1
|
Cao Y, Kim D, Koh SS, Li Z, Rigoldi F, Fortmueller JE, Goh K, Zhang Y, Lim EJ, Sun H, Uyehara E, Cheerlavancha R, Han Y, Ram RJ, Urano D, Marelli B. Nanofabrication of silk microneedles for high-throughput micronutrient delivery and continuous sap monitoring in plants. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01923-2. [PMID: 40301677 DOI: 10.1038/s41565-025-01923-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 03/31/2025] [Indexed: 05/01/2025]
Abstract
Biomaterials bridging the biotic-abiotic interface in plants offer the opportunity to precisely deliver agrochemicals and continuously monitor plant health, with the goals of increasing resilience to climate change, enhancing crop production and mitigating environmental impact. In this study we report the manipulation of silk fibroin assembly with inorganics nucleation at their phase front to nanomanufacture porous and hollow microneedles that can be interfaced with plants. Plant growth analysis and quantification of wounding gene expression show a non-significant systemic wounding response to the injection of silk microneedles in tomato plants. Microneedles with a hollow structure enable the systemic delivery of plant micronutrients to treat chlorosis in tomato plants and crop biofortification through transport of human micronutrients injected in the petiole and loaded into tomato fruits. Hollow microneedles also provide access to plant vasculature for sap sampling, enabling continuous monitoring and early detection of phytoaccumulation of environmental contaminants such as cadmium.
Collapse
Affiliation(s)
- Yunteng Cao
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Doyoon Kim
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sally Shuxian Koh
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Zheng Li
- Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Federica Rigoldi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia Eva Fortmueller
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kasey Goh
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Yilin Zhang
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eugene J Lim
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hui Sun
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elise Uyehara
- Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Raju Cheerlavancha
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Yangyang Han
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Rajeev J Ram
- Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Benedetto Marelli
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
| |
Collapse
|
2
|
Roussin-Léveillée C, Mackey D, Ekanayake G, Gohmann R, Moffett P. Extracellular niche establishment by plant pathogens. Nat Rev Microbiol 2024; 22:360-372. [PMID: 38191847 PMCID: PMC11593749 DOI: 10.1038/s41579-023-00999-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 01/10/2024]
Abstract
The plant extracellular space, referred to as the apoplast, is inhabited by a variety of microorganisms. Reflecting the crucial nature of this compartment, both plants and microorganisms seek to control, exploit and respond to its composition. Upon sensing the apoplastic environment, pathogens activate virulence programmes, including the delivery of effectors with well-established roles in suppressing plant immunity. We posit that another key and foundational role of effectors is niche establishment - specifically, the manipulation of plant physiological processes to enrich the apoplast in water and nutritive metabolites. Facets of plant immunity counteract niche establishment by restricting water, nutrients and signals for virulence activation. The complex competition to control and, in the case of pathogens, exploit the apoplast provides remarkable insights into the nature of virulence, host susceptibility, host defence and, ultimately, the origin of phytopathogenesis. This novel framework focuses on the ecology of a microbial niche and highlights areas of future research on plant-microorganism interactions.
Collapse
Affiliation(s)
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA.
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, USA.
| | - Gayani Ekanayake
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA
| | - Reid Gohmann
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
3
|
Yang S, Cai W, Wu R, Huang Y, Lu Q, Hui Wang, Huang X, Zhang Y, Wu Q, Cheng X, Wan M, Lv J, Liu Q, Zheng X, Mou S, Guan D, He S. Differential CaKAN3-CaHSF8 associations underlie distinct immune and heat responses under high temperature and high humidity conditions. Nat Commun 2023; 14:4477. [PMID: 37491353 PMCID: PMC10368638 DOI: 10.1038/s41467-023-40251-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
High temperature and high humidity (HTHH) conditions increase plant susceptibility to a variety of diseases, including bacterial wilt in solanaceous plants. Some solanaceous plant cultivars have evolved mechanisms to activate HTHH-specific immunity to cope with bacterial wilt disease. However, the underlying mechanisms remain poorly understood. Here we find that CaKAN3 and CaHSF8 upregulate and physically interact with each other in nuclei under HTHH conditions without inoculation or early after inoculation with R. solanacearum in pepper. Consequently, CaKAN3 and CaHSF8 synergistically confer immunity against R. solanacearum via activating a subset of NLRs which initiates immune signaling upon perception of unidentified pathogen effectors. Intriguingly, when HTHH conditions are prolonged without pathogen attack or the temperature goes higher, CaHSF8 no longer interacts with CaKAN3. Instead, it directly upregulates a subset of HSP genes thus activating thermotolerance. Our findings highlight mechanisms controlling context-specific activation of high-temperature-specific pepper immunity and thermotolerance mediated by differential CaKAN3-CaHSF8 associations.
Collapse
Affiliation(s)
- Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Weiwei Cai
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- College of Horticultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, PR China
| | - Ruijie Wu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Yu Huang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qiaoling Lu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Hui Wang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Xueying Huang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Yapeng Zhang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qing Wu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Xingge Cheng
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Meiyun Wan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Jingang Lv
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qian Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Xiang Zheng
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Shaoliang Mou
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Deyi Guan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China.
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China.
| |
Collapse
|