1
|
Liu R, Weng X, Li X, Cao Y, Li Q, Luan L, Tong D, Kong Z, Wang H, Wang T, Gong Q. A synthetic chlorophagy receptor promotes plant fitness by mediating chloroplast microautophagy. Cell Rep 2025; 44:115759. [PMID: 40448996 DOI: 10.1016/j.celrep.2025.115759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 04/07/2025] [Accepted: 05/08/2025] [Indexed: 06/02/2025] Open
Abstract
Chloroplasts are photosynthetic organelles and one of the major protein-containing organelles in green plants and algae. Although chloroplast contents or entire chloroplasts can be cleared by various vesicular pathways and autophagy, canonical chlorophagy receptors remain unidentified. Also, whether chlorophagy can be enhanced to benefit plants remains unknown. Here, we report the design and validation of a synthetic chlorophagy receptor that promotes plant fitness. The receptor LIR-SNT-BFP contains a fragment spanning the LIR/AIM of NBR1 and the N-terminal amphipathic helix of SFR2. The synthetic receptor localizes to chloroplasts and recruits ATG8a in planta. Induced expression of the synthetic receptor promotes microautophagy of entire chloroplasts, independent of ATG5 or ATG7. Meanwhile, it induces chloroplast fission. Notably, moderate induction of chlorophagy promotes rosette growth, whereas excessive chlorophagy appears detrimental. Induced chlorophagy also partially suppresses herbicide-induced leaf chlorosis. Our study provides proof of concept for controlling chloroplast degradation using a synthetic chlorophagy receptor.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences & Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xun Weng
- Guangdong Provincial Key Laboratory for the Developmental Biology and Environmental Adaption of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - Xinjing Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences & Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yongheng Cao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Qiyun Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Lin Luan
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Danqing Tong
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Hao Wang
- Guangdong Provincial Key Laboratory for the Developmental Biology and Environmental Adaption of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - Taotao Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences & Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences & Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| |
Collapse
|
2
|
Zhang Z, Tan R, Xiong Z, Feng Y, Chen L. Dysregulation of autophagy during photoaging reduce oxidative stress and inflammatory damage caused by UV. Front Pharmacol 2025; 16:1562845. [PMID: 40421222 PMCID: PMC12104874 DOI: 10.3389/fphar.2025.1562845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Photoaging, the premature aging of skin due to chronic ultraviolet (UV) exposure, is a growing concern in dermatology and cosmetic science. While UV radiation is known to induce DNA damage, oxidative stress, and inflammation in skin cells, recent research unveils a promising countermeasure: autophagy. This review explores the intricate relationship between autophagy and photoaging, highlighting how this cellular recycling process can mitigate UV-induced damage. We begin by examining the differential impacts of UVA and UVB radiation on skin cells and the role of oxidative stress in accelerating photoaging. Next, we delve into the molecular mechanisms of autophagy, including its various forms and regulatory pathways. Central to this review is the discussion of autophagy's protective functions, such as the clearance of damaged organelles and proteins, and its role in maintaining genomic integrity. Furthermore, we address the current challenges in harnessing autophagy for therapeutic purposes, including the need for selective autophagy inducers and a deeper understanding of its context-dependent effects. By synthesizing recent advancements and proposing future research directions, this review underscores the potential of autophagy modulation as a novel strategy to prevent and treat photoaging. This comprehensive analysis aims to inspire further investigation into autophagy-based interventions, offering new hope for preserving skin health in the face of environmental stressors.
Collapse
Affiliation(s)
- Zhongsong Zhang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Run Tan
- Department of Dermatology, Chengdu Second People‘s Hospital, Chengdu, Sichuan Province, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Zuanyu Xiong
- Department of Medical Aesthetics, Nanbu People‘s Hospital, Nanchong, China
| | - Yanyan Feng
- Department of Dermatology, Chengdu Second People‘s Hospital, Chengdu, Sichuan Province, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Long Chen
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| |
Collapse
|
3
|
Schnider ST, Vigano MA, Affolter M, Aguilar G. Functionalized Protein Binders in Developmental Biology. Annu Rev Cell Dev Biol 2024; 40:119-142. [PMID: 39038471 DOI: 10.1146/annurev-cellbio-112122-025214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Developmental biology has greatly profited from genetic and reverse genetic approaches to indirectly studying protein function. More recently, nanobodies and other protein binders derived from different synthetic scaffolds have been used to directly dissect protein function. Protein binders have been fused to functional domains, such as to lead to protein degradation, relocalization, visualization, or posttranslational modification of the target protein upon binding. The use of such functionalized protein binders has allowed the study of the proteome during development in an unprecedented manner. In the coming years, the advent of the computational design of protein binders, together with further advances in scaffold engineering and synthetic biology, will fuel the development of novel protein binder-based technologies. Studying the proteome with increased precision will contribute to a better understanding of the immense molecular complexities hidden in each step along the way to generate form and function during development.
