1
|
Xue G, Tian L, Zhao J. Effects of simulated warming and litter removal on structure and function of semi-humid alpine grassland in the Qinghai-Tibet Plateau. FRONTIERS IN PLANT SCIENCE 2025; 16:1567414. [PMID: 40443436 PMCID: PMC12119568 DOI: 10.3389/fpls.2025.1567414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/22/2025] [Indexed: 06/02/2025]
Abstract
Climate warming and human activities are modifying plant litter inputs in alpine grasslands, which is predicted to affect ecosystem structure and function. However, the effects of plant litter removal and warming as well as the combined impacts on the ecological functions of alpine grasslands are not well understood. A field experiment was conducted to investigate the effects of experimental warming, litter removal, and their interaction on ecosystem multifunctionality (EMF) of alpine grasslands. Our results demonstrated a significant decrease in plant diversity (p < 0.05) and vegetation cover (p < 0.01) under experimental warming treatment, whereas the richness index (R) and belowground biomass (BGB) significantly increased under litter removal treatment (p < 0.05). The interaction effect of experimental warming and litter removal results in a neutralizing effect on the ecological functions in alpine grasslands. Meanwhile, the EMF tended to increase under all treatments of experimental warming, litter removal, and experimental warming-litter removal. However, there are differences in the response of aboveground and belowground multifunctionality to experimental warming and litter removal. The aboveground ecosystem multifunctionality (AEMF) showed a decreasing trend, while belowground ecosystem multifunctionality (BEMF) increased significantly (p < 0.01) under the experimental warming treatment. In contrast, AEMF and BEMF showed an increasing trend in litter removal treatment. In addition, the study found that litter removal could alleviate the negative effect of experimental warming on multiple ecological functions. These research findings can serve as a reference for maintaining ecosystem functions in alpine grasslands under climate change conditions and provide effective measures to enhance the capacity of grassland ecosystems to respond to climate change. The application of appropriate litter management measures and other nature-based solutions (NbS) to improve ecosystem functions, aiming to adopt sustainable approaches to address environmental challenges, holds significant importance for ecological conservation.
Collapse
Affiliation(s)
- Guomin Xue
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, and College of Grassland Resources, Southwest Minzu University, Chengdu, China
| | - Lihua Tian
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, and College of Grassland Resources, Southwest Minzu University, Chengdu, China
| | - Jingxue Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Corrigendum to: Decadal soil warming decreased vascular plant above and belowground production in a subarctic grassland by inducing nitrogen limitation. THE NEW PHYTOLOGIST 2024; 243:497. [PMID: 38659155 DOI: 10.1111/nph.19784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
|
3
|
Cai M, Zhang Y, Zhao G, Zhao B, Cong N, Zhu J, Zheng Z, Wu W, Duan X. Excessive climate warming exacerbates nitrogen limitation on microbial metabolism in an alpine meadow of the Tibetan Plateau: Evidence from soil ecoenzymatic stoichiometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172731. [PMID: 38663605 DOI: 10.1016/j.scitotenv.2024.172731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Soil ecoenzymatic stoichiometry reflects the dynamic equilibrium between microorganism's nutrient requirements and resource availability. However, uncertainties persist regarding the key determinants of nutrient restriction in relation to microbial metabolism under varying degrees of warming. Our long-term and multi-level warming field experiment (control treatment, +0.42 °C, +1.50 °C, +2.55 °C) in a typical alpine meadow unveiled a decline in carbon (C)- and nitrogen (N)-acquired enzymes with escalating warming magnitudes, while phosphorus (P)-acquired enzymes displayed an opposite trend. Employing enzymatic stoichiometry modeling, we assessed the nutrient limitations of microbial metabolic activity and found that C and N co-limited microbial metabolic activities in the alpine meadow. Remarkably, high-level warming (+2.55 °C) exacerbated microbe N limitation, but alleviate C limitations. The structural equation modeling further indicated that alterations in soil extracellular enzyme characteristics (SES) were more effectively elucidated by microbial characteristics (microbial biomass C, N, P, and their ratios) rather than by soil nutrients (total nutrient contents and their ratios). However, the microbial control over SES diminished with higher levels of warming magnitude. Overall, our results provided novel evidence that the factors driving microbe metabolic limitation may vary with the degree of warming in Tibet alpine grasslands. Changes in nutrient demand for microorganism's metabolism in response to warming should be considered to improve nutrient management in adapting to different future warming scenarios.
