1
|
Salvi E, Moyroud E. Building beauty: Understanding how hormone signaling regulates petal patterning and morphogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70101. [PMID: 40106266 PMCID: PMC11922171 DOI: 10.1111/tpj.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/23/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
The corolla of flowering plants provides pivotal functions for the reproduction of angiosperms, directly impacting the fitness of individuals. Different petal shapes and patterns contribute to these functions and, thus, participate in the production of morphological diversity and the emergence of new species. During petal morphogenesis, the coordination of cell fate specification, cell division, and cell expansion is coherent and robust across the petal blade and is set according to proximo-distal, medio-lateral, and abaxial-adaxial axes. However, the mechanisms specifying petal polarity and controlling cell behavior in a position-dependent manner as petals develop remain poorly understood. In this review, we draw parallels with other evolutionarily related plant lateral organs such as leaves to argue that hormones likely play central, yet largely unexplored, roles in such coordination. By examining petal development in Arabidopsis and other angiosperms, we frame what are the knowns and the unknowns of hormones contributions to petal morphogenesis and patterning. Finally, we argue that using emerging model organisms can provide invaluable information to tackle questions that have long remained unanswered, broadening our understanding by allowing us to investigate petal morphogenesis and the tinkering of phytohormone signaling through an evolutionary lens.
Collapse
Affiliation(s)
- Elena Salvi
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
- Department of Biology, University of Pisa, Via Luca Ghini 13, Pisa, 56126, Italy
| | - Edwige Moyroud
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| |
Collapse
|
2
|
Mi QL, Lv HT, Huang FF, Xu L, Huang ZY, Yang WW, Zou MY, Huang HT, Zeng WL, Zhao JY, Chen QX, Si-Tu YE, Xiang HY, Jiang YQ, Mai ZT, Ding SY, Liu ZY, Hu BK, Li LH, Li XM, Yu M, Wu FH, Gao Q. A Gln alteration influences leaf morphogenesis by mediating gibberellin levels in tobacco. JOURNAL OF PLANT PHYSIOLOGY 2025; 306:154437. [PMID: 39908707 DOI: 10.1016/j.jplph.2025.154437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
Nitrogen is a critical nutrient for plant growth and development. While numerous studies have investigated the mechanisms by which nitrate and/or ammonium regulate plant growth, little is known about whether and how amino acids regulate plant leaf development. This study demonstrates that tobacco plants with altered expression levels of an amino acid transporter (LYSINE HISTIDINE TRANSPORTER1, NtLHT1, Ntab0818090) exhibit significant differences in leaf morphology. Knock-out mutants exhibit elongated and narrower leaves compared to wild-type plants, whereas overexpression (OE) lines display orbicular leaves. Additionally, mutant plants exhibit decreased nitrogen use efficiency (NUE) under half MS medium and delayed development under nitrogen-depleted conditions. Moreover, overexpression lines demonstrate better performance. Although the mutant does not show significant lower level of nitrate or total amino acid content in the developing leaves, its amino acid profile, particularly glutamine (Gln), is significantly altered. Supplementation with Gln in the growth medium, rather than glutamate, can restore the morphological differences observed in mutant leaves, suggesting a pivotal role of Gln in regulating leaf shape. To further elucidate the mechanisms underlying leaf shape regulation, we analyzed endogenous hormone levels and applied exogenous hormones to these lines. Our findings suggest that amino acids transported from source organs, particularly glutamine (Gln), play a key role in controlling leaf development and morphology through the modulation of multiple phytohormones, such as gibberellic acid (GA).
Collapse
Affiliation(s)
- Qi-Li Mi
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Hong-Tao Lv
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Fei-Fei Huang
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Li Xu
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Zi-Ying Huang
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Wen-Wu Yang
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Mei-Yun Zou
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Hai-Tao Huang
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Wan-Li Zeng
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Jia-Yin Zhao
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Qing-Xian Chen
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Yong-En Si-Tu
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Hai-Ying Xiang
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Yuan-Qi Jiang
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Zhi-Tong Mai
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Shu-Yuan Ding
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Zhan-Yu Liu
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Bo-Keng Hu
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Liu-Hong Li
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Xue-Mei Li
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Fei-Hua Wu
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China.
| | - Qian Gao
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd., No. 41 Keyi Road, Kunming, 650106, China.
