1
|
Zhang X, Zhang D, Zhong C, Li W, Dinesh-Kumar SP, Zhang Y. Orchestrating ROS regulation: coordinated post-translational modification switches in NADPH oxidases. THE NEW PHYTOLOGIST 2025; 245:510-522. [PMID: 39468860 DOI: 10.1111/nph.20231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
Reactive oxygen species (ROS) are among the most important signaling molecules, playing a significant role in plant growth, development, and responses to various environmental stresses. Respiratory burst oxidase homologs (RBOHs) are key enzymes in ROS production. Plants tightly regulate the activation and deactivation of RBOHs through various post-translational modifications (PTMs), including phosphorylation, ubiquitination, S-nitrosylation, and persulfidation. These PTMs fine-tune ROS production, ensuring normal plant growth and development while facilitating rapid responses to abiotic and biotic stresses. This review discusses the effects of different PTMs on RBOH function and their biological relevance. Additionally, we examine the evolutionary conservation of PTM sites and emphasize the complex interplay between multiple PTMs regulating RBOHs.
Collapse
Affiliation(s)
- Xinyu Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chenchen Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenli Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
2
|
Goto Y, Kadota Y, Mbengue M, Lewis JD, Matsui H, Maki N, Ngou BPM, Sklenar J, Derbyshire P, Shibata A, Ichihashi Y, Guttman DS, Nakagami H, Suzuki T, Menke FLH, Robatzek S, Desveaux D, Zipfel C, Shirasu K. The leucine-rich repeat receptor kinase QSK1 regulates PRR-RBOHD complexes targeted by the bacterial effector HopF2Pto. THE PLANT CELL 2024; 36:koae267. [PMID: 39431742 PMCID: PMC11641854 DOI: 10.1093/plcell/koae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024]
Abstract
Plants detect pathogens using cell-surface pattern recognition receptors (PRRs) such as ELONGATION Factor-TU (EF-TU) RECEPTOR (EFR) and FLAGELLIN SENSING 2 (FLS2), which recognize bacterial EF-Tu and flagellin, respectively. These PRRs belong to the leucine-rich repeat receptor kinase (LRR-RK) family and activate the production of reactive oxygen species via the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD). The PRR-RBOHD complex is tightly regulated to prevent unwarranted or exaggerated immune responses. However, certain pathogen effectors can subvert these regulatory mechanisms, thereby suppressing plant immunity. To elucidate the intricate dynamics of the PRR-RBOHD complex, we conducted a comparative coimmunoprecipitation analysis using EFR, FLS2, and RBOHD in Arabidopsis thaliana. We identified QIAN SHOU KINASE 1 (QSK1), an LRR-RK, as a PRR-RBOHD complex-associated protein. QSK1 downregulated FLS2 and EFR abundance, functioning as a negative regulator of PRR-triggered immunity (PTI). QSK1 was targeted by the bacterial effector HopF2Pto, a mono-ADP ribosyltransferase, reducing FLS2 and EFR levels through both transcriptional and transcription-independent pathways, thereby inhibiting PTI. Furthermore, HopF2Pto transcriptionally downregulated PROSCOOP genes encoding important stress-regulated phytocytokines and their receptor MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2. Importantly, HopF2Pto requires QSK1 for its accumulation and virulence functions within plants. In summary, our results provide insights into the mechanism by which HopF2Pto employs QSK1 to desensitize plants to pathogen attack.
Collapse
Affiliation(s)
- Yukihisa Goto
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo 113-8654, Japan
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich CH-8008, Switzerland
| | - Yasuhiro Kadota
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa 230-0045, Japan
| | - Malick Mbengue
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan 31326, France
| | - Jennifer D Lewis
- Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto, Toronto, ON, Canada M5S 3B2
- Plant Gene Expression, United States Department of Agriculture, Agricultural Research Service, Albany, CA 94710, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Hidenori Matsui
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama 230-0045, Japan
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Noriko Maki
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa 230-0045, Japan
| | - Bruno Pok Man Ngou
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa 230-0045, Japan
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Arisa Shibata
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa 230-0045, Japan
| | - Yasunori Ichihashi
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa 230-0045, Japan
- Plant-Microbe Symbiosis Research and Development Team, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - David S Guttman
- Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto, Toronto, ON, Canada M5S 3B2
| | - Hirofumi Nakagami
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama 230-0045, Japan
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai 487-0027, Japan
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Silke Robatzek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- LMU Biocentre, Ludwig-Maximilian-University of Munich, 82152 Martinsried, Germany
| | - Darrell Desveaux
- Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto, Toronto, ON, Canada M5S 3B2
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich CH-8008, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
3
|
Shang S, He Y, Hu Q, Fang Y, Cheng S, Zhang CJ. Fusarium graminearum effector FgEC1 targets wheat TaGF14b protein to suppress TaRBOHD-mediated ROS production and promote infection. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2288-2303. [PMID: 39109951 DOI: 10.1111/jipb.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/19/2024] [Accepted: 07/11/2024] [Indexed: 10/19/2024]
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease of wheat globally. However, the molecular mechanisms underlying the interactions between F. graminearum and wheat remain unclear. Here, we identified a secreted effector protein, FgEC1, that is induced during wheat infection and is required for F. graminearum virulence. FgEC1 suppressed flg22- and chitin-induced callose deposition and reactive oxygen species (ROS) burst in Nicotiana benthamiana. FgEC1 directly interacts with TaGF14b, which is upregulated in wheat heads during F. graminearum infection. Overexpression of TaGF14b increases FHB resistance in wheat without compromising yield. TaGF14b interacts with NADPH oxidase respiratory burst oxidase homolog D (TaRBOHD) and protects it against degradation by the 26S proteasome. FgEC1 inhibited the interaction of TaGF14b with TaRBOHD and promoted TaRBOHD degradation, thereby reducing TaRBOHD-mediated ROS production. Our findings reveal a novel pathogenic mechanism in which a fungal pathogen acts via an effector to reduce TaRBOHD-mediated ROS production.