Collapse
Affiliation(s)
| | | | | | - Gustavo Aguilar
- Current affiliation: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Biozentrum, Universität Basel, Basel, Switzerland;
| |
Collapse
|
4
|
Liu Z, Yang Q, Wu P, Li Y, Lin Y, Liu W, Guo S, Liu Y, Huang Y, Xu P, Qian Y, Xie Q. Dynamic monitoring of TGW6 by selective autophagy during grain development in rice. THE NEW PHYTOLOGIST 2023; 240:2419-2435. [PMID: 37743547 DOI: 10.1111/nph.19271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
Crop yield must increase to achieve food security in the face of a growing population and environmental deterioration. Grain size is a prime breeding target for improving grain yield and quality in crop. Here, we report that autophagy emerges as an important regulatory pathway contributing to grain size and quality in rice. Mutations of rice Autophagy-related 9b (OsATG9b) or OsATG13a causes smaller grains and increase of chalkiness, whereas overexpression of either promotes grain size and quality. We also demonstrate that THOUSAND-GRAIN WEIGHT 6 (TGW6), a superior allele that regulates grain size and quality in the rice variety Kasalath, interacts with OsATG8 via the canonical Atg8-interacting motif (AIM), and then is recruited to the autophagosome for selective degradation. In consistent, alteration of either OsATG9b or OsATG13a expression results in reciprocal modulation of TGW6 abundance during grain growth. Genetic analyses confirmed that knockout of TGW6 in either osatg9b or osatg13a mutants can partially rescue their grain size defects, indicating that TGW6 is one of the substrates for autophagy to regulate grain development. We therefore propose a potential framework for autophagy in contributing to grain size and quality in crops.
Collapse
Affiliation(s)
- Zinan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qianying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Pingfan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yifan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanni Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wanqing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Academy of Agricultural Sciences, Rice Research Institute, Guangzhou, 510640, China
| | - Shaoying Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences and Technology, Guangxi University, Nanning, 530004, China
| | - Yifeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, 310001, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Yangwen Qian
- WIMI Biotechnology Co. Ltd., Changzhou, 213000, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
5
|
Jiang Z, Kuo YH, Arkin MR. Autophagy Receptor-Inspired Antibody-Fusion Proteins for Targeted Intracellular Degradation. J Am Chem Soc 2023; 145:23939-23947. [PMID: 37748140 PMCID: PMC10636752 DOI: 10.1021/jacs.3c05199] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 09/27/2023]
Abstract
Autophagy is responsible for the degradation of large intracellular contents, such as unwanted protein aggregates and organelles. Impaired autophagy can therefore lead to the accumulation of pathological aggregates, correlating with aging and neurodegenerative diseases. However, a broadly applicable methodology is not available for the targeted degradation of protein aggregates or organelles in mammalian cells. Herein, we developed a series of autophagy receptor-inspired targeting chimeras (AceTACs) that can induce the targeted degradation of aggregation-prone proteins and protein aggregates (e.g., huntingtin, TDP-43, and FUS mutants), as well as organelles (e.g., mitochondria, peroxisomes, and endoplasmic reticulum). These antibody-fusion-based AceTAC degraders were designed to mimic the function of autophagy receptors, simultaneously binding with the cellular targets and the LC3 proteins on the autophagosomal membrane, eventually transporting the target to the autophagy-lysosomal process for degradation. The AceTAC degradation system provides design principles for antibody-based degradation through autophagy, largely expanding the scope of intracellular targeted degradation technologies.
Collapse
Affiliation(s)
- Ziwen Jiang
- Department
of Pharmaceutical Chemistry, and Small Molecule Discovery Center, University of California, San Francisco, California 94158, United States
| | - Yu-Hsuan Kuo
- Department
of Pharmaceutical Chemistry, and Small Molecule Discovery Center, University of California, San Francisco, California 94158, United States
| | - Michelle R. Arkin
- Department
of Pharmaceutical Chemistry, and Small Molecule Discovery Center, University of California, San Francisco, California 94158, United States
| |
Collapse
|
6
|
Song I, Hong S, Huh SU. Identification and Expression Analysis of the Solanum tuberosum StATG8 Family Associated with the WRKY Transcription Factor. PLANTS (BASEL, SWITZERLAND) 2022; 11:2858. [PMID: 36365311 PMCID: PMC9659186 DOI: 10.3390/plants11212858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Autophagy is an evolutionarily well-conserved cellular catabolic pathway in eukaryotic cells and plays an important role in cellular processes. Autophagy is regulated by autophagy-associated (ATG) proteins. Among these ATG proteins, the ubiquitin-like protein ATG8/LC3 is essential for autophagosome formation and function. In this study, the potato StATG8 family showed clade I and clade II with significantly different sequences. Expression of the StATG8 family was also increased in senescence. Interestingly, the expression of the StATG8 and other core StATG genes decreased in potato tubers as the tubers matured. The StATG8 family also responded to a variety of stresses such as heat, wounding, salicylic acid, and salt stress. We also found that some Arabidopsis WRKY transcription factors interacted with the StATG8 protein in planta. Based on group II-a WRKY, StATG8-WRKY interaction is independent of the ATG8 interacting motif (AIM) or LC3 interacting region (LIR) motif. This study showed that the StATG8 family had diverse functions in tuber maturation and multiple stress responses in potatoes. Additionally, StATG8 may have an unrelated autophagy function in the nucleus with the WRKY transcription factor.
Collapse
Affiliation(s)
| | | | - Sung Un Huh
- Department of Biological Science, Kunsan National University, Gunsan 54150, Korea
| |
Collapse
|