| |
Collapse
|
3
|
Osadchuk K, Beydler B, Cheng CL, Irish E. Transcriptome analyses at specific plastochrons reveal timing and involvement of phytosulfokine in maize vegetative phase change. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112317. [PMID: 39536951 DOI: 10.1016/j.plantsci.2024.112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Successive developmental stages of representative early and late juvenile, transition, and adult maize leaves were compared using machine-learning-aided analyses of gene expression patterns to characterize vegetative phase change (VPC), including identification of the timing of this developmental transition in maize. We used t-SNE to organize 32 leaf samples into 9 groups with similar patterns of gene expression. oposSOM yielded clusters of co-expressed genes from key developmental stages. TO-GCN supported a sequence of events in maize in which germination-associated ROS triggers a JA response, both relieving oxidative stress and inducing miR156 production, which in turn spurs juvenility. Patterns of expression of MIR395, which regulates sulfur assimilation, led to the hypothesis that phytosulfokine, a sulfated peptide, is involved in the transition to adult patterns of differentiation.
Collapse
Affiliation(s)
- Krista Osadchuk
- Department of Biology, 143 Biology Building, The University of Iowa, Iowa City, IA 52242, USA.
| | - Ben Beydler
- Department of Biology, 143 Biology Building, The University of Iowa, Iowa City, IA 52242, USA
| | - Chi-Lien Cheng
- Department of Biology, 143 Biology Building, The University of Iowa, Iowa City, IA 52242, USA.
| | - Erin Irish
- Department of Biology, 143 Biology Building, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
4
|
Yan S, Si Z, Qi G, Zang Y, Xuan L, He L, Cao Y, Li X, Zhang T, Hu Y. A CC-NB-ARC-LRR Gene Regulates Bract Morphology in Cotton. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406111. [PMID: 39364742 PMCID: PMC11600217 DOI: 10.1002/advs.202406111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/02/2024] [Indexed: 10/05/2024]
Abstract
Bracts are leaf-like structures in flowering plants. They serve multiple functions such as attracting pollinators, aiding tolerance of abiotic stressors, and conducting photosynthesis. While previous studies extensively examine bract function, the molecular mechanisms underlying bract growth remain unknown. Here, the map-based isolation and characterization of a crucial factor responsible for cotton bract development, identified from a mutant known as frego bract (fg), discovered by Frego in 1945 are presented. This gene, named Ghfg, encodes a CC-NB-ARC-LRR (CNL) family protein. Through analysis of bract form in plants with virus-induced gene silencing (VIGS) and transgenic plants, this gene is confirmed to be the causal gene under the fg locus. Furthermore, high-resolution single-cell transcriptomic landscape of cotton bracts is generated, which reveals differences related to auxin in proliferating cells from TM-1 and T582; differences in auxin distribution and ROS accumulation are experimentally verified. These findings suggest that GhFG is in a self-activated state in the fg mutant, and its activity leads to ROS accumulation that impacts auxin distribution and transport. Finally, an island cotton variety with the frego bract trait is developed, demonstrating a novel solution for reducing the high impurity rate caused by bract remnants.