Collapse
Affiliation(s)
- Mengke Cai
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yangjian Zhang
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Science, Beijing 100190, China.
| | - Guang Zhao
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Bo Zhao
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Nan Cong
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Juntao Zhu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
| | - Zhoutao Zheng
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Wenjuan Wu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Xiaoqing Duan
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Chen X, Wang G, Li N, Chang R, Zhang T, Mao T, Song C, Huang K. Nitrogen dynamics of alpine swamp meadows are less responsive to climate warming than that of alpine meadows. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172446. [PMID: 38621528 DOI: 10.1016/j.scitotenv.2024.172446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
The freeze-thaw cycle mediates permafrost soil hydrothermal status, nitrogen (N) mineralization, and loss. Furthermore, it affects root development and competition among nitrophilic and other species, shaping the pattern of N distribution in alpine ecosystems. However, the specific N dynamics during the growing season and N loss during the non-growing season in response to climate warming under low- and high-moisture conditions are not well documented. Therefore, we added 15N tracers to trace the fate of N in warmed and ambient alpine meadows and alpine swamp meadows in the permafrost region of the Qinghai-Tibet Plateau. During the growing season, warming increased 15N recovery (15Nrec) in shoots of K. humilis, litters, 0-5 and 5-20 cm roots in the alpine meadow by 149.94 % ± 52.87 %, 114.58 % ± 24.43 %, 61.11 % ± 32.27 %, and 97.12 % ± 42.92 %, respectively, while increased 15Nrec of litters by 151.55 % ± 27.06 % in the alpine swamp meadow. During the non-growing season, warming reduced 15N stored in roots by 486.77 % ± 57.90 %, though increased the 15N recovery in 5-20 cm soil depth by 76.68 % ± 39.42 % in the alpine meadow, whereas it did not affect N loss during the non-growing season in the alpine swamp meadow. Overall, warming promoted N utilization by increasing the plant N pool during the growing season, and enhanced root N loss and downward migration during the non-growing season due to the freeze-thaw process, which may result in fine root turnover and cell destruction releasing N in the alpine meadow. Conversely, the N dynamics of alpine swamp meadows were less responsive to climate warming.
Collapse
Affiliation(s)
- Xiaopeng Chen
- College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China
| | - Genxu Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China.
| | - Na Li
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ruiying Chang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Tao Zhang
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| | - Tianxu Mao
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Chunlin Song
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
| | - Kewei Huang
- Hubei Key Laboratory of Basin Water Security, Changjiang Survey, Planning, Design and Research Co., Ltd., Wuhan 430010, China
| |
Collapse
|
5
|
Metze D, Schnecker J, de Carlan CLN, Bhattarai B, Verbruggen E, Ostonen I, Janssens IA, Sigurdsson BD, Hausmann B, Kaiser C, Richter A. Soil warming increases the number of growing bacterial taxa but not their growth rates. SCIENCE ADVANCES 2024; 10:eadk6295. [PMID: 38394199 PMCID: PMC10889357 DOI: 10.1126/sciadv.adk6295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Soil microorganisms control the fate of soil organic carbon. Warming may accelerate their activities putting large carbon stocks at risk of decomposition. Existing knowledge about microbial responses to warming is based on community-level measurements, leaving the underlying mechanisms unexplored and hindering predictions. In a long-term soil warming experiment in a Subarctic grassland, we investigated how active populations of bacteria and archaea responded to elevated soil temperatures (+6°C) and the influence of plant roots, by measuring taxon-specific growth rates using quantitative stable isotope probing and 18O water vapor equilibration. Contrary to prior assumptions, increased community growth was associated with a greater number of active bacterial taxa rather than generally faster-growing populations. We also found that root presence enhanced bacterial growth at ambient temperatures but not at elevated temperatures, indicating a shift in plant-microbe interactions. Our results, thus, reveal a mechanism of how soil bacteria respond to warming that cannot be inferred from community-level measurements.
Collapse
Affiliation(s)
- Dennis Metze
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Jörg Schnecker
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | | | - Biplabi Bhattarai
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Erik Verbruggen
- Research Group Plants and Ecosystems, University of Antwerp, Antwerp, Belgium
| | - Ivika Ostonen
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Ivan A. Janssens
- Research Group Plants and Ecosystems, University of Antwerp, Antwerp, Belgium
| | - Bjarni D. Sigurdsson
- Faculty of Environmental and Forest Sciences, Agricultural University of Iceland, Hvanneyri, Borgarnes, Iceland
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- International Institute for Applied Systems Analysis, Advancing Systems Analysis Program, Laxenburg, Austria
| |
Collapse
|