Collapse
Affiliation(s)
- Shengping Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yuhan He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Qianyong Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Ying Fang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Cui-Jun Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
4
|
Berlanga DJ, Molina A, Torres MÁ. Mitogen-activated protein kinase phosphatase 1 controls broad spectrum disease resistance in Arabidopsis thaliana through diverse mechanisms of immune activation. FRONTIERS IN PLANT SCIENCE 2024; 15:1374194. [PMID: 38576784 PMCID: PMC10993396 DOI: 10.3389/fpls.2024.1374194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
Arabidopsis thaliana Mitogen-activated protein Kinase Phosphatase 1 (MKP1) negatively balances production of reactive oxygen species (ROS) triggered by Microbe-Associated Molecular Patterns (MAMPs) through uncharacterized mechanisms. Accordingly, ROS production is enhanced in mkp1 mutant after MAMP treatment. Moreover, mkp1 plants show a constitutive activation of immune responses and enhanced disease resistance to pathogens with distinct colonization styles, like the bacterium Pseudomonas syringae pv. tomato DC3000, the oomycete Hyaloperonospora arabidopsidis Noco2 and the necrotrophic fungus Plectosphaerella cucumerina BMM. The molecular basis of this ROS production and broad-spectrum disease resistance controlled by MKP1 have not been determined. Here, we show that the enhanced ROS production in mkp1 is not due to a direct interaction of MKP1 with the NADPH oxidase RBOHD, nor is it the result of the catalytic activity of MKP1 on RBHOD phosphorylation sites targeted by BOTRYTIS INDUCED KINASE 1 (BIK1) protein, a positive regulator of RBOHD-dependent ROS production. The analysis of bik1 mkp1 double mutant phenotypes suggested that MKP1 and BIK1 targets are different. Additionally, we showed that phosphorylation residues stabilizing MKP1 are essential for its functionality in immunity. To further decipher the molecular basis of disease resistance responses controlled by MKP1, we generated combinatory lines of mkp1-1 with plants impaired in defensive pathways required for disease resistance to pathogen: cyp79B2 cyp79B3 double mutant defective in synthesis of tryptophan-derived metabolites, NahG transgenic plant that does not accumulate salicylic acid, aba1-6 mutant impaired in abscisic acid (ABA) biosynthesis, and abi1 abi2 hab1 triple mutant impaired in proteins described as ROS sensors and that is hypersensitive to ABA. The analysis of these lines revealed that the enhanced resistance displayed by mkp1-1 is altered in distinct mutant combinations: mkp1-1 cyp79B2 cyp79B3 fully blocked mkp1-1 resistance to P. cucumerina, whereas mkp1-1 NahG displays partial susceptibility to H. arabidopsidis, and mkp1-1 NahG, mkp1-1 aba1-6 and mkp1-1 cyp79B2 cyp79B3 showed compromised resistance to P. syringae. These results suggest that MKP1 is a component of immune responses that does not directly interact with RBOHD but rather regulates the status of distinct defensive pathways required for disease resistance to pathogens with different lifestyles.
Collapse
Affiliation(s)
- Diego José Berlanga
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
- Center of Excellence for Plant Environment Interactions (CEPEI), Madrid, Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
- Center of Excellence for Plant Environment Interactions (CEPEI), Madrid, Spain
| | - Miguel Ángel Torres
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
- Center of Excellence for Plant Environment Interactions (CEPEI), Madrid, Spain
| |
Collapse
|