Collapse
Affiliation(s)
- Sunyi Yan
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityZhejiang310058China
- Precision Breeding and Germplasm Innovation Team for Cotton and Economic CropsHainan Institute of Zhejiang UniversitySanya572025China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityZhejiang310058China
| | - Guoan Qi
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityZhejiang310058China
- Precision Breeding and Germplasm Innovation Team for Cotton and Economic CropsHainan Institute of Zhejiang UniversitySanya572025China
| | - Yihao Zang
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityZhejiang310058China
| | - Lisha Xuan
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityZhejiang310058China
| | - Lu He
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityZhejiang310058China
- Precision Breeding and Germplasm Innovation Team for Cotton and Economic CropsHainan Institute of Zhejiang UniversitySanya572025China
| | - Yiwen Cao
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityZhejiang310058China
- Precision Breeding and Germplasm Innovation Team for Cotton and Economic CropsHainan Institute of Zhejiang UniversitySanya572025China
| | - Xiaoran Li
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityZhejiang310058China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityZhejiang310058China
- Precision Breeding and Germplasm Innovation Team for Cotton and Economic CropsHainan Institute of Zhejiang UniversitySanya572025China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityZhejiang310058China
- Precision Breeding and Germplasm Innovation Team for Cotton and Economic CropsHainan Institute of Zhejiang UniversitySanya572025China
| |
Collapse
|
5
|
Perico C, Zaidem M, Sedelnikova O, Bhattacharya S, Korfhage C, Langdale JA. Multiplexed in situ hybridization reveals distinct lineage identities for major and minor vein initiation during maize leaf development. Proc Natl Acad Sci U S A 2024; 121:e2402514121. [PMID: 38959034 PMCID: PMC11252972 DOI: 10.1073/pnas.2402514121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/20/2024] [Indexed: 07/04/2024] Open
Abstract
Leaves of flowering plants are characterized by diverse venation patterns. Patterning begins with the selection of vein-forming procambial initial cells from within the ground meristem of a developing leaf, a process which is considered to be auxin-dependent, and continues until veins are anatomically differentiated with functional xylem and phloem. At present, the mechanisms responsible for leaf venation patterning are primarily characterized in the model eudicot Arabidopsis thaliana which displays a reticulate venation network. However, evidence suggests that vein development may proceed via a different mechanism in monocot leaves where venation patterning is parallel. Here, we employed Molecular Cartography, a multiplexed in situ hybridization technique, to analyze the spatiotemporal localization of a subset of auxin-related genes and candidate regulators of vein patterning in maize leaves. We show how different combinations of auxin influx and efflux transporters are recruited during leaf and vein specification and how major and minor vein ranks develop with distinct identities. The localization of the procambial marker PIN1a and the spatial arrangement of procambial initial cells that give rise to major and minor vein ranks further suggests that vein spacing is prepatterned across the medio-lateral leaf axis prior to accumulation of the PIN1a auxin transporter. In contrast, patterning in the adaxial-abaxial axis occurs progressively, with markers of xylem and phloem gradually becoming polarized as differentiation proceeds. Collectively, our data suggest that both lineage- and position-based mechanisms may underpin vein patterning in maize leaves.
Collapse
Affiliation(s)
- Chiara Perico
- Department of Biology, University of Oxford, OxfordOX1 3RB, United Kingdom
| | - Maricris Zaidem
- Department of Biology, University of Oxford, OxfordOX1 3RB, United Kingdom
| | - Olga Sedelnikova
- Department of Biology, University of Oxford, OxfordOX1 3RB, United Kingdom
| | | | | | - Jane A. Langdale
- Department of Biology, University of Oxford, OxfordOX1 3RB, United Kingdom
| |
Collapse
|
6
|
Cowling CL, Homayouni AL, Callwood JB, McReynolds MR, Khor J, Ke H, Draves MA, Dehesh K, Walley JW, Strader LC, Kelley DR. ZmPILS6 is an auxin efflux carrier required for maize root morphogenesis. Proc Natl Acad Sci U S A 2024; 121:e2313216121. [PMID: 38781209 PMCID: PMC11145266 DOI: 10.1073/pnas.2313216121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
Plant root systems play a pivotal role in plant physiology and exhibit diverse phenotypic traits. Understanding the genetic mechanisms governing root growth and development in model plants like maize is crucial for enhancing crop resilience to drought and nutrient limitations. This study focused on identifying and characterizing ZmPILS6, an annotated auxin efflux carrier, as a key regulator of various crown root traits in maize. ZmPILS6-modified roots displayed reduced network area and suppressed lateral root formation, which are desirable traits for the "steep, cheap, and deep" ideotype. The research revealed that ZmPILS6 localizes to the endoplasmic reticulum and plays a vital role in controlling the spatial distribution of indole-3-acetic acid (IAA or "auxin") in primary roots. The study also demonstrated that ZmPILS6 can actively efflux IAA when expressed in yeast. Furthermore, the loss of ZmPILS6 resulted in significant proteome remodeling in maize roots, particularly affecting hormone signaling pathways. To identify potential interacting partners of ZmPILS6, a weighted gene coexpression analysis was performed. Altogether, this research contributes to the growing knowledge of essential genetic determinants governing maize root morphogenesis, which is crucial for guiding agricultural improvement strategies.
