme changes in behavior and diet associated with domestication may have led to the relaxation of the selective pressure on traits that may be less important in the domesticated context. Thus, here we hypothesize that strongly deleterious mutations may have become less deleterious in domesticated populations. We test this hypothesis by estimating the distribution of fitness effects (DFE) for new amino acid changing mutations using whole-genome sequence data from 24 gray wolves and 61 breed dogs. We find that the DFE is strikingly similar across canids, with 26-28% of new amino acid changing mutations being neutral/nearly neutral (|s| < 1e-5), and 41-48% under strong purifying selection (|s| > 1e-2). Our results are robust to different model assumptions suggesting that the DFE is stable across short evolutionary timescales, even in the face of putative drastic changes in the selective pressure caused by artificial selection during domestication and breed formation. On par with previous works describing DFE evolution, our data indicate that the DFE of amino acid changing mutations depends more strongly on genome structure and organismal characteristics, and less so on shifting selective pressures or environmental factors. Given the constant DFE and previous data showing that genetic variants that differentiate wolf and dog populations are enriched in regulatory elements, we speculate that domestication may have had a larger impact on regulatory variation than on amino acid changing mutations.
Collapse
Affiliation(s)
| | - Chenlu Di
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
| | - Meixi Lin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Clare Marsden
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
- Serology/DNA unit, Forensic Science Division, Los Angeles Police Department, Los Angeles CA 90032
| | - Christina A. Del Carpio
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
| | - Jonathan C. Mah
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
| | - Jacqueline Robinson
- Institute for Human Genetics, University of California San Francisco, San Francisco CA 94143
| | - Bernard Y. Kim
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jazlyn A. Mooney
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, 90089, USA
| | - Omar E. Cornejo
- Ecology & Evolutionary Biology Department, University of California, Santa Cruz, California, 95060, USA
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, 90095, USA
| |
Collapse
|
2
|
King DG. Evolving a favorable distribution for mutation effects. Trends Genet 2024; 40:819-821. [PMID: 39278786 DOI: 10.1016/j.tig.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/18/2024]
Abstract
Tandem-repeat DNA sequences appear to be singularly capable of yielding abundant repeat-number mutations with a potentially advantageous distribution of fitness effects. Although knowing the rates and relative proportions of deleterious, neutral and beneficial mutations is fundamental for understanding evolvability, analysis of adaptation routinely overlooks small-effect mutations arising in tandem repeats.
Collapse
Affiliation(s)
- David G King
- Department of Anatomy, School of Medicine, Southern Illinois University Carbondale, Carbondale, IL, USA; Department of Zoology, College of Agricultural, Life, and Physical Sciences, Southern Illinois University Carbondale, Carbondale, IL, USA.
| |
Collapse
|
3
|
Fu YB, Peterson GW, Horbach C. Deleterious and Adaptive Mutations in Plant Germplasm Conserved Ex Situ. Mol Biol Evol 2023; 40:msad238. [PMID: 37931158 PMCID: PMC10724023 DOI: 10.1093/molbev/msad238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Conserving more than 7 million plant germplasm accessions in 1,750 genebanks worldwide raises the hope of securing the food supply for humanity for future generations. However, there is a genetic cost for such long-term germplasm conservation, which has been largely unaccounted for before. We investigated the extent and variation of deleterious and adaptive mutations in 490 individual plants representing barley, wheat, oat, soybean, maize, rapa, and sunflower collections in a seed genebank using RNA-Seq technology. These collections were found to have a range of deleterious mutations detected from 125 (maize) to 83,695 (oat) with a mean of 13,537 and of the averaged sample-wise mutation burden per deleterious locus from 0.069 to 0.357 with a mean of 0.200. Soybean and sunflower collections showed that accessions acquired earlier had increased mutation burdens. The germplasm with more years of storage in several collections carried more deleterious and fewer adaptive mutations. The samples with more cycles of germplasm regeneration revealed fewer deleterious and more adaptive mutations. These findings are significant for understanding mutational dynamics and genetic cost in conserved germplasm and have implications for long-term germplasm management and conservation.
Collapse
Affiliation(s)
- Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Gregory W Peterson
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Carolee Horbach
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| |
Collapse
|
4
|
Abstract
AbstractEvolutionary biologists have thought about the role of genetic variation during adaptation for a very long time-before we understood the organization of the genetic code, the provenance of genetic variation, and how such variation influenced the phenotypes on which natural selection acts. Half a century after the discovery of the structure of DNA and the unraveling of the genetic code, we have a rich understanding of these problems and the means to both delve deeper and widen our perspective across organisms and natural populations. The 2022 Vice Presidential Symposium of the American Society of Naturalists highlighted examples of recent insights into the role of genetic variation in adaptive processes, which are compiled in this special section. The work was conducted in different parts of the world, included theoretical and empirical studies with diverse organisms, and addressed distinct aspects of how genetic variation influences adaptation. In our introductory article to the special section, we discuss some important recent insights about the generation and maintenance of genetic variation, its impacts on phenotype and fitness, its fate in natural populations, and its role in driving adaptation. By placing the special section articles in the broader context of recent developments, we hope that this overview will also serve as a useful introduction to the field.