Collapse
Affiliation(s)
- Craig L. Cowling
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | | | - Jodi B. Callwood
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | - Maxwell R. McReynolds
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Jasper Khor
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | - Haiyan Ke
- Botany and Plant Sciences Department, University of California, Riverside, CA92521
| | - Melissa A. Draves
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | - Katayoon Dehesh
- Botany and Plant Sciences Department, University of California, Riverside, CA92521
| | - Justin W. Walley
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | | | - Dior R. Kelley
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| |
Collapse
|
7
|
Vlad D, Zaidem M, Perico C, Sedelnikova O, Bhattacharya S, Langdale JA. The WIP6 transcription factor TOO MANY LATERALS specifies vein type in C 4 and C 3 grass leaves. Curr Biol 2024; 34:1670-1686.e10. [PMID: 38531358 DOI: 10.1016/j.cub.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/04/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Grass leaves are invariantly strap shaped with an elongated distal blade and a proximal sheath that wraps around the stem. Underpinning this shape is a scaffold of leaf veins, most of which extend in parallel along the proximo-distal leaf axis. Differences between species are apparent both in the vein types that develop and in the distance between veins across the medio-lateral leaf axis. A prominent engineering goal is to increase vein density in leaves of C3 photosynthesizing species to facilitate the introduction of the more efficient C4 pathway. Here, we discover that the WIP6 transcription factor TOO MANY LATERALS (TML) specifies vein rank in both maize (C4) and rice (C3). Loss-of-function tml mutations cause large lateral veins to develop in positions normally occupied by smaller intermediate veins, and TML transcript localization in wild-type leaves is consistent with a role in suppressing lateral vein development in procambial cells that form intermediate veins. Attempts to manipulate TML function in rice were unsuccessful because transgene expression was silenced, suggesting that precise TML expression is essential for shoot viability. This finding may reflect the need to prevent the inappropriate activation of downstream targets or, given that transcriptome analysis revealed altered cytokinin and auxin signaling profiles in maize tml mutants, the need to prevent local or general hormonal imbalances. Importantly, rice tml mutants display an increased occupancy of veins in the leaf, providing a step toward an anatomical chassis for C4 engineering. Collectively, a conserved mechanism of vein rank specification in grass leaves has been revealed.
Collapse
Affiliation(s)
- Daniela Vlad
- Department of Biology, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK
| | - Maricris Zaidem
- Department of Biology, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK
| | - Chiara Perico
- Department of Biology, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK
| | - Olga Sedelnikova
- Department of Biology, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK
| | - Samik Bhattacharya
- Resolve BioSciences GmbH, Alfred-Nobel-Straße 10, 40789 Monheim am Rhein, Germany
| | - Jane A Langdale
- Department of Biology, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK.
| |
Collapse
|
8
|
Chen Z, Cortes L, Gallavotti A. Genetic dissection of cis-regulatory control of ZmWUSCHEL1 expression by type B RESPONSE REGULATORS. PLANT PHYSIOLOGY 2024; 194:2240-2248. [PMID: 38060616 PMCID: PMC10980522 DOI: 10.1093/plphys/kiad652] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/06/2023] [Indexed: 04/01/2024]
Abstract
Mutations in cis-regulatory regions play an important role in the domestication and improvement of crops by altering gene expression. However, assessing the in vivo impact of cis-regulatory elements (CREs) on transcriptional regulation and phenotypic outcomes remains challenging. Previously, we showed that the dominant Barren inflorescence3 (Bif3) mutant of maize (Zea mays) contains a duplicated copy of the homeobox transcription factor gene ZmWUSCHEL1 (ZmWUS1), named ZmWUS1-B. ZmWUS1-B is controlled by a spontaneously generated novel promoter region that dramatically increases its expression and alters patterning and development of young ears. Overexpression of ZmWUS1-B is caused by a unique enhancer region containing multimerized binding sites for type B RESPONSE REGULATORs (RRs), key transcription factors in cytokinin signaling. To better understand how the enhancer increases the expression of ZmWUS1 in vivo, we specifically targeted the ZmWUS1-B enhancer region by CRISPR-Cas9-mediated editing. A series of deletion events with different numbers of type B RR DNA binding motifs (AGATAT) enabled us to determine how the number of AGATAT motifs impacts in vivo expression of ZmWUS1-B and consequently ear development. In combination with dual-luciferase assays in maize protoplasts, our analysis reveals that AGATAT motifs have an additive effect on ZmWUS1-B expression, while the distance separating AGATAT motifs does not appear to have a meaningful impact, indicating that the enhancer activity derives from the sum of individual CREs. These results also suggest that in maize inflorescence development, there is a threshold of buffering capacity for ZmWUS1 overexpression.
Collapse
Affiliation(s)
- Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Liz Cortes
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
9
|
Cowling CL, Dash L, Kelley DR. Roles of auxin pathways in maize biology. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6989-6999. [PMID: 37493143 PMCID: PMC10690729 DOI: 10.1093/jxb/erad297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023]
Abstract
Phytohormones play a central role in plant development and environmental responses. Auxin is a classical hormone that is required for organ formation, tissue patterning, and defense responses. Auxin pathways have been extensively studied across numerous land plant lineages, including bryophytes and eudicots. In contrast, our understanding of the roles of auxin in maize morphogenesis and immune responses is limited. Here, we review evidence for auxin-mediated processes in maize and describe promising areas for future research in the auxin field. Several recent transcriptomic and genetic studies have demonstrated that auxin is a key influencer of both vegetative and reproductive development in maize (namely roots, leaves, and kernels). Auxin signaling has been implicated in both maize shoot architecture and immune responses through genetic and molecular analyses of the conserved co-repressor RAMOSA ENHANCER LOCUS2. Polar auxin transport is linked to maize drought responses, root growth, shoot formation, and leaf morphogenesis. Notably, maize has been a key system for delineating auxin biosynthetic pathways and offers many opportunities for future investigations on auxin metabolism. In addition, crosstalk between auxin and other phytohormones has been uncovered through gene expression studies and is important for leaf and root development in maize. Collectively these studies point to auxin as a cornerstone for maize biology that could be leveraged for improved crop resilience and yield.
Collapse
Affiliation(s)
- Craig L Cowling
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Linkan Dash
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Dior R Kelley
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
10
|
Awale P, McSteen P. Hormonal regulation of inflorescence and intercalary meristems in grasses. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102451. [PMID: 37739867 DOI: 10.1016/j.pbi.2023.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
Hormones played a fundamental role in improvement of yield in cereal grasses. Natural variants affecting gibberellic acid (GA) and auxin pathways were used to breed semi-dwarf varieties of rice, wheat, and sorghum, during the "Green Revolution" in the 20th century. Since then, variants with altered GA and cytokinin homeostasis have been used to breed cereals with increased grain number. These yield improvements were enabled by hormonal regulation of intercalary and inflorescence meristems. Recent advances have highlighted additional pathways, beyond the traditional CLAVATA-WUSCHEL pathway, in the regulation of auxin and cytokinin in inflorescence meristems, and have expanded our understanding of the role of GA in intercalary meristems.
Collapse
Affiliation(s)
- Prameela Awale
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
11
|
Qin L, Wu X, Zhao H. Molecular and functional dissection of LIGULELESS1 (LG1) in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1190004. [PMID: 37377813 PMCID: PMC10291273 DOI: 10.3389/fpls.2023.1190004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Plant architecture is a culmination of the features necessary for capturing light energy and adapting to the environment. An ideal architecture can promote an increase in planting density, light penetration to the lower canopy, airflow as well as heat distribution to achieve an increase in crop yield. A number of plant architecture-related genes have been identified by map cloning, quantitative trait locus (QTL) and genome-wide association study (GWAS) analysis. LIGULELESS1 (LG1) belongs to the squamosa promoter-binding protein (SBP) family of transcription factors (TFs) that are key regulators for plant growth and development, especially leaf angle (LA) and flower development. The DRL1/2-LG1-RAVL pathway is involved in brassinosteroid (BR) signaling to regulate the LA in maize, which has facilitated the regulation of plant architecture. Therefore, exploring the gene regulatory functions of LG1, especially its relationship with LA genes, can help achieve the precise regulation of plant phenotypes adapted to varied environments, thereby increasing the yield. This review comprehensively summarizes the advances in LG1 research, including its effect on LA and flower development. Finally, we discuss the current challenges and future research goals associate with LG1.
Collapse
Affiliation(s)
- Lei Qin
- College of Life Sciences, Qufu Normal University, Qufu, China
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Taian, China
| | - Xintong Wu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Hang Zhao
- College of Life Sciences, Qufu Normal University, Qufu, China
| |
Collapse
|