Collapse
|
5
|
Cotto O, Day T. A null model for the distribution of fitness effects of mutations. Proc Natl Acad Sci U S A 2023; 120:e2218200120. [PMID: 37252948 PMCID: PMC10266029 DOI: 10.1073/pnas.2218200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
The distribution of fitness effects (DFE) of new mutations is key to our understanding of many evolutionary processes. Theoreticians have developed several models to help understand the patterns seen in empirical DFEs. Many such models reproduce the broad patterns seen in empirical DFEs but these models often rely on structural assumptions that cannot be tested empirically. Here, we investigate how much of the underlying "microscopic" biological processes involved in the mapping of new mutations to fitness can be inferred from "macroscopic" observations of the DFE. We develop a null model by generating random genotype-to-fitness maps and show that the null DFE is that with the largest possible information entropy. We further show that, subject to one simple constraint, this null DFE is a Gompertz distribution. Finally, we illustrate how the predictions of this null DFE match empirically measured DFEs from several datasets, as well as DFEs simulated from Fisher's geometric model. This suggests that a match between models and empirical data is often not a very strong indication of the mechanisms underlying the mapping of mutation to fitness.
Collapse
Affiliation(s)
- Olivier Cotto
- Department of Mathematics and Statistics, Queens University, Kingston, ON, K7L 3N6, Canada
- Department of Biology, Queens University, Kingston, ON, K7L 3N6, Canada
- Plant Health Institute Montpellier, Université Montpellier, Institut National de Recherche pour l’Agriculture, l’alimentation et l’Environnement, Centre de coopération Internationale en Recherche Agronomique pour le Développement, Institut de Recherche pour le Développement, Institut Agro, Montpellier, F-34398, France
| | - Troy Day
- Department of Mathematics and Statistics, Queens University, Kingston, ON, K7L 3N6, Canada
- Department of Biology, Queens University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
6
|
Giles‐Pérez GI, Aguirre‐Planter E, Eguiarte LE, Jaramillo‐Correa JP. Demographic modelling helps track the rapid and recent divergence of a conifer species pair from Central Mexico. Mol Ecol 2022; 31:5074-5088. [PMID: 35951172 PMCID: PMC9804182 DOI: 10.1111/mec.16646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 01/05/2023]
Abstract
Secondary contact of recently diverged species may have several outcomes, ranging from rampant hybridization to reinforced reproductive isolation. In plants, selfing tolerance and disjunct reproductive phenology may lead to reproductive isolation at contact zones. However, they may also evolve under both allopatric or parapatric frameworks and originate from adaptive and/or neutral forces. Inferring the historical demography of diverging taxa is thus a crucial step to identify factors that may have led to putative reproductive isolation. We explored various competing demographypotheses to account for the rapid divergence of a fir species complex (Abies flinckii-A. religiosa) distributed in "sky-islands" across central Mexico (i.e., along the Trans-Mexican Volcanic Belt; TMVB). Despite co-occurring in two independent sympatric regions (west and centre), these taxa rarely interbreed because of disjunct reproductive phenologies. We genotyped 1147 single nucleotide polymorphisms, generated by GBS (genotyping by sequencing), across 23 populations, and compared multiple scenarios based on the geological history of the TMVB. The best-fitting model revealed one of the most rapid and complete speciation cases for a conifer species-pair, dating back to ~1.2 million years ago. Coupled with the lack of support for stepwise colonization, our coalescent inferences point to an early cessation of interspecific gene flow under parapatric speciation; ancestral gene flow during divergence was asymmetrical (mostly from western firs into A. religiosa) and exclusive to the most ancient (i.e., central) contact zone. Factors promoting rapid reproductive isolation should be explored in other slowly evolving species complexes as they may account for the large tropical and subtropical diversity.
Collapse
Affiliation(s)
- Gustavo I. Giles‐Pérez
- Programa de Doctorado en Ciencias BiomédicasUniversidad Nacional Autónoma de MéxicoCDMXMexico,Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoCDMXMexico
| | - Erika Aguirre‐Planter
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoCDMXMexico
| | - Luis E. Eguiarte
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoCDMXMexico
| | | |
Collapse
|
7
|
Genome-wide analyses of introgression between two sympatric Asian oak species. Nat Ecol Evol 2022; 6:924-935. [PMID: 35513577 DOI: 10.1038/s41559-022-01754-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
Abstract
Introgression can be an important source of new alleles for adaption under rapidly changing environments, perhaps even more important than standing variation. Though introgression has been extensively studied in many plants and animals, key questions on the underlying mechanisms of introgression still remain unanswered. In particular, we are yet to determine the genomic distribution of introgressed regions along the genome; whether the extent and patterns of introgression are influenced by ecological factors; and when and how introgression contributes to adaptation. Here, we generated high-quality genomic resources for two sympatric widespread Asian oak species, Quercus acutissima and Q. variabilis, sampled in multiple forests to study introgression between them. We show that introgressed regions are broadly distributed across the genome. Introgression was affected by genetic divergence between pairs of populations and by the similarity of the environments in which they live-populations occupying similar ecological sites tended to share the same introgressed regions. Introgressed genomic footprints of adaptation were preferentially located in regions with suppressed recombination rate. Introgression probably confers adaptation in these oak populations by introducing allelic variation in cis-regulatory elements, in particular through transposable element insertions, thereby altering the regulation of genes related to stress. Our results provide new avenues of research for uncovering mechanisms of adaptation due to hybridization in sympatric species.
Collapse
|